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We propose a new unified evolution equation for parton distribution functions appropriate
for both large and small Bjorken variables x, which is an improved version of the Ciafaloni-
Catani-Fiorani-Marchesini equation. In this new equation the cancellation of soft divergences
between virtual and real gluon emissions is explicit without introducing infrared cutoffs and
next-to-leading contributions to the Sudakov resummation can be included systematically.
It is shown that the new equation reduces to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
equation at large x, to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation at small x, and
to the modified BFKL equation with a dependence on momentum transfer Q, if hard virtual
gluon contributions are retained.

PACS. 12.38.Cy – Summation of perturbation theory.
PACS. 11.10.Hi – Renormalization group evolution of parameters.

I. Introduction

It is known that the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [1] sums
the large logarithmic corrections ln Q to a parton distribution function at large x, with Q being
the momentum transfer and x the Bjorken variable, and that the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [2] sums ln(1=x) at small x. The Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
equation [3], which is appropriate for both large and small x, has been proposed to unify the
above two equations. The conventional derivation of the evolution equations involves an all-order
summation of ladder diagrams with rung gluons obeying specific kinematic orderings. For the
DGLAP, BFKL, and CCFM equations, they are transverse momentum ordering, rapidity ordering,
and angular ordering, respectively.

Recently, we have applied the Collins-Soper (CS) resummation technique [4] to the all-order
summation of various large logarithms [5]. This technique was developed originally to organize
double logarithms ln2 Q. We have demonstrated that it is also applicable to single-logarithm
cases, i.e., the derivation of the evolution equations mentioned above [5]. In this approach all
the evolution kernels are obtained from the same one-loop diagrams, which are evaluated under
appropriate soft approximations that correspond to specific kinematic orderings. Therefore, our
method is simpler, and provides a unified viewpoint to the evolution equations. It is easy to modify
the approximation employed in the evaluation of the BFKL kernel, such that a Q dependence can be
introduced into the BFKL equation [6], which is important for the explanation of the experimental
data.
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As reproducing the CCFM equation in the framework of resummation, we notice that
real and virtual gluon emissions must be treated in a different way: the former are computed to
lowest order, generating a splitting function, while the latter are resummed to all orders, giving
a Sudakov form factor. This observation is consistent with that in the conventional derivation
[3]. However, infrared divergences must cancel between real and virtual gluon emissions order
by order. Hence, in the conventional derivation infrared cutoffs are necessary for regularizing
the individual divergences in real and virtual corrections. These cutoffs may cause an ambiguity,
when one intends to include next-to-leading logarithmic summation into the evolution equation.

In Ref. [7] we have proposed a new unified evolution equation, which results from one of
the applications of the CS formalism to logarithmic summations. In this paper we shall present
a detailed derivation of the new equation, explain the ingredients that are added compared to the
CCFM equation, and discuss features of the gluon distribution function solved from this new
equation. In our approach real gluon correction is separated into two pieces: the piece containing
an infrared pole is combined with the corresponding virtual correction, both of which are resummed
into a Sudakov form factor. The other piece, being infrared finite, is evaluated to lowest order,
giving a splitting function. With such an arrangement, both the Sudakov form factor and the
splitting function are rendered infrared finite. Using the CS formalism, the running of coupling
constants appearing in the Sudakov form factor and in the splitting function, which contributes
to next-to-leading logarithmic summation, can be taken into account. It will be shown that hard
virtual gluon contributions introduce a dependence on the kinematic variable Q to the rise of
the gluon distribution function at small x. This Q dependence is similar to that of the CCFM
equation, which arises from the ln Q summation.

The CCFM equation is reproduced using the CS resummation technique in Sec. 2. The new
unified evolution equation is derived in Sec. 3. We demonstrate in Sec. 4 that the new equation
reduces to the DGLAP equation, to the BFKL equation, and to the modified BFKL equation with
a Q dependence. Section 5 is the conclusion.

