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Abstract

In this paper, we �nd the optimal pebbling number of the complete m-ary tree. c© 2000
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1. Introduction

Throughout this paper, a con�guration of a graph G means a mapping from V (G)
into the set of non-negative integers N∪{0}. Suppose p pebbles are distributed onto the
vertices of G; then we have the so-called distributing con�guration (d.c.) � where we
let �(v) be the number of pebbles distributed to v∈V (G) and �H equals

∑
v∈ V (H) �(v)

for each induced subgraph H of G. Note that now �G = p.
A pebbling move consists of removing two pebbles from one vertex and then placing

one pebble at an adjacent vertex. If a d.c. � lets us move at least one pebble to each
vertex v by applying pebbling moves repeatedly (if necessary), then � is called a
pebbling of G. The optimal pebbling number of G, f′(G), is min{�G | � is a pebbling
of G}, and a d.c. � is an optimal pebbling of G if � is a pebbling of G such that
�G = f′(G).
Note here that the pebbling number f(G) of a graph G is de�ned as the minimum

number of pebbles p such that any distributing con�guration with p pebbles is a
pebbling of G. The problem of pebbling graphs was �rst proposed by Saks and Lagarias
[1] as a tool for solving a number theoretical problems by Lemke and Kleitman [4].
In terms of pebbling, they expected the pebbling number of an n-cube to be 2n. Later,
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this problem was solved by Chung [1]. An alternative proof of the following theorem
in number theory was thus obtained.

Theorem 1.1 (Clarke et al. [2] and Lemke and Kleitman [4]). For any given integers
a1; a2; : : : ; ad there exists a nonempty subset X ⊆{1; 2; : : : ; d} such that d|∑i∈ X ai and∑

i∈ X gcd(ai; d)6d.

In [1], Chung also mentioned a conjecture by Graham: given two graphs G and H ,
is the pebbling number of the Cartesian product of G and H , f(G×H), no bigger than
f(G)f(H)? So far, the problem remains unsolved in general. It is worth mentioning
that Moews [5] showed that the inequality holds for trees G and H .
On the other hand, the study of optimal pebbling number is equally interesting. First,

an absolutely nontrivial result on paths was obtained by Pachter et al. [7].

Theorem 1.2 (Pachter et al. [7]). Let P be a path of order 3t + r for 06r62; i.e.;
|V (P)|= 3t + r. Then f′(P) = 2t + r.

Recently, Fu and Shiue [3] found f′(T ) for T a caterpillar by way of a general-
ized pebbling on a path. Since the statement of the theorem is too long, we omit it
here. Furthermore, in the same paper, they have proved an analog of the conjecture
mentioned above.

Theorem 1.3 (Fu and Shiue [3]). For any graph G and H; f′(G×H)6f′(G)f′(H).

Clearly, Theorem 1.3 gives an upper bound for the optimal pebbling number of a
product graph; for example, an n-cube Qn=Qn−1×K2. We note here that quite recently
an upper bound for f′(Qn) has been obtained.

Theorem 1.4 (Moews [6]). f′(Qn) = (43 )
n+O(log n).

In this paper, we shall focus on the study of the optimal pebbling number of a
complete m-ary tree, where a complete m-ary tree with height h, denoted by Tm

h , is
an m-ary tree satisfying that v has m children for each vertex v not in the hth level.
In Section 2, we �rst obtain f′(T ) for a complete m-ary tree T with m¿3. Then,
in Section 3, we show that the optimal pebbling problem of the complete binary tree
with height h, T 2h , can be transformed to an instance of an integer linear programming
problem(ILP) and we �nd an e�cient algorithm to �nd the optimal solution for the
instance of ILP which corresponds to the optimal pebbling number problem for the
complete binary tree.

2. m¿3

Consider a d.c. � of G and let H be a connected induced subgraph of G. Then
�|V (H)(�|H for short) is a d.c. of H induced by �. In H , the maximum number of
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Fig. 1.

pebbles which can be moved to the vertex v using pebbling moves in �|H is denoted
by �H (v). Clearly, we have �H (v)6�H for each v∈V (H). Now, we have the �rst
result.

