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We determined theoretically that the nonlinear dynamics of a Gaussian beam is configuration dependent in a
general cavity. This prediction was confirmed by numerical simulation in a Kerr-lens mode-locked cavity for
which the self-focusing effect is considered the nonlinear source in both the spatial and the temporal domains.
Period doubling, tripling, and quadrupling can occur in these configurations with the products of generalized
cavity G parameters equal to 1/2, 1/4 (or 3/4), and (2 6 A2)/4, respectively. The dynamic behavior of the cav-
ity beam will become irregular if the nonlinear effect is further increased. © 2000 Optical Society of America
[S0740-3224(00)00708-6]
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1. INTRODUCTION
The nonlinear Kerr effect can induce not only Kerr-lens
mode locking but also fruitful nonlinear dynamics. After
the discovery of Kerr-lens mode locking in Ti:sapphire
lasers,1 various theoretical studies were dedicated to the
Kerr-lens mode-locked (KLM) cavity design, both numeri-
cally and analytically.2–6 Among these theoretical stud-
ies, most efforts were concentrated on the mode-locking
mechanisms that result from self-amplitude modulation,
which originates from the power-dependent cavity beam’s
being modified by the self-focusing effect inside the Kerr
medium. Because a femtosecond pulse will simulta-
neously undergo self-amplitude and self-phase modula-
tion as it propagates through a Kerr medium, coupling of
spatial and temporal effects results from the Kerr nonlin-
earity. One may model this problem by preserving the
total pulse energy at that moment.7,8 In fact, the analy-
ses that considered self-amplitude modulation only in the
spatial domain agree with the experimental results and
offer valuable suggestions for KLM cavity designs.

Reports of nonlinear dynamic studies of KLM lasers,
however, are somewhat limited. Recently, period dou-
bling of a Ti:sapphire laser was observed near the edge of
a stable region and was explained in terms of total mode
locking9; the simultaneous locking of the TEM00 and the
TEM01 modes results in spatial sweeping of the beam
with a frequency determined by the spacing between
these two modes. A detailed study of subharmonic oscil-
lations by total mode locking was reported in Ref. 10.
Besides the dynamics that involves the phase locking of
both transverse and longitudinal modes, the dynamic be-
havior based on the propagation of a single Gaussian
beam, including self-focusing and loss effects,11 was nu-
merically investigated. By use of geometric (spot size
and curvature) and energetic (gain and intensity) vari-
ables in a KLM system, regular, quasi-periodic, and cha-
otic behaviors were obtained in a KLM laser whose con-
figuration was close to the limit of the stable region.
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These theoretical predictions were supported by the ob-
servation of quasi-periodic and chaotic behavior in a ring
Ti:sapphire laser with an equivalent Fabry–Perot
configuration.12 Apparently, single-Gaussian-mode
propagation reveals complicated dynamics in KLM cavi-
ties.

According to a previous theoretical study13 and the pre-
diction of Greene’s residue theorem,14 some specific cavity
configurations within the geometrically stable region of a
cold cavity15 will be highly sensitive to the nonlinear ef-
fect. On the basis of this theoretical prediction, in this
paper we present the cavity-configuration-dependent dy-
namic behavior of KLM lasers by modeling the nonlinear
dynamics of single-Gaussian mode propagation in a KLM
cavity. The dynamics is directly induced by self-focusing
even with a single Gaussian mode and is different from
that of that total mode locking that consists of both trans-
verse and longitudinal modes. The propagation of a
Gaussian beam in the spatial domain is governed by the
ABCD law in linear elements15,16 and is solved by the
renormalized q-parameter method in the Kerr medium.17

We neglect the thermal lens effect because it may simply
shift the cavity configuration and play a minor role in the
ultrashort-pulse dynamics.11 Our numerical results con-
firm the theoretical prediction that the multiple periods of
pulse trains in a KLM cavity depend on the cavity con-
figuration, even if spatial–temporal coupling is consid-
ered. The evolution of the system will become irregular
if the nonlinear effect is further increased.