II. CCFM equation

We study the unintegrated gluon distribution function defined in the axial gauge n ¢A = 0,
n being a gauge vector:

F (x; kT ; p+) =
1

p+

Z
dy¡

2¼

Z
d2yT

4¼
e¡ i(xp+y¡ ¡ kT ¢yT )

£ 1

2

X

¾

hp; ¾ jF+
¹ (y¡ ; yT )F ¹+(0)jp; ¾i;

(1)

where jp; ¾i denotes the incoming hadron with light-like momentum p¹ = p+±¹+ and spin ¾ ,
and F+

¹ is the field tensor. An average over color is understood. F (x; kT ; p+) describes the
probability of a gluon carrying a longitudinal momentum fraction x and transverse momenta kT .

For n¹ = ±¹¡ lying on the light cone, Eq. (1) is gauge invariant. This can be understood by
considering a variation of n on the light cone, under which Eq. (1) is still defined for A+ = 0 and
remains the same. To derive an evolution equation of a parton distribution function using the CS
formalism, we must allow n to vary arbitrarily away from the light cone (n2 6= 0), and a parton
distribution function becomes gauge dependent. Parton distribution functions defined for different
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n possess the same infrared structure, but different ultraviolet structure [8]. It has been shown that
the gauge dependence of a parton distribution function is cancelled by that from nonfactorizable
soft gluon exchanges in a physical process, rendering cross section gauge invariant. Hence, the
vector n acts as an auxiliary tool.

The key step of the CS formalism is to obtain the derivative p+dF=dp+. Because of the
scale invariance of F in the vector n as indicated by the gluon propagator, ¡ iN¹º(l)=l2, with

N¹º = g¹º ¡ n¹ lº + nº l¹

n ¢l + n2 l¹ lº

(n ¢l)2 ; (2)

F must depend on p+ via the ratio (p ¢n)2=n2. Hence, we have the chain rule relating p+d=dp+

to d=dn [4, 9]:

p+ d

dp+
F = ¡ n2

v ¢nv®
d

dn®
F; (3)

with v® = ±®+ a dimensionless vector along p. The operator d=dn® applies to a gluon propagator,
giving [4]

d

dn®
N¹º = ¡ 1

n ¢l (l
¹ N® º + lºN¹® ): (4)

The loop momentum l¹ (lº ) in the above expression contracts with a vertex the differentiated
gluon attaches, which is then replaced by a special vertex [4,9]

v̂® =
n2v®

v ¢nn ¢l : (5)

This special vertex can be easily read off from the combination of Eqs. (3) and (4).
Employing the Ward identities for the contraction of l¹ (lº ) [5], the sum of diagrams with

different differentiated gluons reduces to a new diagram, in which the special vertex moves to the
outer end of a parton line [4,9]. We obtain the formula

p+ d

dp+
F (x; kT ; p+) = 2 ¹F (x; kT ; p+); (6)

shown in Fig. 1(a), where ¹F denotes the new diagram, and the square represents the special vertex.
The coefficient 2 comes from the equality of the new functions with the special vertex on either
of the two parton lines.

The leading regions of the loop momentum flowing through the special vertex are soft and
hard, since the vector n does not lie on the light cone, and collinear enhancements are suppressed.
If following the standard resummation procedure, we should factorize out subdiagrams containing
the special vertex order by order in the leading regions (see Figs. 1(b) and 1(c)). This procedure
will lead to a new unified evolution equation in the next section. To reproduce the CCFM equation,
however, the factorization must be performed in a different way described by Fig. 2(a), where the
two jet functions J group all-order virtual corrections, and the lowest-order real gluon emission
between them is soft. This factorization picture is motivated by the conventional derivation in [3].
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FIG. 1. (a) The derivative p + dF=dp + in the axial gauge. (b) The lowest-order subdiagrams for K . (c)
The lowest-order subdiagrams for G.