Theorem 2.1. f′(Tm
h ) = 2

h for each m¿3.

Proof. Let v0 be the vertex in the 0th level (root) of Tm
h =T , and � be a d.c. such that

�(v0)=2h and �(v)=0 for each v∈V (T )\{v0}. Then it is obvious that � is a pebbling of
T , and thus f′(T )62h. On the other hand, we will prove f′(T )¿2h by induction on h.
This is trivial for h=0, so let h¿ 1. Assume that f′(Tm

h−1)¿2
h−1 and let T−v0 contain

components T1; T2; : : : ; Tm. Clearly, f′(T1) = f′(T2) = · · ·= f′(Tm) = f′(Tm
h−1)¿2

h−1.
Now, let � be an arbitrary pebbling of T such that �(v0)=x0 and �Ti=xi; i=1; 2; : : : ; m.
Then, for i = 1; 2; : : : ; m,

f′(Ti)6 1
2x0 + xi +

∑
j∈{1;2;::: ; i−1; i+1;:::;m}

1
4xj:

This implies that

mf′(Tm
h−1)6

m
2 x0 +

m+3
4 x1 + m+3

4 x2 + · · ·+ m+3
4 xm6m

2 �T ; (∗)
and we have �T¿2f′(Tm

h−1)¿2
h. Thus, f′(T )¿2h and this concludes the proof.

We note �nally that the proof fails when m = 2 because then (m + 3)=4¿m=2. In
fact, f′(T 23 )67¡ 23 (see Fig. 1).

3. m = 2

If a d.c. of a complete binary tree T with height h can be obtained by placing xi
pebbles on each vertex in the ith level, i= 0; 1; : : : ; h, we denote it by 〈x0; x1; : : : ; xh〉T .
(We may omit T from this notation when it is clear which tree we are using.) In this
section, we mainly prove that the optimal pebbling of a complete binary tree T 2h can
be obtained using a d.c. of this type where xi is even for each i¿ 0; we will call such
a d.c. symmetric. See Fig. 1 for an example.
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Since f′(T 20 ) = 1 is easy to see, throughout this section, let T be a complete binary
tree with height h¿1. For each vertex v∈V (T ) in the kth level of T , the branch of
T including v and all its descendants is denoted by Tv, and the subtree of T obtained
by removing V (Tv)\{v} is denoted by �Tv. If a d.c. � has the property that �|Tv =
〈xk ; xk+1; : : : ; xh〉Tv where xi is even for each i¿ k, then we say � is symmetric on Tv,
and this implies that �Tu(u) =

∑h
j=i xj for each u∈V (Tv) in the ith level of T , where

k6i6h.

Lemma 3.1. Let � be a d.c. of T and v be a vertex in the kth level of T which has
two children u and w; and let � be symmetric on Tu and Tw. If either h¿k + 1 or
either �(u) or �(w) does not equal 1; then the following statements are equivalent;
in any case; (1) implies (2); and (2) implies (3).
(1) �T (v′)¿1 for each v′ ∈V (Tv);

(2) �Tu − 1
3�Tu(u) +

1
3� �Tv

(v) + 1
6�Tw(w)¿

1
3 × 2h−k and

�Tw − 1
3�Tw(w) +

1
3� �Tv

(v) + 1
6�Tu(u)¿

1
3 × 2h−k ;

(3) �T (vh)¿1 for each vh ∈V (Tv) in the hth level of T .