This paper is organized as follows: In Section 2 we ap-
ply Greene’s residue theorem to discuss the stability of a
general lossless cavity and find new specific cavity con-
figurations that may become unstable in the presence of a
persistent nonlinear effect. A numerical simulation of
the nonlinear dynamic behavior of a KLM cavity in the
spatial domain is described in Section 3. The results of
combining the spatial and the temporal domains are pre-
sented in Section 4, and irregular evolution as the intra-
2000 Optical Society of America
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cavity intensity is increased is discussed in Section 5. In
Section 6 we briefly discuss the difference between our ap-
proach and that of total mode locking. Finally, conclu-
sions are drawn in Section 7.

2. STABILITY OF A GENERAL LOSSLESS
CAVITY
Consider a Gaussian beam propagating on the z axis; we
can write its complex field as15

u~r, z! 5 F U

w~z!
GexpF2i

kr2

2q~z!
G , (1)

with the complex beam parameter

1

q~z!
5

1

R~z!
2 i

l

pw~z!2 , (2)

where r is the radial distance from the z axis, U is the real
amplitude, l is the central wavelength, R is the phase-
front radius of curvature, and w is the spot size of the
beam. When the Gaussian beam propagates through op-
tical components, the transformation of the q parameter
obeys the so-called ABCD law that has been widely ap-
plied to designing stable laser cavities.15,16 Assuming
that the round-trip matrix of the cavity is @C

A
D
B #, the re-

lationship of beam parameter of the (n 1 1)st round trip
to that of the nth round trip can be written as

wn11 5 fw~wn , Rn!

5 H 2
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ImFC 1 D~1/Rn 2 il/pw2!

A 1 B~1/Rn 2 il/pw2!
G J 21/2
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G J 21

, (4)

where Re and Im stand for the real and the imaginary
parts, respectively, of a complex number. Thus Eqs. (3)
and (4) form a two-dimensional iterative map. If all the
elements of the ABCD matrix are real, i.e., if the cavity is
lossless, this map is a conservative one.18 Inasmuch as
the fixed point of the map is just the self-consistent solu-
tion of the cavity design, to determine the characteristics
of the cavity beam one needs to discuss the stability of the
fixed point.18,19 It is convenient to study the stability of
the conservative map by using Greene’s residue theorem
and to define the residue as14

Res 5 @2 2 Tr~MJ!#/4, (5)

where MJ is the Jacobian matrix of the map and Tr(MJ)
is its trace. The relationship between the residue and
the phase shift, u, of the map per iteration can be repre-
sented as14

Res 5 sin2~u/2!. (6)

From Eqs. (3)–(5), the residue of a lossless standing-wave
cavity is13

Res 5 1 2 ~2G1G2 2 1 !2, (7)
where G1 5 a 2 b/r1 and G2 5 d 2 b/r2 represent the
G parameters of a general optical cavity, @c

a
d
b # is the

transfer matrix of single pass between the two end mir-
rors, and r1 and r2 are the radii of curvature of the two
end mirrors.

From the residue theorem, the fixed point is stable
when 0 , Res , 1, whereas it is unstable when Res , 0
or Res . 1. With the help of Eq. (7), we found that the
region with 0 , G1G2 , 1 is stable and the regions with
G1G2 , 0 and G1G2 . 1 are unstable. This result is
the same as for the geometrically stable condition.15 Be-
sides the Res 5 0 and Res 5 1 being critical, the resi-
due theorem proposes that the orbit is stable for 0
, Res , 1, except for Res 5 3/4 and Res 5 1/2 (some-
times). These special cases with Res 5 0, 1, 3/4, 1/2 cor-
respond to the low-order resonances where p 5 1, 2, 3, 4
in x p 5 1, respectively. Here x is the eigenvalue of MJ .
Under these circumstances, linearization of MJ at these
fixed points is not sufficient to describe the behavior of the
nearby points, and complicated dynamics may occur at
these configurations if there is a persistent nonlinear ef-
fect. These special conditions correspond to G1G2 5 0 or
G1G2 5 1 for Res 5 0 and G1G2 5 1/2 for Res 5 1,
G1G2 5 1/4, 3/4 for Res 5 3/4, and G1G2 5 (2 6 A2)/4
for Res 5 1/2. In Fig. 1 a diagram of the stable region is
shown in which the dashed curves represent these special
configurations. It is worth noting that these configura-
tions are located within the geometrically stable regions,
except that G1G2 5 0,1 is geometrically critically stable.
Nonlinear effects may break the stability of a self-
consistent Gaussian beam in these special configurations.