We first resum the double logarithms contained in J by considering its derivative

p+ d

dp+
J(pT ; p+)= ¹J(kT ; p+)

= [KJ(kT =¹; ® s(¹)) + GJ(p+=¹; ® s(¹))]J(kT ; p+);
(7)

which is similar to Eq. (6). In the second expression subdiagrams containing the special vertex have
been factorized into the functions KJ and GJ in the leading soft and hard regions, respectively.
At lowest order, KJ comes from Fig. 2(b), where the replacement of the gluon line by an eikonal
line will be explained below, and GJ comes from Fig. 2(c). The second diagram in Fig. 2(c)
serves as a soft subtraction, which guarantees a hard momentum flow in GJ . We have set the
infrared cutoff of KJ to kT , as indicated by its argument, in order to regularize its soft pole. This
cutoff is necessary here due to the lack of the corresponding real gluon emission diagram. At this
step, an ambiguity in the summation of single logarithms is introduced.

We evaluate the contribution from Fig. 2(b). The color factor is extracted from the relation
fabcfbdc = ¡ Nc±ad, where the indices a; b; : : : are referred to Fig. 1(b), and Nc = 3 is the number
of colors. The one-loop KJ is written as

KJ = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ ¡ ¹º¸

¡ 2xp ¢ll2 ¡ ±KJ ; (8)

with ±KJ an additive counterterm. The triple-gluon vertex is

¡ ¹º¸ = g¹º(xp + l)¸ + gº¸ (xp ¡ 2l)¹ + g¸¹ (l ¡ 2xp)º ; (9)

¼ xp+(g¹ºv¸ + gº¸v¹ ¡ 2g¸¹ vº); (10)
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FIG. 2. (a) The subdiagram containing the special vertex for the CCFM equation. (b) The lowest-order
subdiagram for KJ . (c) The lowest-order subdiagrams for GJ .

where Eq. (10) is the soft loop momentum (l ! 0) limit of Eq. (9). The factor 1=(¡ 2xp ¢l) is
the soft approximation of the gluon propagator 1=(l ¡ xp)2.

It has been shown that the terms v¸ and v¹ in Eq. (10) result in contributions suppressed by
a power 1=s, s = (p + q)2, compared to the contribution from the last term vº [5,6]. Absorbing
the metric tensor g¸¹ into F , Eq. (8) is simplified into

KJ = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢ll2 ¡ ±KJ : (11)

The factor vº=(v ¢l) is represented by an eikonal line in Fig. 2(b), with the Feynman rules vº for
an eikonal vertex and 1=(v ¢l) for an eikonal propagator.

Since ultraviolet poles exist in Fig. 2(b) and in the second diagram of Fig. 2(c), the sum
KJ + GJ is independent of ¹ , i.e., renormalization-group (RG) invariant. The standard RG
analysis leads to

¹
d

d¹
KJ(kT =¹; ® s(¹)) = ¡ °J(® s(¹)) = ¡ ¹

d

d¹
GJ(p+=¹; ® s(¹)); (12)

whose solution is written as

KJ(kT =¹; ® s(¹)) + GJ(p+=¹; ® s(¹)) = ¡ °J(® s)

Z p+

kT

d¹¹

¹¹
: (13)
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The anomalous dimension °J is found to be [5]

°J = ¹
d

d¹
±KJ = ¹® s; (14)

with the coupling constant ¹® s = Nc® s=¼ . To the accuracy of leading (double) logarithms [3],
we have neglected the initial conditions KJ(1; ® s(kT )) and GJ(1; ® s(p

+)) of the RG evolution,
the higher-order terms in °J , and the running of ¹® s, which contribute to next-to-leading (single)
logarithmic summation. In the derivation of the new unified evolution equation these ingredients
can be included.

Substituting Eq. (13) into Eq. (7), we solve for

J(kT ; Q) = ¢ 1=2(kT ; Q)J (0); (15)

with the double-logarithm exponential

¢ (kT ; Q) = exp

"
¡ 2¹® s

Z Q

kT

dp+

p+

Z p+

kT

d¹¹

¹¹

#
: (16)

where the upper bound of p+ has been chosen as Q. The initial condition J (0) can be regarded
as a tree-level gluon propagator, which will be eikonalized in the evaluation of the lowest-order
soft real gluon emission below.