Proof. Let �|Tu = 〈yk+1; yk+2; : : : ; yh〉Tu , uh ∈V (Tu) be an arbitrary vertex in the hth
level of T and P = w; v; u; uk+2; : : : ; uh be the path connecting w and uh. Clearly, ui

is in the ith level of T , i = k + 2; k + 3; : : : ; h; see Fig. 2. We �rst move pebbles
from V (T ) \ V (P) to the vertices of P by applying pebbling moves such that the
number of pebbles in P is as large as possible. Then there exists a d.c. �′ of P
and mk−1; : : : ; mh which are de�ned by �′(w) = mk−1 = �Tw(w), �

′(v) = mk = � �Tv
(v),

�′(u)=mk+1 =yk+1 + 1
2

∑h
j=k+2 yj, �′(uh)=mh=yh and �′(ui)=mi=yi+ 1

2

∑h
j=i+1 yj

for i = k + 2; k + 3; : : : ; h− 1. Note that �T (uh) = �′P(uh). Now, we are ready to prove
our implications.
(1) ⇒ (2): Clearly,

�T (uh) = mh + b 12 (mh−1 + b 12 (mh−2 + b 12 (: : : (mk + b 12mk−1c) : : :)c)c¿1:
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By taking away all the 
oors, we have

h∑
i=k−1

( 12 )
h−imi

=(12)
h−(k−1)�Tw(w) + (

1
2 )

h−k� �Tv
(v) +

h−1∑
i=k+1


( 12 )h−i


yi +

1
2

h∑
j=i+1

yj




+ yh

=(12)
h−(k−1)�Tw(w) + (

1
2 )

h−k� �Tv
(v) +

h∑
i=k+1

( 12 )
h−iyi +

h−1∑
i=k+1

( 12 )
h−i+1

h∑
j=i+1

yj

=(12)
h−(k−1)�Tw(w) + (

1
2 )

h−k� �Tv
(v) +

h∑
i=k+1


( 12 )h−i +

h−k∑
j=h−i+2

( 12 )
j


yi

=(12)
h−(k−1)�Tw(w) + (

1
2 )

h−k� �Tv
(v) +

h∑
i=k+1

(3× ( 12 )h−i+1 − ( 12 )h−k)yi¿1:

This is equivalent to saying that

h∑
i=k+1

(2i−(k+1) − 1
3 )yi + 1

3� �Tv
(v) + 1

6�Tw(w)

= �Tu − 1
3�Tu(u) +

1
3� �Tv

(v) + 1
6�Tw(w)¿

1
3 × 2h−k :

Similarly, we obtain �Tw − 1
3�Tw(w) +

1
3� �Tv

(v) + 1
6�Tu(u)¿

1
3 × 2h−k .

(2) ⇒ (3): Without loss of generality, restrict attention to vh = uh ∈V (Tu). Let
gk−1 = mk−1 and gi = mi + b 12gi−1c, i = k; k + 1; : : : ; h. Then

�T (uh) = mh + b 12 (mh−1 + b 12 (mh−2 + b 12 (: : : (mk + b 12mk−1c) : : :)c)c= gh:

It su�ces to prove that gh¿1. First, we will prove that gj¿2h−j − ∑h
i=j+1 2

i−jmi

for k − 16j6h by induction on j. Note that 2h−j − ∑h
i=j+1 2

i−jmi is even for
k − 16j6h − 1. Since �Tu − 1

3�Tu(u) +
1
3� �Tv

(v) + 1
6�Tw(w)¿

1
3 × 2h−k , we have∑h

i=k−1(
1
2 )

h−imi¿1. Thus
∑h

i=k−1 2
i−(k−1)mi¿2h−(k−1) and gk−1 =mk−1¿2h−(k−1)−∑h

i=k 2
i−(k−1)mi, so the assertion is true for j = k − 1. Assume that gj¿2h−j −∑h

i=j+1 2
i−jmi for some j, k − 1¡j6h − 1, then gj+1 = mj+1 + b 12gjc¿mj+1 +

2h−j−1−∑h
i=j+1 2

i−j−1mi=2h−( j+1)−
∑h

i=( j+1)+1 2
i−( j+1)mi, completing the induction.