3. KERR-LENS MODE-LOCKED CAVITY
In a KLM cavity the nonlinear self-focusing effect within
the Kerr medium modifies the profile of the cavity mode
and leads to mode locking. The self-focusing effect may
simultaneously induce complicated nonlinear dynamics of

Fig. 1. Stability diagram for a general resonator. Besides the
stable regions (0 , G1G2 , 1), the specific configurations are
shown as a, G1G2 5 1; b, G1G2 5 (2 1 A2)/4; c, G1G2 5 3/4; d,
G1G2 5 1/2; e, G1G2 5 1/4; f, G1G2 5 (2 2 A2)/4.
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the cavity beam as the effect further increases. Because
the self-focusing effect dominates the characteristics of a
KLM cavity, this accompanying nonlinear dynamics is
worth considering, particularly for the specific configura-
tions with low-order resonances.

Figure 2 shows a four-mirror KLM cavity with two
arms, d1( 5 70 cm) and d2( 5 100 cm), a Brewster-cut
Ti:sapphire rod of length Lc 5 20 mm, and curved mir-
rors M2 and M3 with 100-mm radii of curvature. The
curved mirrors are tilted by u 5 15.4° to compensate for
the astigmatism of the Brewster-cut laser rod.20 The
analysis of the propagation of the Gaussian beam is di-
vided into two parts; the ABCD law is applied for linear
optical components and the renormalized q-parameter
method6,17 is used in the Kerr medium. From the renor-
malized q-parameter method we can transform the q pa-
rameter from end face I to end face II of the Kerr medium
as

1

qII
5

1

RII
2 i

l

pwII
2

5

F 1

RI
1

L

RI
1 L~1 2 K !S l

pwI
2D 2G2iS l

pwI
2D

S 1 1
L

RI
D 2

1 L2~1 2 K !S l

pwI
2D 2 ,

(8)

where L 5 LC /n0 is the effective length, n0 is the index,
and LC is the physical length of the Kerr medium. The
Kerr parameter K is defined as

K 5
8pn2P

l2 , (9)

where n2 is the nonlinear refractive index and P is the in-
tracavity peak power.

Let the reference plane be the place where the beam
just leaves end mirror M1. By cascading the propagation
of q parameter in a round trip, the complicated transfor-
mation of the q parameter that relates the (n 1 1)st to
the nth round trip forms a two-dimensional iterative
map, similarly to the approach described in Section 2.
The map is simply represented as

Fig. 2. Four-mirror KLM laser standing-wave resonator. A
Kerr medium with length L is placed between curved mirrors M2
and M3 of high reflection. M1 is the output coupler and M4 are
flat mirrors with high reflection.
wn11 5 fw~wn , Rn ;K !, (10)

Rn11 5 fR~wn , Rn ;K !. (11)

We can label the map as

Qn11 5 FK~Qn!, (12)

where Qn 5 @Rn

wn# and n represents the number of itera-
tions. Kerr parameter K corresponds to the nonlinear
parameter in this map. From Eq. (8) we find that the
map reduces to a linear cavity system as K 5 0. The sys-
tem with K 5 0 represents a cw operation in the KLM
cavity.21 Increasing K results in nonlinearly modifying
the cavity beam to induce mode locking, and the system is
at pulse operation.

From the discussion in Section 2, the behavior of the
cavity beam in cavity configurations with Res
5 1/2, 3/4, 1 cannot be determined by linear stability
analysis and may become complicated under the influence
of the nonlinear effect. We numerically study the nonlin-
ear behavior at these configurations. We constrain K to
less than 0.4 in our numerical simulation because such a
condition can be achieved in experiments. In fact, the
steady-state K values are usually greater than 0.4 in the
experimental results. For example, a 60-fs Ti:sapphire
laser with 2-W average output power from a 21% output
coupler as described in Ref. 22 corresponds to K 5 0.65.

Because similar dynamic behavior occurs in the sagit-
tal and the tangential planes, we concentrate our numeri-
cal simulations on the sagittal plane only. The two ad-
justable variables are z and r1 , where z is the separation
of the two curved mirrors and r1 is the distance between
curved mirror M2 and the rod end face I. The z value
largely determines the geometrically stable region, and r1
affects the efficiency of the Kerr effect. Table 1 lists the
configurations and z values that correspond to low-order
resonances at K 5 0. Because there are two stable re-
gions, each G1G2 will have two z values.