We split the above exponential into

¢ (kT ; Q) = ¢ S(zq;Q)¢ NS(z; q; kT ); (17)

with z = x=» and q = lT =(1¡ z), where » is the momentum fraction entering J from the bottom,
and lT is the transverse loop momentum carried by the soft real gluon. The so-called “Sudakov”
exponential ¢ S and the “non-Sudakov” exponential ¢ NS are given by

¢ S(zq;Q) = exp

"
¡ 2¹® s

Z Q

zq

dp+

p+

Z p+

kT

d¹¹

¹¹

#
;

= exp

"
¡ ¹® s

Z Q2

(zq)2

dp2

p2

Z 1¡ kT =p

0

dz0

1 ¡ z0

#
; (18)

¢ NS(z; q; kT ) = exp

"
¡ 2¹® s

Z zq

kT

dp+

p+

Z p+

kT

d¹¹

¹¹

#
;

= exp

"
¡ ¹® s

Z kT =q

z

dz0

z0

Z k2
T

(z0q)2

dp2

p2

#
; (19)

where the variable changes ¹¹ = (1 ¡ z0)p and p+ = p for ¢ S , and ¹¹ = p and p+ = z0q for ¢ NS

have been adopted to obtain the second expressions.
Using Eq. (15) for the two jet functions, ¹F from Fig. 2(a) is written as

¹F (x; kT ; p+) = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢l 2¼i±(l2)¢ (kT ; Q)

£ µ(Q ¡ zq)F (x + l+=p+; jkT + lT j; p+);

(20)
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where the tree-level gluon propagator J (0) on the right-hand side has been eikonalized to give
the factor 1=v ¢l, and that on the left-hand side has been absorbed into F . The extra µ function,
requiring Q > zq, renders the Sudakov exponential ¢ S meaningful. This relation comes from the
angular ordering of radiative gluons, Q=(xp+) > lT =[(» ¡ x)p+]. Compared with the transverse
momentum ordering for the DGLAP equation, Q (lT ) has been divided by the longitudinal mo-
mentum xp+ ((»¡ x)p+). Therefore, the inserted scale zq reflects the specific kinematic ordering
for the CCFM equation. Those radiative gluons, which do not obey angular ordering, contribute
to the non-Sudakov exponential.

Adopting the variable change » = x + l+=p+ and performing the integration over l¡ , we
obtain

¹F (x; kT ; p+) =
¹® s

2

Z 1

x
d»

Z
d2lT
¼

2n2(» ¡ x)p+2

[n+l2T + 2n¡ (» ¡ x)2p+2]2
¢ (kT ; Q)

£ µ(Q ¡ zq)F (»; jkT + lT j; p+);

(21)

where n = (n+; n¡ ;0) has been chosen for convenience. The above expression is then substituted
into Eq. (6) to find a solution of F . Integrating Eq. (21) from p+ = 0 to Q, and applying the
variable changes » = x=z and lT = (1 ¡ z)q, we have

F (x; kT ; Q) =F (0) + ¹® s

R 1
x dz

Z
d2q

¼q2
µ(Q ¡ zq)¢ S(Q; zq)¢ NS(z; q; kT )

£ 1

z(1 ¡ z)
F (x=z; jkT + (1 ¡ z)qj; q);

(22)

where the initial condition F (0) corresponds to the lower bound of p+. To work out the p+

integration, F (x=z; jkT + lT j; p+) in Eq. (21) has been approximated by F (x=z; jpT + lT j; q).
Note that the n dependence has disappeared, and the CCFM kernel is gauge invariant.