Setting j = h, we then have gh¿1, so we are done.
(3) ⇒ (1): We shall use the ‘bottom-up’ idea to prove the implication. If h= k+1,

by our hypothesis, either �(u)¿2, �(w)¿2, or �T (v)¿2. This implies �T (v)¿1 and
we are done. Otherwise, let h¿k + 1. Assume that we have shown �T (v′)¿1 for
each v′ ∈V (Tu) in the levels greater than j¿k + 1 and let vj ∈V (Tu) be an arbitrary
vertex in the jth level which has two children uj+1 and wj+1. By assumption, we have
�T (uj+1)=�Tuj+1

(uj+1)+b 12 (� �Tvj
(vj)+b 12�Twj+1

(wj+1)c)c¿1 and �T (wj+1)=�Twj+1
(wj+1)+

b 12 (� �Tvj
(vj) + b 12�Tuj+1

(uj+1)c)c¿1. Note that �Tuj+1
(uj+1) = �Twj+1

(wj+1) =
∑h

i=j+1 yi
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is even; this implies that either �Tuj+1
(uj+1) = �Twj+1

(wj+1)¿2 or � �Tvj
(vj)¿2. Hence,

�T (vj) = � �Tvj
(vj) + 1

2�Tuj+1
(uj+1) + 1

2�Twj+1
(wj+1)¿2, and we obtain �T (v′)¿2 for each

v′ ∈V (Tu) in levels above h. Similarly, �T (v′)¿2 for each v′ ∈V (Tw) in levels above
h. Either of these two facts implies that �T (v)¿1. This concludes the proof of this
implication.

Lemma 3.2. Let � be a symmetric d.c. of T and � = 〈x0; x1; : : : ; xh〉T . Then � is a
pebbling of T if and only if

∑h
i=0 (2

i − 1
3 )xi¿

1
3 × 2h+1.

Proof. Let v be the root of T which has two children u and w. Then � is symmetric
on Tu and Tw, respectively. By Lemma 3.1, we obtain that � is a pebbling of T if and
only if

�Tu − 1
3�Tu(u) +

1
3� �Tv

(v) + 1
6�Tw(w)¿

1
3 × 2h

and

�Tw − 1
3�Tw(w) +

1
3� �Tv

(v) + 1
6�Tu(u)¿

1
3 × 2h:

Note that �Tu = �Tw =
∑h

i=1 2
i−1xi, �Tu(u) = �Tw(w) =

∑h
i=1 xi and � �Tv

(v) = x0. Hence,
observing that the two inequalities are identical, we have the proof.

Lemma 3.3. For any pebbling � of T; there exists a pebbling �̃ of T such that �̃ is
symmetric on T and �̃T = �T .

Proof. The proof follows by constructing �̃ recursively starting from the highest level.
To do this, we let � be a pebbling of T which is symmetric on Tu and Tw where u
and w are two children of v (see Fig. 3). We will �rst construct another pebbling �′′

of T from � which is symmetric on Tu and Tw, by rearranging the pebbles on Tw.
Then, by adjusting the number of pebbles on v, w, and Tu, we will have a pebbling
�̃ symmetric on Tv and with no more pebbles than �. The proof ends when v reaches
the root.
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We shall use the same notations as we have used in the proof of Lemma 3.1. Without
loss of generality, let �Tu¿�Tw . For convenience, we introduce three functions de�ned
on the set of distributing con�gurations of T . For each d.c. of T , �, let


u(�) = �Tu − 1
3�Tu(u) +

1
3� �Tv

(v) + 1
6�Tw(w);


w(�) = �Tw − 1
3�Tw(w) +

1
3� �Tv

(v) + 1
6�Tu(u)

and

�(�) = 
u(�)− 
w(�):

Now, by observation, we have the following facts:
(1) �(�) = �Tu − �Tw − 1

2 (�Tu(u)− �Tw(w)).
(2) By Lemma 3.1, since � is a pebbling of T which is symmetric on Tu and Tw,

we have 
u(�)¿ 1
3 × 2h−k and 
w(�)¿ 1

3 × 2h−k .
(3) Let �|Tw=〈yk+1; yk+2; : : : ; yh〉Tw . If �(�)¡ 0, then there exists an index j¿k+1

such that yj ¿ 0. (For otherwise, by the de�nition of �, �(�)¿0.) Now, de�ne �′ by
�′|Tw = 〈yk+1; yk+2; : : : ; yj−2; yj−1 +4; yj−2; yj+1; : : : ; yh〉Tw , �

′|Tu=�|Tu and �′| �Tv
=�| �Tv

.
Then �′ is symmetric on Tu and Tw, �′T = �T , and �′Tw

(w) = �Tw(w) + 2, which implies
that �(�′) = �(�) + 1, �′Tv

(v) = �Tv(v) + 1 and 
u(�′) = 
u(�) + 1
3 .

Using the above facts we can construct a d.c. �′′ of T by way of the following
procedure:

begin
Let �(0):=�, �:=�(�(0)) and i:=0;
while �¡− 1

2 do
if �(i)|Tw = 〈z(i)k+1; : : : ; z(i)h 〉Tw , and
j¿k + 1 is an index such that z(i)j ¿ 0,
let �(i+1)| �Tv

:=�i| �Tv
, �(i+1)|Tu :=�i|Tu , and

let �(i+1)|Tw = 〈z(i)k+1; z(i)k+2; : : : ; z(i)j−2; z(i)j−1 + 4, z(i)j − 2; z(i)j+1; : : : ; z(i)h 〉Tw ;
�= �+ 1;
i = i + 1;

end

Clearly, the d.c. �′′ = �(i) obtained satis�es the following properties:

(a) �′′ is symmetric on Tu and Tw;
(b) �′′T = �T ;
(c) �′′Tu

= �Tu and �′′Tw
= �Tw ; this implies that �

′′
Tu
¿�′′Tw

; and
(d) �(�′′)¿− 1

2 . Furthermore, by (1) and (3), if �(�
′′)¿ 0, then �′′ = �.

Most importantly, we have to prove the following property:

(e) �′′ is a pebbling of T .
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If �′′=�, this was assumed. Otherwise, by (3), we have �′′Tv
(v)¿�Tv(v) which implies

that �′′T (v
′)¿�T (v′)¿1 for each v′ ∈V ( �Tv). Furthermore, 
u(�′′)¿
u(�)¿ 1

3 ×2h−k . By
(d), we have �(�′′)60; this implies that 
w(�′′)¿
u(�′′)¿ 1

3 × 2h−k . If �′′ 6= � we
must have h¿k + 1, so, by Lemma 3.1, we have the claim.
Now we are ready to de�ne �̃. Let �′′|Tw=〈zk+1; zk+2; : : : ; zh〉Tw and let �=0 if zk+1 is

even and 1 if zk+1 is odd. We de�ne �̃ by �̃(v′)=�′′(v′) for each vertex v′ ∈V ( �Tv)\{v}
and �̃|Tv=〈xk ; xk+1; : : : ; xh〉Tv where xk=�′′(v)+�′′Tu

−�′′Tw
+2�, xk+1=zk+1−� and xj=zj

for each j¿k + 1. Clearly, �̃Tv = �′′Tv
, �̃Tu(u) = �̃Tw(w) = �′′Tw

(w)− � is even, and xj is
even for each j¿k. This implies that 
u(�̃) = 
w(�̃) = �̃Tw − 1

6 �̃Tw(w) +
1
3 �̃ �Tv

(v) = 1
3 l

for some integer l, b 12 �̃Tw(w)c= 1
2 �̃Tw(w)=

1
2 (�

′′
Tw
(w)−�), �̃T =�′′T , and �̃ is symmetric

on Tv.
Again, we have to prove that �̃ is a pebbling of T . Since �′′ is a pebbling of T , and

�̃(u) = �̃(w) is even and �̃(v′) = �′′(v′) for each vertex v′ ∈V ( �Tv) \ {v}, it su�ces to
prove that �̃Tv(v)¿�′′Tv

(v) and 
u(�̃) = 
w(�̃)¿ 1
3 × 2h−k . Since �(�′′)¿− 1

2 , we have

�′′Tu
− �′′Tw

= �(�′′) + 1
2 (�

′′
Tu
(u)− �′′Tw

(w))

