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Abstract

In this paper, we extend the work of Chen et al. [Fuzzy Sets and Systems 91 (1997) 339–353] to present a new
method to deal with bidirectional approximate reasoning for rule-based systems based on the direction of matching
between interval-valued fuzzy sets. We also use some examples to illustrate the bidirectional approximate reasoning
process. Because the proposed method can perform bidirectional approximate reasoning based on the direction of matching
between interval-valued fuzzy sets, it is more reasonable and more powerful than the one presented in Chen et al.,
Fuzzy Sets and Systems 91 (1997) 339–353. The proposed method can provide a useful way to deal with bidirectional
approximate reasoning for rule-based systems using interval-valued fuzzy sets. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Since fuzzy set theory was proposed by Zadeh [19], some methods based on the fuzzy set theory for
handling approximate (fuzzy) reasoning have been proposed, such as [1–7,9–14]. The following single-
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input–single-output (SISO) approximate reasoning scheme has been discussed by many researchers

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2

...

Rp: IF X is Ap THEN Y is Bp
Fact: X is A0

Consequence: Y is B0

(1)

where Ri are fuzzy production rules [16], 16i6p; X and Y are linguistic variables [20]; A0; A1; A2; : : : ; Ap; B1;
B2; : : : and Bp are linguistic terms represented by fuzzy sets [19]. In [1], Bien et al. presented an inference
network for bidirectional approximate reasoning based on fuzzy sets, where the following SISO approximate
reasoning scheme is also discussed in [1]

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2

...

Rp: IF X is Ap THEN Y is Bp
Fact: Y is B0

Consequence: X is A0

(2)

where Ri are fuzzy production rules, 16i6p; X and Y are linguistic variables; A1; : : : ; Ap; B0; B1; B2; : : :, and
Bp are linguistic terms represented by fuzzy sets.
In [17], Turksen proposed the de�nitions of interval-valued fuzzy sets for the representation of combined

concepts based on normal forms. In [13,14], Gorzalczany presented a method for interval-valued fuzzy rea-
soning based on the compatibility measure and described some properties about the interval-valued reasoning
method, respectively. In [18], Yuan et al. use the normal form based interval-valued fuzzy set to deal with
approximate reasoning. In [10], we have presented a method to deal with bidirectional approximate reasoning
using interval-valued fuzzy sets, where the linguistic terms appearing in formulas (1) and (2) are represented
by interval-valued fuzzy sets. However, the method presented in [10] has a drawback in dealing with bidi-
rectional approximate reasoning of rule-based systems. For example, let us consider the following generalized
modus ponens (GMP):

Rule: IF X is A THEN Y is B

Fact: X is A∗

Consequence: Y is B∗

where X and Y are linguistic variables; A∗ and A are interval-valued fuzzy sets of the universe of discourse U;
U = {u1; u2; : : : ; un}; B∗ and B are interval-valued fuzzy sets of the universe of discourse V; V = {v1; v2; : : : ; vm};
the interval-valued fuzzy sets A∗; A and B have the following forms

A∗= {(u1; [x11; x12]); (u2; [x21; x22]); : : : ; (un; [xn1; xn2])};
A= {(u1; [y11; y12]); (u2; [y21; y22]); : : : ; (un; [yn1; yn2])};
B= {(v1; [z11; z12]); (v2; [z21; z22]); : : : ; (vm; [zm1; zm2])};
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where 06xi16xi261; 06yi16yi261; 16i6n; 06zj16zj261, and 16j6m. Then, based on the matching
function M presented in [10], we can calculate the degree of matching between the interval-valued fuzzy sets
A∗ and A. Assume that M (A; A∗)= k, where k ∈ [0; 1] and M is the matching function between A∗ and A,
then the deduced consequence of the rule is “Y is B∗”, where the membership function of the interval-valued
fuzzy set B∗ is as follows:

B∗= {(v1; [w11; w12]); (v2; [w21; w22]); : : : ; (vm; [wm1; wm2])}; (3)

where wi1 = k∗zi1; wi2 = k∗zi2, and 16i6m.
However, there is a drawback in the above reasoning scheme, i.e., when A∗=very A or when A∗=more or

less A, the method presented in [10] cannot deal with the approximate reasoning properly due to the fact that
the deduced interval-valued fuzzy set B∗ presented in [10] is always a linear modi�cation of the interval-valued
fuzzy set B described above (i.e., when A∗=very A, we can see that B∗ 6=very B; when A∗=more or less A,
we can see that B∗ 6=more or less B). Furthermore, let us consider the following reasoning scheme:

Rule: IF X is A THEN Y is B

Fact: Y is B∗

Consequence: X is A∗

We can see that the method presented in [10] also cannot handle the approximate reasoning properly, for
example, when B∗=very B, we can see that A∗ 6=very A; when B∗=more or less B, we can see that
A∗ 6=more or less A. Thus, it is necessary to develop a more powerful method to deal with bidirectional
approximate reasoning using interval-valued fuzzy sets to overcome the drawbacks of the one presented
in [10].
In this paper, we extend the work of [10] to develop a new method for bidirectional approximate reasoning

based on interval-valued fuzzy sets to overcome the drawbacks of the one presented in [10]. Because the
proposed method can perform bidirectional approximate reasoning based on the direction of matching between
interval-valued fuzzy sets, it is more reasonable and powerful than the one presented in [10]. It can provide
a useful way to deal with bidirectional approximate reasoning for rule-based systems using interval-valued
fuzzy sets.
The rest of this paper is organized as follows. In Section 2, we brie
y review some similarity measures

between interval-valued fuzzy sets. Furthermore, we also present a method to measure the direction of matching
between interval-valued fuzzy sets. In Section 3, we present a new method for bidirectional approximate
reasoning based on the direction of matching between interval-valued fuzzy sets. In Section 4, we use some
examples to illustrate the approximate reasoning process. The conclusions are discussed in Section 5.

2. Similarity measures between interval-valued fuzzy sets

In 1986, Turksen has proposed the de�nitions of interval-valued fuzzy sets [17]. In [13,14], Gorzalczany
presented interval-valued fuzzy inference methods based on interval-valued fuzzy sets. If a fuzzy set is repre-
sented by an interval-valued membership function, then it is called an interval-valued fuzzy set. In [8] we have
presented a method for handling multicriteria fuzzy decision-making problems using interval-valued fuzzy sets.

De�nition 2.1. Let U be the universe of discourse, U = {u1; u2; : : : ; un}. An interval-valued fuzzy set A of the
universe of discourse U can be represented by

A= {(u1; [a11; a12]); (u2; [a21; a22]); : : : ; (un; [an1; an2])};
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where interval [ai1; ai2] indicating the grade of membership of ui in the interval-valued fuzzy set A is between
ai1 and ai2, where 06ai16ai261 and 16i6n.
Let A and B be two interval-valued fuzzy sets of the universe of discourse U , where

U = {u1; u2; : : : ; un};
A= {(u1; [a11; a12]); (u2; [a21; a22]); : : : ; (un; [an1; an2])};
= {(ui; [ai1; ai2]) | 16i6n};

B= {(u1; [b11; b12]); (u2; [b21; b22]); : : : ; (un; [bn1; bn2])};
= {(ui; [bi1; bi2]) | 16i6n}:

If ∀i; ai1 = bi1 and ai2 = bi2, where 16i6n, then the interval-valued fuzzy sets A and B are called equal (i.e.,
A=B). The union operation between the interval-valued fuzzy sets A and B is de�ned as follows:

A∪B= {(ui; [ci1; ci2]) | ci1 =Max(ai1; bi1); ci2 =Max(ai2; bi2) and 16i6n}:
Let fA be the membership function of the interval-valued fuzzy set A, where fA(ui)= [ai1; ai2]; 06ai16ai2

61, and 16i6n. The support Supp(A) of the interval-valued fuzzy set A is a subset of the universe of
discourse U de�ned as