Equation (22) can be reexpressed as

F (x; kT ; Q) =F (0) + ¹® s

Z 1

x
dz

Z
d2q

¼q2
µ(Q ¡ zq)¢ S(zq;Q) ~P (z; q; kT )

£ F (x=z; jkT + (1 ¡ z)qj; q);
(23)

with the function

~P =

·
1

(1 ¡ z)+
+ ¢ NS(z; q; kT )

1

z
¡ 2 + z(1 ¡ z)

¸
; (24)

which is close to the splitting function

Pgg =

·
1

(1 ¡ z)+
+

1

z
¡ 2 + z(1 ¡ z)

¸
: (25)

Equation (23) is the CCFM equation [3]. To arrive at Eq. (24), we have employed the identity
1=[z(1 ¡ z)] ´ 1=(1 ¡ z) + 1=z, and put in by hand the last term ¡ 2 + z(1 ¡ z). This term,
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finite at z ! 0 and at z ! 1, can not be obtained in [3] either due to a soft approximation. Note
that Eq. (22) contains an infrared singularity from z ! 1. Hence, we have replaced the factor
1=(1¡ z) by the plus distribution 1=(1¡ z)+ in Eq. (23), and dropped the soft pole corresponding
to z ! 1. On the other hand, only the non-Sudakov form factor ¢ NS in front of 1=z is retained.
Because ¢ NS vanishes when the upper bound zq of p+ approaches zero, as indicated by Eq. (19),
it smears the z ! 0 pole in ~P [3].

As shown above, the double-logarithm exponential ¢ and the function ~P are infrared
divergent individually. To have a well-defined evolution equation, the infrared regularizations for
¢ and ~P must be implemented. The lower bound of the variable z is x, and never goes down to
zero. Therefore, the smearing factor ¢ NS and the splitting of the double-logarithm exponential
in Eq. (17) are not essential. The new unified evolution equation derived in the next section will
take into account these observations.

III. New unified equation

In this section we shall derive a new unified evolution equation following the standard
procedure of the CS formalism. We start with Eq. (6) for the unintegrated gluon distribution
function F (x; kT ; p+). We Fourier transform Eq. (6) into b space with b being the conjugate
variable of kT . In the leading soft and hard regions of the loop momentum flowing through the
special vertex, ¹F can be factorized into the convolution of subdiagrams containing the special
vertex with the original distribution function F . To lowest order, the soft contribution from the
subdiagrams in Fig. 1(b) is written as

¹Fs(x; b; p+) = ¹Fsv(x; b; p+) + ¹Fsr(x; b; p+); (26)

with

¹Fsv = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢ll2 F (x; b; p+); (27)

¹Fsr = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢l 2¼i±(l2)eilT ¢b £ F (x + l+=p+; b; p+); (28)

corresponding to virtual and real gluon emissions, respectively. Equation (27) is the same as the
integral in Eq. (11). The factor exp(ilT ¢b) in Eq. (28) comes from Fourier transformation of the
real gluon contribution.

We reexpress the function F in the integrand of ¹Fsr as

F (x + l+=p+; b; p+) = F (x; b; p+) + [F (x + l+=p+; b; p+) ¡ F (x; b; p+)]: (29)

The contribution from the first term on the right-hand side of Eq. (29) is combined with ¹Fsv,
leading to K(b¹; ® s(¹))F (x; b; p+) with the function

K = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢l £
·

1

l2
+ 2¼i±(l2)eilT ¢b

¸
¡ ±K; (30)
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where ±K is an additive counterterm. The contribution from the second term in Eq. (29) is denoted
as ¹F 0

s(x; b; p+),

¹F 0
s = iNcg

2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯ vº

v ¢l 2¼i±(l2) £ [F (x + l+=p+; b; p+) ¡ F (x; b; p+)]; (31)

where the exponential eilT ¢b has been neglected as a soft approximation. Therefore, we have
separated the real gluon contribution into two pieces: the piece with an infrared pole, along with
the virtual gluon contribution, goes into the function K. Compared with KJ in Eq. (11), K is
infrared finite due to the inclusion of part of the real correction. The other piece ¹F 0

s, being also
infrared finite, will lead to a splitting function below.