¿ d 12 (�′′Tu
(u)− �′′Tw

(w)− 1)e= b 12 (�′′Tu
(u)− �′′Tw

(w))c:

This implies that

�̃Tv(v) = �′′(v) + �′′Tu
− �′′Tw

+ 2�+ 2b 12 �̃Tw(w)c

¿ �′′(v) + b 12 (�′′Tu
(u)− �′′Tw

(w))c+ 2�+ 2× 1
2 (�

′′
Tw
(w)− �)

= �′′(v) + b 12�′′Tu
(u) + 1

2�
′′
Tw
(w)c+ �

¿ �′′(v) + b 12�′′Tu
(u)c+ b 12�′′Tw

(w)c= �′′Tv
(v):

Note that �̃Tw = �′′Tw
− �, �̃Tw(w) = �′′Tw

(w)− � and �̃ �Tv
(v) = �′′�Tv

(v) + �′′Tu
− �′′Tw

+ 2� =

�′′�Tv
(v) + �(�′′) + 1

2�
′′
Tu
(u)− 1

2�
′′
Tw
(w) + 2�. Therefore, we have


u(�̃) = 
w(�̃) = �̃Tw − 1
6 �̃Tw(w) +

1
3 �̃ �Tv

(v)

= (�′′Tw
− �)− 1

6 (�
′′
Tw
(w)− �) + 1

3 (�
′′
�Tv
(v) + �(�′′)

+ 1
2�

′′
Tu
(u)− 1

2�
′′
Tw
(w) + 2�)

= �′′Tw
− 1

3�
′′
Tw
(w) + 1

3�
′′
�Tv
(v) + 1

6�
′′
Tu
(u) + 1

3�(�
′′)− 1

6�

¿ 
w(�′′) + 1
3�(�

′′)− 1
6 :

Now, if �(�′′)¿ 0, then 
w(�′′) + 1
3�(�

′′)¿ 1
3 × 2h−k . Otherwise we have 
w(�′′) +

1
3�(�

′′)¿
w(�′′) + �(�′′) = 
u(�′′)¿ 1
3 × 2h−k . This implies that 
u(�̃) = 
w(�̃)¿

1
3 × 2h−k − 1

6 . But 
u(�̃) = 
w(�̃) = 1
3 l, l an integer; therefore 
u(�̃) = 
w(�̃)¿ 1

3 × 2h−k .
Hence by Lemma 3.1, we conclude that �̃ is a pebbling of T .
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Theorem 3.4. f′(T ) = min{∑h
i=0 2

ixi |
∑h

i=0(2
i − 1

3 )xi¿
1
3 × 2h+1; x0 ∈{0; 1; 2; 3}; and

xi ∈{0; 2}; i = 1; 2; : : : ; h}.

Proof. By Lemma 3.3, since each pebbling of T , �, has a symmetric pebbling �̃ such
that �T = �̃T , f′(T ) can be obtained by minimizing

∑h
i=0 2

ixi where 〈x0; x1; : : : ; xh〉
is a symmetric pebbling of T . Now it su�ces to claim that there exists an optimal
symmetric pebbling of T , 〈x0; x1; : : : ; xh〉, such that xi ¡ 4 for each i∈{0; 1; : : : ; h}.
Suppose not. Then in each optimal symmetric pebbling of T , 〈y0; y1; : : : ; yh〉, there
exists a smallest index 06j6h such that yj¿4. Since f′(T )62h, we must have j¡h.
By Lemma 3.2, it is easy to check that �(j) = 〈y0; : : : ; yj−1; yj−4; yj+1+2; yj+2; : : : ; yh〉
is also an optimal symmetric pebbling of T . By applying this operation repeatedly
we obtain an optimal symmetric pebbling of T , 〈x∗0 ; x∗1 ; : : : ; x∗h 〉, such that x∗j ¡ 4 for
j = 0; 1; : : : ; h. This is a contradiction. Thus we have the proof.