Considering the case with z 5 113.34 mm, where the
configuration is near G1G2 5 1/2, we found period-
doubling bifurcation in the spot size when nonlinear pa-
rameter K increased. The period-2 fixed point, Q(2), is
the solution of FK$FK@Q(2)#% 2 Q(2) 5 0. It is clear that
the Q(2) represents the self-consistent Gaussian beam of
two round trips. Figure 3 is the bifurcation diagram at
r1 5 42 mm, which shows the relationship between the

Table 1. Configurations with Several z Values
that Have Low-Order Resonances

Residue G1G2 z (mm) Dynamic Behavior

1/2 (2 2 A2)/4 114.386 Period-4
117.322

(2 1 A2)/4 112.617
119.091

3/4 1/4 114.017 Period-3
117.691

3/4 112.811
118.897

1 1/2 113.340 Period-2
118.367
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spot size and the Kerr parameter. This evolution belongs
to the direct period-doubling bifurcation.23 The critical
value of K at which the transition to period-2 takes place
approximates Kc 5 0.0008353. There is only one stable
period-1 solution as K , Kc ; however, a pair of stable
period-2 fixed points exists, and the period-1 fixed point
becomes a separatrix in phase space as K . Kc .23 We
further choose a period-2 case to depict the propagation of
cavity beam in two round trips. Figure 4 shows the spot
size and curvature of a period-2 cavity beam along the
cavity with K 5 0.002. The two period-2 fixed points at
M1 are (w, 1/R) 5 (0.40 mm, 0) and (w, 1/R)
5 (1.33 mm, 0). We find that the spot size changes once
for a round trip and repeats itself after two round trips,

Fig. 3. Period-doubling bifurcation. As K . Kc 5 0.0008353,
the solid line of period-2 represents the stable pair of solutions
that corresponds to the self-consistent Gaussian beam of two
round trips. Period-1 is unstable (shown as a dashed line).

Fig. 4. Evolution of (a) spot size and (b) curvature for the
period-2 solution. The two period-2 solutions, (w, 1/R)
5 (0.40 mm, 0) and (w, 1/R) 5 (1.33 mm, 0) with z
5 113.34 mm, x 5 42 mm, and K 5 0.002, are the self-
consistent Gaussian beam solutions of two round trips. The
variation of curvature between the two curved mirrors is too
large to be shown in this figure.
whereas the curvature of Gaussian beam always matches
that of the end mirror for each round trip.

In fact, the Poincare–Birkhoff theorem tells us that
some of period-2 fixed points survive if a nonlinear term is
added to perturb the critical stable system with Res
5 1.24 Apparently, this theorem governs the simulation
results that the configurations near G1G2 5 1/2 develop
to period-2 under the influence of the nonlinear effect.
Because self-focusing causes the equivalent configuration
to change, the configuration near G1G2 5 1/2 can also
cause a period-doubling bifurcation. A contour plot of Kc
(with Kc , 0.1) as a function of z and r1 is shown in Fig.
5. The region where period doubling exists is ;60 mm for
z, and for other values of z it ranges from several to tens
of millimeters for r1 . Moreover, the intracavity peak
power required for reaching period doubling decreases
and becomes smaller than that of the initial pulse buildup
as the configuration approaches G1G2 5 1/2. From the
experimental result of Ref. 25, the initial coherent spike
of pulse buildup is approximately 10–40 ps as a result of
partial phase locking of the longitudinal modes. The cal-
culated K of the initial spike for 40 ps is ;0.001 in a KLM
laser with an intracavity average power Pav 5 10 W and a
100-MHz repetition rate. This K is slightly larger than
some Kc , for example, the aforementioned Kc
5 0.0008353 with z 5 113.34 mm and r1 5 42 mm,
which implies that a KLM laser operating at this configu-
ration can directly build up a period-2 pulse train. Nev-
ertheless, the region in which such a condition is satisfied
is less than 1 mm for z, and Kc increases rapidly to greater
than 0.01 when z is set 10 mm away from G1G2 5 1/2, as
shown in Fig. 5. Thus, it may not be easy experimentally
to observe period doubling before the build-up duration.
However, most of the experiments with K > 0.4 are
greater than those with Kc depicted in Fig. 5. Therefore
we believe that period doubling can be observed at the
configuration near G1G2 5 1/2, which is in the middle of
the stable region.