Fig. 1(c) gives G(p+=¹; ® s(¹))F (x; b; p+) with the function

G = iNcg
2

Z
d4l

(2¼)4
Nº¯ (l)

v̂¯

l2

·
(l ¡ 2xp+v)º

(l ¡ xp+v)2
¡ vº

v ¢l

¸
¡ ±G; (32)

where xp+ is the parton momentum and ±G an additive counterterm. To obtain the above ex-
pression, Eq. (9) for the triple-gluon vertex has been inserted, which generates the first term in
the brackets. At intermediate x, G is characterized by a large scale p+, whose logarithms ln p+

imply that collinear divergences are present in F , and that the Sudakov resummation of double
logarithms from the overlap of collinear and soft enhancements is necessary. Through this function
G, the dependence on a large scale is introduced into the new evolution equation as stated before.

The functions K and G contain ultraviolet divergences individually as indicated by the
renormalization scale ¹ . However, their ultraviolet divergences, both from the virtual contribution
¹Fsv, cancel each other. This is obvious from the counterterms

±K = ¡ ±G = ¹® s

µ
1

²
+

1

2
ln 4¼ ¡ °E

2

¶
; (33)

with the Euler constant °E. Therefore, the sum K + G is RG invariant, the same as KJ + GJ in
Eq. (13). The results of K and G from Eqs. (30) and (32) are

K(b¹; ® s(¹))= ¡ ¹® s(¹)

·
ln(b¹) + ln

e°E

2

¸
;

G(p+=¹; ® s(¹))= ¡ ¹® s(¹)

·
ln

xp+

¹
+ ln(2º)

¸
;

(34)

with the gauge factor º =
p

(v ¢n)2=jn2j.
The RG solution of K + G is given by

K(b¹; ® s(¹)) + G(p+=¹; ® s(¹)) = K(1; ® s(p
+)) + G(1; ® s(p

+)) ¡ s(b; p+); (35)

with

K(1; ® s(p
+)) = ¡ ¹® s(p

+) ln
e°E

2
; (36)
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G(1; ® s(p
+)) = ¡ ¹® s(p

+) ln(2xº); (37)

s(b; p+) =

Z p+

1=b

d¹¹

¹¹

·
°K(® s(¹¹)) + ¯(g)

@

@g
K(1; ® s(¹¹))

¸
; (38)

°K = ¹d±K=d¹ being the anomalous dimension of K and ¯(g) the beta function.
The one-loop expression of °K in Eq. (38) gives leading (double) logarithmic summation,

and the two-loop expression gives next-to-leading (single) logarithmic summation. Another term
proportional to ¯@K=@g and the initial conditions K(1; ® s) and G(1; ® s) also give next-to-leading
contributions. Hence, the Sudakov resummation can be performed up to the accuracy of single
logarithms, and the running of the coupling constant must be taken into account in our formalism.
Note that it is equivalent to choose Cp+ as the upper bound of ¹¹ in Eq. (38) with C a constant of
order unity. The ambiguity from this arbitrary constant C is cancelled by the ambiguity from the
initial condition G(1=C; ® s) at the single-logarithm level. The terms involving the gauge factor
ln º in the initial condition of G will be cancelled by the gauge factor from nonfactorizable soft
gluon exchanges in a physical process [9].

For ¹F 0
s, we employ the variable change » = x + l+=p+, and perform the integration

straightforwardly, obtaining

¹F 0
s = ¹® s(p

+)

Z 1

x
d»

F (»; b; p+) ¡ F (x; b; p+)

» ¡ x
: (39)

The argument of ¹® s in the above expression has been chosen as p+, the same as that in Eq. (35).
Further applying the variable change » = x=z and using the identity 1=[z(1¡ z)] ´ 1=(1¡ z)+1=z,
Eq. (39) is rewritten as

¹F 0
s = ¹® s(p

+)

Z 1

x
dz

µ
1

z
+

1

1 ¡ z

¶ £
F (x=z; b; p+) ¡ F (x; b; p+)

¤
: (40)