Clearly, by Theorem 3.4, we can transform the optimal pebbling problem of complete
binary tree to the following instance of ILP:

min
h∑

i=0

2ixi

h∑
i=0

(2i − 1
3 )xi¿

1
3 × 2h+1;

x0 ∈{0; 1; 2; 3} and xi ∈{0; 2}; i = 1; 2; : : : ; h: (∗∗)
Although ILP is NP-complete, we have an e�cient algorithm to solve (∗∗), and thus
we can quickly �nd the optimal pebbling number of the complete binary tree. In what
follows we present the algorithm with full details.

Algorithm OPCBT(h)
Input: h (a positive integer).
Output: (x0; x1; : : : ; xh) (an optimal solution of (∗∗)).
begin
{Step 1: initialization of c =∑h

i=0 (2
i − 1

3 )xi and xi, i = 0; 1; : : : ; h:}
x0:=3;
c:=(1− 1

3 )x0;
for i = 1 to h do

xi:=2;
c:=c + (2i − 1

3 )xi;
{Step 2: testing xi = 0 or 2, i = 1; 2; : : : ; h:}
for i = h to 1 step −1 do

if c − (2i − 1
3 )xi¿

1
3 × 2h+1 then

c:=c − (2i − 1
3 )xi;

xi:=0;
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{Step 3: testing x0 = 0; 1; 2 or 3:}
while c − (1− 1

3 )¿
1
3 × 2h+1 and x0¿ 0 do

c:=c − (1− 1
3 );

x0:=x0 − 1;
end

Theorem 3.5. Algorithm OPCBT produces an optimal solution of (∗∗); and its time
complexity is O(h).

Proof. Let (n0; n1; : : : ; nh) be the output of Algorithm OPCBT. Clearly, (3; 2; : : : ; 2) is a
feasible solution of (∗∗) in Step 1; hence an optimal solution of (∗∗) exists. Now, we
shall claim that (n0; n1; : : : ; nh) is the unique optimal solution of (∗∗). Observe that for
each integer k¿1, 2 · 2k ¿ 3 +

∑k−1
i=1 2× 2i. Therefore, if (3; 2; : : : ; 2; 0; nk+1; : : : ; nh) is

a feasible solution of (∗∗), then any feasible solution (x0; x1; : : : ; xk−1; 2; nk+1; : : : ; nh) is
not optimal. On the other hand, if (3; 2; : : : ; 2; 0; nk+1; : : : ; nh) is not a feasible solution
of (∗∗), then for each feasible solution (x0; x1; : : : ; xk−1; xk ; nk+1; : : : ; nh), xk =2. Hence,
if (x∗0 ; x

∗
1 ; : : : ; x

∗
h ) is an optimal solution, by Step 2, starting from h, we see that x∗h =nh,

and then x∗h−1 = nh−1; : : : ; x∗1 = n1. Finally, by Step 3, we have x∗0 = n0. This implies
that the output is the unique optimal solution. Since the time complexity of Algorithm
OPCBT is easy to see, we conclude the proof.

Concluding remark. Let �=〈x0; x1; : : : ; xh〉 be the optimal pebbling of T obtained from
Algorithm OPCBT. Then by Theorem 3.4, for any k ¡h, we have

�T =
h∑

i=0

2ixi¿ 1
3 × 2h+1 +

h∑
i=0

1
3xi

=
k∑

i=1

( 14 )
i × 2h+1 + 1

3 × ( 14 )k × 2h+1 +
h∑

i=0

1
3xi

= 2(14 × 2h + 1
42 × 2h + · · ·+ 1

4k × 2h) + 2× 1
3 × 1

4k × 2h +
h∑

i=0

1
3xi

= 2(2h−2 + 2h−4 + · · ·+ 2h−2k) + 2× 1
3 × 2h−2k +

h∑
i=0

1
3xi: (∗ ∗ ∗)

Eq. (∗∗∗) then suggests that, in order to obtain an optimal pebbling of T , 2 pebbles
should be placed on each vertex of the (h − 2)th, (h − 4)th; : : : ; and (h − 2k)th lev-
els, using the lower levels to ensure that

∑h−2k−1
i=0 2ixi¿2 × 1

3 × 2h−2k +
∑h

i=0
1
3xi.