When we alter the configuration to the nearby G1G2
5 1/4 (or G1G2 5 3/4), period-tripling bifurcation occurs.
G1G2 5 1/4 (or G1G2 5 3/4) has Res 5 3/4, which stands
for the average angle of rotation per period, u 5 2p/3,

Fig. 5. Contours of the critical bifurcation parameter for
period-2. The gray levels, from dark to light, correspond to Kc
5 0.02, 0.04, 0.06, 0.08, 0.1.
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from Eq. (6). Thus we expect to find that the period-3
solution of a map with the evolution of iteration will re-
turn to its initial value after three iterations. The fixed
points of period 3, Q(3), can be obtained from
FK(FK$FK@Q(3)#%) 2 Q(3) 5 0. The variations of period-3
spot size and curvature in a resonator are shown in
Fig. 6 with z 5 114 mm, r1 5 49 mm, and K 5 0.15,
where the period-3 fixed points are (w, 1/R)
5 (0.75 mm, 0), (w, 1/R) 5 (0.64 mm, 0.14 m21), and
(w, 1/R) 5 0.64 mm, 20.14 m21). There are two fixed
points without matching boundary conditions with 1/R
5 0 at M1 ; i.e., the position of the beam waist is not at
the output coupler. Besides the period-3 pulse train that
can be observed with an oscilloscope, the far-field pattern
may contain two other parts. One has a smaller beam
size for the solution with its beam waist at M1 ; the other
is an already divergent spot for the solutions without
matching boundary conditions. Similarly, period-4 exists
for configurations with G1G2 5 (2 6 A2)/4 for Res
5 1/2. There are two fixed points that match the curva-

ture of M1 and two that do not match it. Table 1 sum-
marizes the dynamic behavior for various values of G1G2
and z. The character of the nonlinear dynamics depends
on the configuration, which is determined by the residue
even though the z values are different.

4. SPATIAL–TEMPORAL ANALYSIS OF A
KERR-LENS MODE-LOCKED CAVITY
When an ultrashort optical pulse propagates through a
Kerr medium, besides causing self-focusing in spatial do-

Fig. 6. Evolution of (a) spot size and (b) curvature for the
period-3 solution. The period-3 solutions are (w, 1/R)
5 (0.75 mm, 0), (w, 1/R) 5 (0.64 mm, 0.14 m21), (w, 1/R)
5 (0.64 mm, 20.14 m21) with z 5 114 mm, r1 5 49 mm, and K
5 0.15.
main, as discussed above, it will simultaneously undergo
self-phase modulation as well as group-velocity dispersion
and become broadened. A spatial–temporal analysis in-
volving spatial and temporal ABCD matrices was used to
transform a Gaussian pulse with a Gaussian spatial pro-
file to optimize the optical pulse with in a KLM laser.7,8

From the spatial–temporal analogy, the temporal Gauss-
ian pulse can be characterized by the complex pulse pa-
rameter

1

p
5

2h

c
1 i

2

cs 2 , (13)

where s is the pulse width, h is the frequency chirping
rate, and c is the speed of light in vacuum. The temporal
ABCD law transforms the pulse parameter between suc-
cessive reference planes that have complex pulse param-
eters p1 and p2 through8

p2 5
At p1 1 Bt

Ct p1 1 Dt
, (14)

where At , Bt , Ct , and Dt are the elements of the tempo-
ral matrix. A detailed derivation of the temporal ABCD
matrices for group-velocity dispersion and self-phase
modulation of the medium, dispersion compensation of
the prism pair, and bandwidth limiting can be found in
Ref. 8.