The term

¡
Z 1

x

dz

z
F (x; b; p+) = ln xF (x; b; p+); (41)

in the above expression cancels ¡ ln x in Eq. (37). Combining Eqs. (35) and (40), the evolution
equation becomes

p+ d

dp+
F (x; b; p+) = ¡ 2s(b; p+)F (x; b; p+) + 2¹® s(p

+)

Z 1

x
dzPgg(z)F (x=z; b; p+); (42)

with Pgg defined by Eq. (25). The terms finite at z ! 0 and at z ! 1 in Pgg are put in
by hand as in derivation of the CCFM equation [3]. In Eq. (42) we have concentrated on the
leading-logarithm resummation for simplicity.

The Sudakov form factor ¢ can be extracted by assuming

F (x; b; p+) = ¢ (b; p+; Q0)F
(s)(x; b; p+); (43)
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with the exponential

¢ (b; p+; Q0) = exp

"
¡ 2

Z p+

Q0

dp

p
s(b; p)

#
; (44)

where Q0 is an arbitrary low energy scale, satisfying Q0 ¸ 1=b. As Q0 < 1=b, implying the
vanishing of collinear enhancements, the Sudakov form factor should be set to unity. Equation
(44) indicates that the Sudakov form factor exhibits strong suppression at large b.

Substituting Eq. (43) into Eq. (42), we have the differential equation of F (s),

p+ d

dp+
F (s)(x; b; p+) =

2¹® s(p
+)

¢ (b; p+; Q0)

Z 1

x
dzPgg(z)F (x=z; b; p+): (45)

The above equation is rewritten as

F (s)(x; b;Q) = F (s)(x; b;Q0) +

Z 1

x
dz

Z Q2

Q2
0

d¹2

¹2

¹® s(¹)Pgg(z)

¢ (b; ¹;Q0)
F (x=z; b; ¹); (46)

where F (s)(x; b; Q0) = F (x; b;Q0) is the initial condition of F at the low scale p+ = Q0. We
have chosen the upper bound of p+ as the measured kinematic variable Q. Finally, using Eq. (43),
the unintegrated gluon distribution function in b space is given by

F (x; b; Q) =¢ (b; Q;Q0)F (x; b; Q0)

+

Z 1

x
dz

Z Q2

Q2
0

d¹2

¹2
¹® s(¹)¢ (b;Q; ¹)Pgg(z)F (x=z; b; ¹):

(47)

Equation (47) is the new unified evolution equation.

IV. Features of the new equation

In this section we shall explore features of the new unified evolution equation. We first
demonstrate that the new equation approaches the DGLAP equation at large x, The strong kT

ordering of radiative gluons corresponds to small transverse separation b among these gluons. In
the region with small b we have

lim
b!1=p+» 0

s(b; p+) = 0; (48)

lim
b!0

F (x; b;Q) = xG(x;Q): (49)

Equation (48) corresponds to the fact that the effect of Sudakov resummation is weak at small b
as explained in Sec. 3. Equation (49) comes from the definition of the gluon density G(x; Q) as
the integral of F (x; kT ; Q) in Eq. (1) over kT . Differentiating Eq. (47) with respect to Q2 under
Eqs. (48) and (49), we obtain

Q2 d

dQ2
G(x;Q) = ¹® s(Q)

Z 1

x

dz

z
Pgg(z)G(x=z; Q); (50)
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which is the DGLAP equation for G(x; Q). The initial condition F (x; b; Q0) does not depend on
Q, and thus its derivative vanishes.

We then show that the new evolution equation reduces to the BFKL equation in the small-x
limit. For convenience, we shall adopt the one-loop expression °K = ¹® s, which is the same as °J

for the CCFM equation, and ignore the running of ¹® s below. Strong rapidity ordering corresponds
to the assumption that the z integral in the second term of Eq. (47) is dominated by the behavior of
F (x=z; b; ¹) at small x=z, i.e., at z À x [5]. Substituting F (x; b;Q) for F (x=z; b;Q), Eq. (47)
becomes

F (x; b; Q) = ¢ (b; Q;Q0)F (x; b; Q0) + ¹® s

Z 1

x

dz

z

Z Q2

Q2
0

d¹2

¹2
¢ (b;Q; ¹)F (x; b; ¹): (51)

In the above expression the term ¡ 2 + z(1 ¡ z) in the splitting function Pgg, which is finite as
z ! x ! 0, has been neglected.