Therefore, we conclude that when h is su�ciently large there exists an h′ such that
〈xh′ ; xh′+1; : : : ; xh〉 = 〈0; 2; : : : ; 0; 2; 0; 2; 0; 0〉, and that f′(T ) can be approximated by
1
3 (2

h+1 + h) with small errors. To be more precise,

f′(T 2h ) = (2
h+1 + h)=3 + O(log h)
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and for i¿O(log h), the value of xi in an optimal pebbling of T 2h is

2; if h− i is even and positive; and

0; otherwise:

To prove this, let each n∈{0; 1; : : : ; 2h+2−1} have binary expansion n=
∑h+1

i=0 yi(n)2i.
Write

 (n) = y0(n) + 2
h+1∑
i=1

yi(n) and �(n) = n−  (n)=3:

Let �= 〈x0; x1; : : : ; xh〉 be a symmetrical d.c. of T 2h with x0 ∈{0; 1; 2; 3}, xi ∈{0; 2} for
i = 1; 2; : : : ; h. Write n= �T . Then

x0 = y0(n) + 2y1(n); x1 = 2y2(n); : : : ; xh = 2yh+1(n); (∗ ∗ ∗∗)
so by Lemma 3.2, � will be a pebbling of T if and only if

�(n) = n−  (n)=3¿ 1
3 × 2h+1: (∗ ∗ ∗ ∗ ∗)

f′(T 2h ) will therefore be the minimal n for which (∗∗∗∗∗) holds. Since  (n+1)6 (n)+
1 for all n, � is increasing with n. Let n0=2b2h=3c; then yi(n0) will be 1 if h− i is odd
and 0¡i¡h, and 0 otherwise; therefore,  (n0) = 2bh=2c, and �(n0) = n0 − 2

3bh=2c.
Set k = bh=2c − b 12 log2 hc − 1, and let h¿2, so that k¿0. Evidently, h¿ 2k, so
yh−2k(n0) = 0. Therefore, for all i¿0 no bigger than 2h−2k , no carry out of yh−2k(n0)
will occur when adding i to n0, and so

yh−2k+1(n0 + i) = yh−2k+1(n0); : : : ; yh+1(n0 + i) = yh+1(n0): (∗ ∗ ∗ ∗ ∗∗)
Therefore, for 06i62h−2k ,

| (n0 + i)− 2b h
2c|62(h− 2k) + 167 + 4b 12 log2 hc67 + 2 log2 h

and

|�(n0 + i)− (n0 + i − 2
3b h
2c)|6 7

3 +
2
3 log2 h: (∗ ∗ ∗ ∗ ∗ ∗ ∗)

Let i0 = h=3 − log2 h and i1 = h=3 + log2 h. We have 2
h−2k¿22(b

1
2 log2 hc+1)¿h, so for

h large enough, 06i06i162h−2k , and we may apply (∗∗∗∗∗∗∗) to get
�(n0 + i0)6n0 + i0 − 2

3b h
2c+ 7

3 +
2
3 log2 h¡ 1

3 × 2h+1; for h su�ciently large;
so (∗∗∗∗∗) does not hold for n= n0 + i0, and

�(n0 + i1)¿n0 + i1 − 2
3b h
2c − 7

3 − 2
3 log2 h¿

1
3 × 2h+1; for h su�ciently large;

so (∗∗∗∗∗) does hold for n=n0+ i1. Therefore, if h is large enough, n0+ i0¡f′(T 2h )6
n0 + i1 and f′(T 2h ) = 2

h+1=3 + h=3 + O(log h), as desired. The remark about the value
of xi in an optimal pebbling now follows immediatedly from (∗∗∗∗) and (∗∗∗∗∗∗).
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