Supp(A)= {ui |fA(ui)= [ai1; ai2]; ai2¿0 and 16i6n}:
Let U be the universe of discourse, U = {u1; u2; : : : ; un}, and let A be an interval-valued fuzzy set of the

universe of discourse U , where

A= {(u1; [a11; a12]); (u2; [a21; a22]); : : : ; (un; [an1; an2])}:
Then, the interval-valued fuzzy sets “very A” and “more or less A” are de�ned as follows:

very A= {(u1; [a211; a212]); (u2; [a221; a222]); : : : ; (un; [a2n1; a2n2])};
more or less A= {(u1; [a1=211 ; a1=212 ]); (u2; [a1=221 ; a1=222 ]); : : : ; (un; [a1=2n1 ; a1=2n2 ])}:

In [15], Ke et al. have presented a similarity function S to measure the degree of similarity between two
vectors. In [4], we have used the similarity function S to develop a method for handling fuzzy decision-making
problems. In [10], we presented a matching function M to measure the degree of similarity between interval-
valued fuzzy sets based on the similarity function S. In this paper, we present the de�nition of the direction
of matching between interval-valued fuzzy sets. The de�nition of the similarity function S is reviewed as
follows:

De�nition 2.2. Let a and b be two vectors in Rn, where R is a set of real numbers between zero and one,
i.e.,

a= 〈a1; a2; : : : ; an〉;
b= 〈b1; b2; : : : ; bn〉;

where ai ∈ [0; 1]; bi ∈ [0; 1], and 16i6n. Then, the degree of similarity between the vectors a and b can be
measured by the similarity function S,

S(a; b)=
a · b

Max(a · a; b · b) ; (4)

where S(a; b)∈ [0; 1]. The larger the value of S(a; b), the more the similarity between the vectors a and b.
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In the following, we introduce the matching function M [10] to measure the degree of matching be-
tween interval-valued fuzzy sets based on the similarity function S. Let U be the universe of discourse,
U = {u1; u2; : : : ; un}, and let A be an interval-valued fuzzy set of U ,

A= {(u1; [a11; a12]); (u2; [a21; a22]); : : : ; (un; [an1; an2])}
= {(ui; [ai1; ai2]) | 16i6n};

then the lower bound and the upper bound of the interval-valued fuzzy set A can be represented by the
subscript vector A and the superscript vector A , respectively, where

A = 〈a11; a21; : : : ; an1〉;
A = 〈a12; a22; : : : ; an2〉:

The degree of similarity between interval-valued fuzzy sets can be measured by the matching function M [10]
reviewed as follows. Let U be the universe of discourse, U = {u1; u2; : : : ; un}, and let A and B be two interval-
valued fuzzy sets of U , where

A= {(u1; [a11; a12]); (u2; [a21; a22]); : : : ; (un; [an1; an2])}
= {(ui; [ai1; ai2]) | 16i6n};

B= {(u1; [b11; b12]); (u2; [b21; b22]); : : : ; (un; [bn1; bn2])}
= {(ui; [bi1; bi2]) | 16i6n}:

The lower bound and the upper bound of the interval-valued fuzzy set A can be represented by the subscriptor
vector A and the superscriptor vector A , respectively, the lower bound and the upper bound of the interval-
valued fuzzy set B can be represented by the subscriptor vector B and the superscriptor vector B , respectively,
where

A = 〈a11; a21; : : : ; an1〉;
A = 〈a12; a22; : : : ; an2〉;
B = 〈b11; b21; : : : ; bn1〉;
B = 〈b12; b22; : : : ; bn2〉 :

then the degree of matching M (A; B) between the interval-valued fuzzy sets A and B can be measured as
follows:

M (A; B)=
S(A ; B) + S(A ; B)

2
; (5)

where M (A; B)∈ [0; 1]. The larger the value of M (A; B), the higher the degree of matching between the
interval-valued fuzzy sets A and B.
In the following, we present the direction-matching function D between the interval-valued fuzzy sets A

and B, where

D(A; B)=
n∑

i=1

[(ai1 − bi1) + (ai2 − bi2)]: (6)

If D(A; B)¿0, then the direction of matching from A to B is positive. Otherwise, the direction of matching
from A to B is negative.
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In the next section, we will use the direction-matching function D to develop a new bidirectional approximate
reasoning method for rule-based systems using interval-valued fuzzy sets.