In a numerical simulation, the cavity configuration is
the same as that in Fig. 6, and the temporal parameters
of the laser are chosen as follows: The Ti:sapphire laser
rod has a single-pass group-velocity dispersion of 1280 fs2;
the bandwidth limit is 10 nm, and a pair of the Brewster-
angle SF10 prisms with an apex angle of 60.6° is sepa-
rated by 40 cm. The cavity beam propagates through the
apexes of both prisms with insertion of 3 mm. A Gauss-
ian aperture with a diameter of 2 cm is located at mirror
M1. A seeded pulse with initial value (w0 , R0 , s0 , h0)
5 (0.7 mm, `,1 ps, 0) propagates along the cavity, and
the evolution of spatial parameter (w, 1/R) at M1 is
shown in Fig. 7(a). Note that the total pulse energy re-
mains constant during the propagation; this assumption
is appropriate for a Ti:sapphire rod whose gain recovery
time is shorter than the round-trip time. The evolution
of the spatial parameter in Fig. 7(a) looks like three spi-
rals and jumps among these spirals with regular order.
Eventually, it converges to the centers of the spirals.
These centers correspond to the period-3 fixed points,
which are (w, 1/R) 5 q1(1.46 mm, 0.94 m21), (w, 1/R)
5 q2(1.35 mm, 21.04 m21), (w, 1/R) 5 q3(2.71 mm,
20.01 m21). That is, the evolution eventually becomes
steady state, with a sequence q1 –q2 –q3 –q1 –q2 –q3 , etc.
Apparently, all the curvatures of fixed points no longer
match that of M1 because the Gaussian aperture (a dif-
fraction loss) that was introduced makes the system dis-
sipative. Because spatial–temporal coupling occurs in
the nonlinear medium, the evolution of the pulse width
also shows period-3 behavior. Figure 7(b) depicts the de-
pendence of the pulse width on the number of iterations.
The pulse width approaches the period-3 solution with
s1 5 86.72 fs, s2 5 80.76 fs, and s3 5 110.42 fs. The
inset shows an extended plot of the last 10 iterations
evolving as a sequence of s1 –s2 –s3 –s1 –s2 –s3 , etc.
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Owing to automatic convergence to period-3 in the sys-
tem, the period-3 solution is more stable than the period-1
solution, even though the period-1 and period-3 steady-
state solutions exist simultaneously. We find that the
dynamic behavior for which both space and time domains
are taken into account is the same as that for which spa-
tial analysis only is considered, because the self-focusing
effect governs the characteristics and nonlinear dynamics
of the KLM cavity.

Furthermore, we also took into account gain guiding in
the spatial domain by introducing a complex matrix of
Gaussian duct as

F 1 L

2i
lg0

pwp
2

1G
for most of the pulsed lasers.26 Here g0 is the small-
signal intensity gain and wp is the spot size of the pump
beam. Because the variation of the pumping spot size in
the gain medium is small, e.g., ;1% variation for a
100-mm beam waist through a 2-cm medium, we assume
that wp is constant and simply add a gain-guiding matrix
at the center of Kerr medium. The result is the same as
the previous one, i.e., that the system eventually con-

Fig. 7. Spatial and temporal evolutions of period-3. (a) The
evolution of the spatial parameter converges to a period-3
steady state, in which the fixed points are (w, 1/R)
5 q1(1.46 mm, 0.94 m21), (w, 1/R) 5 q2(1.35 mm, 21.04 m21),
and (w, 1/R) 5 q3(2.71 mm, 20.01 m21). (b) The pulse width
also convergently evolves to s1 5 86.72 fs, s2 5 80.76 fs, and
s3 5 110.42 fs. Inset, extended plot of the last 10 iterations,
the numbers are the subscripts of s.
verges to period-3, and only the former convergent rate
(with a gain-guiding effect) is faster than the latter one.

5. IRREGULAR BEHAVIOR
In this section we show that, with the same configuration
as in Fig. 6 in which the transition from period-1 to
period-3 occurs as K approaches 0.08354, the system ex-
hibits complicated dynamic behavior as the Kerr param-
eter increases. The intensity fluctuation versus number
of measurements is shown in Fig. 8 with K 5 0.4. To ob-
serve the long-term evolution, we obtain each measure-
ment of the intensity variation by averaging over 300 it-
erations and then normalizing the result to the average
intensity over all data points. The regular evolution ap-
pears as line (b) in Fig. 8 with the initial value
(w0 , 1/R) 5 (0.705 mm, 0). Such an evolution corre-
sponds to the regular orbit shown as the invariant circle
in a conservative map.23 When the initial spot size var-
ies to w0 5 0.71 mm, the evolution becomes irregular,
as shown in curve (a) of Fig. 8. This behavior results
from the fact that the nonlinear perturbation brings
about the breakdown of the separatix accompanied by cre-
ation of a stochastic layer. These initial-condition-
dependent irregular behaviors are examples of classic
chaos.23 In fact, the complicated dynamics in this con-
figuration can be predicted from the residue theorem that
a system with Res 5 3/4 is typically unstable. However,
when Gaussian loss or gain guiding is considered, the ir-
regular behavior gradually decays to period-3 because its
long-term behavior is governed by the damping effect. If
the averaged time period relative to a sudden perturba-
tion, such as a small variation of the Kerr effect, the ther-
mal effect, or other noise, is shorter than the aforemen-
tioned decay rate, the irregular evolution may be
continuously excited before it is damped down to period-3.
In this case, we believe that an irregular pulse train will
also be observed at a configuration near the period-3 con-
figuration.