Differentiating F with respect to x, Eq. (51) leads to

¡ x
d

dx
F (x; b;Q) = ¹® s

Z Q2

Q2
0

d¹2

¹2
¢ (b;Q; ¹)F (x; b; ¹);

¼ ¹® s ln Q2

Q2
0
F (x; b;Q):

(52)

The derivative of the first term on the right-hand side of Eq. (51) has been neglected, since
F (x; b;Q0) is assumed to be “flat” [10]. The derivative of F (x; b; ¹) in the integrand of the
second term, giving next-to-leading-order contributions, has been also neglected. To derive the
second expression, we have made the approximation ¢ (b;Q; ¹)F (x; b; ¹) ¼ F (x; b;Q), which
maintains the feature of the evolution in x. Equation (52) is the modified BFKL equation with a
Q dependence derived in [6].

If we drop hard virtual gluon contributions, the Q dependence will not appear in the
evolution kernel. Replacing Q by 1=b, which is the only scale, Eq. (52) reduces to

¡ x
d

dx
F (x; b) = ¡ ¹® s ln(Q2

0b
2)F (x; b): (53)

Since the evolution kernel does not depend on Q, the argument Q of F has been suppressed. It
can be shown that the Fourier transformation of the BFKL equation adopted in [6,10],

¡ x
d

dx
F (x; kT ) = ¹® s

Z
d2lT
¼l2T

[F (x; jkT + lT j) ¡ µ(Q0 ¡ lT )F (x; kT )]; (54)

coincides with Eq. (53). The conventional BFKL equation predicts that the small-x rises of the
gluon distribution function and of structure functions involved in deep inelastic scattering are
almost Q-independent as indicated by Eq. (54). However, recent HERA data of the structure
function F2(x; Q2) [11] exhibit a more sensitive Q dependence: the rise is rapider at larger Q. It
is easy to observe that the evolution kernel in Eq. (52) enhances the rise of the gluon distribution
function when Q is large. It has been shown that predictions from Eq. (52) are well consistent
with the data [6].
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Compared with the CCFM equation, the new evolution equation bears other similarities and
differences. They both contain the Sudakov exponentials, but the forms are different. The upper
bounds of the evolution variables are the same (Q), but the lower bounds are zq in the CCFM
equation, and ¹ in the new equation. The longitudinal variable ¹ controls the magnitude of the
Sudakov form factor by changing the partition of collinear enhancements between ¢ (b;Q; ¹) and
F (x=z; b; ¹). While zq from angular ordering changes the partition of collinear enhancements
between ¢ S(zq; Q) and ¢ NS(z; q; kT ). There is no separation of ¢ NS from ¢ S in the new
equation. As explained in Sec. 2, this smearing factor ¢ NS is not necessary, since the z ! 0
pole does not exist.

V. Conclusion

In this paper we have derived a new unified evolution equation for the gluon distribution
function using the CS resummation technique, which is appropriate for both the large and small x.
The features of this equation are summarized below. The infrared cancellation between real and
virtual gluon emissions is explicit in both the Sudakov form factor and the splitting function. The
Sudakov form factor can take into account next-to-leading logarithmic summation systematically,
including the running of the coupling constant. Hard virtual gluon emissions introduce a desired
Q dependence into the evolution kernel. The splitting function does not contain the non-Sudakov
form factor compared to that in the CCFM equation. Hence, the new unified evolution equation
can be regarded as an improved version of the CCFM equation.

In the future studies we shall explore the properties of this new equation in details, and
results will be published elsewhere.

This work was supported by the National Science Council of R.O.C. under Grant No.
NSC89-2112-M-006-004.
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