6. DISCUSSION
We have shown above that the nonlinear dynamics of fun-
damental beam propagation depends on the cavity con-

Fig. 8. Evolution of the intensity fluctuation. The intensity
fluctuation is normalized to the average intensity in this figure.
The initial values are (a) w0 5 0.71 mm and (b) w0
5 0.705 mm, with z 5 114 mm, x 5 49 mm, and K 5 0.4.
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figuration in a KLM cavity. The reader may what the
difference is between our results and the similar subhar-
monic oscillations already explained well by total mode
locking.9,10 Total mode locking is the phase locking of
the longitudinal modes and the high-order transverse
modes that leads to spatial sweeping of the beam with a
frequency given by the spacing between the transverse
modes. It is a result of the linear superposition of cavity
eigenmodes with a definite phase shift and belongs to spa-
tial dynamics,9 but the irregular behavior that originates
from nonlinear dynamics cannot be directly expressed in
terms of linear superposition. In contrast, the dynamics
in our approach is based on propagation of the fundamen-
tal mode through nonlinearly modifying the spatial beam
profile to manifest an intensity variation in the time do-
main. One can directly determine the route of this dy-
namics from period-1 to irregular behavior by increasing
nonlinear parameter K. Therefore these two approaches
represent two different classes of nonlinear dynamic be-
havior.

Although these two approaches show the dependence of
cavity configuration on nonlinear dynamics, the predicted
configurations for subharmonic oscillations are somewhat
different. Based on total mode locking, one will observe
period-2, period-3, or period-4 for the configurations that
have ratios of 2, 3, or 4, respectively, of longitudinal mode
spacing vL to transverse mode spacing V. Because the
transverse mode spacing15 is V 5 (vL /p)cos21(AG1G2),
period-2, period-3, and period-4 will occur at G1G2
5 0,1/4,1/2, respectively. However, from our approach,
period-2, period-3, and period-4 will occur at G1G2
5 1/2,1/4 (or 3/4), (2 6 A2)/4, respectively. Through the
aforementioned difference, we propose that an experi-
ment to observe the dynamic behavior for the correspond-
ing configurations will help to distinguish these two
classes of nonlinear dynamics. Furthermore, inasmuch
as the Hermite–Gaussian modes are identical to the wave
functions of a quantum-mechanical harmonic oscillator
and the Hamiltonian associated with our map is a form of
simple harmonic oscillation, 18 this may be the reason for
the similarity of the results derived from these two ap-
proaches.

7. CONCLUSION
In summary, we have shown that typical nonlinear dy-
namics depends on the cavity configuration. From ana-
lyzing the iterative map of a general cavity by Greene’s
residue theorem, we found that the nonlinearly sensitive
configurations correspond to the product of generalized G
parameters equal to 1/2, 1/4 (or 3/4), and (2 6 A2)/4. It
is interesting to note that these configurations are located
within the geometrically stable region. This result im-
plies that the nonlinear effects may break the stability of
these self-consistent Gaussian modes derived from linear
cold cavities.

When the fundamental Gaussian beam propagates in a
KLM cavity, nonlinear dynamics intrinsically exists in
the KLM cavity because the Kerr effect will result in
mode locking and induce nonlinearly dynamic behavior
simultaneously. The numerical results confirm that pe-
riod doubling, tripling, and quadrupling can be obtained
at the aforementioned configurations. Besides the exis-
tence of multiple-period behavior in a nonlinear KLM cav-
ity, we have found that irregular evolution occurs when
the nonlinear effect is increased.

These specific configurations that are sensitive to the
nonlinear effects are based on analyzing a generalized
cavity. This research gives a useful suggestion for laser
cavity design for studying the nonlinear phenomena of
Gaussian modes.
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