3. Bidirectional approximate reasoning using interval-valued fuzzy sets

Let us consider the following generalized modus ponens (GMP):

Rule: IF X is A THEN Y is B

Fact: X is A∗

Consequence: Y is B∗

where X and Y are linguistic variables, A∗ and A are interval-valued fuzzy sets of the universe of dis-
course U; U = {u1; u2; : : : ; un}, and B∗ and B are interval-valued fuzzy sets of the universe of discourse
V; V = {v1; v2; : : : ; vm}. Assume that the interval-valued fuzzy sets A∗; A, and B have the following forms

A∗= {(u1; [x11; x12]); (u2; [x21; x22]); : : : ; (un; [xn1; xn2])};
A= {(u1; [y11; y12]); (u2; [y21; y22]); : : : ; (un; [yn1; yn2])};
B= {(v1; [z11; z12]); (v2; [z21; z22]); : : : ; (vm; [zm1; zm2])};

where 06xi16xi261; 06yi16yi261; 16i6n; 06zj16zj261, and 16j6m. Let A∗ and A be the subscript

vectors of the interval-valued fuzzy sets A∗ and A, respectively, and let A∗ and A be the superscript vectors
of the interval-valued fuzzy sets A∗ and A, respectively, where

A∗= 〈x11; x21; : : : ; xn1〉;
A = 〈y11; y21; : : : ; yn1〉;
A∗= 〈x12; x22; : : : ; xn2〉;
A = 〈y12; y22; : : : ; yn2〉:

Then, based on formula (5), the degree of matching between the interval-valued fuzzy sets A∗ and A can be
measured. Furthermore, the direction of matching from A∗ to A can be decided by formula (6). If D(A∗; A)¿0,
then the direction of matching from A∗ to A is positive. Otherwise, the direction of matching from A∗ to A
is negative. Assume that M (A∗; A)= k, where k ∈ [0; 1], then the deduced consequence of the rule is “Y is
B∗”, where the membership function of the interval-valued fuzzy set B∗ is as follows:

B∗= {(v1; [w11; w12]); (v2; [w21; w22]); : : : ; (vm; [wm1; wm2])}; (8)

where wj1 and wj2; 16j6m, can be evaluated as follows:
Case 1: IF Supp(A∗)=Supp(A) THEN
IF A∗=very A (i.e. xi1 =y2i1; xi2 =y

2
i2 and 16i6n)

THEN let

wj1 = z2j1; (9)

wj2 = z2j2 where 16j6m; (10)

IF A∗=more or less A (i.e., xi1 =y
1=2
i1 ; xi2 =y

1=2
i2 and 16i6n)
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THEN let

wj1 = z
1=2
j1 ; (11)

wj2 = z
1=2
j2 ; (12)

where 16j6m;
IF the direction of matching from A∗ to A is positive THEN

wj1 = zkj1; (13)

wj2 = zkj2 where M (A∗; A)= k; k ∈ [0; 1] and 16j6m (14)

ELSE

wj1 = z
1=k
j1 ; (15)

wj2 = z
1=k
j2 where M (A∗; A)= k; k ∈ [0; 1] and 16j6m: (16)

Case 2: IF Supp(A∗) 6=Supp(A) THEN
IF M (A∗; A)¿0:5 THEN
IF the direction of matching from A∗ to A is positive THEN

wj1 = zkj1; (17)

wj2 = zkj2 where M (A∗; A)= k; k ∈ [0; 1] and 16j6m (18)

ELSE

wj1 = z
1=k
j1 ; (19)

wj2 = z
1=k
j2 where M (A∗; A)= k; k ∈ [0; 1] and 16j6m (20)

ELSE

wj1 = zj1 ∗ k; (21)

wj2 = zj2 ∗ k where M (A∗; A)= k; k ∈ [0; 1] and 16j6m: (22)

It is obvious that if A∗ and A are identical interval-valued fuzzy sets (i.e., A∗=A), then M (A∗; A)= 1 and
B∗ is equal to B.
Furthermore, consider the following single-input–single-output (SISO) approximate reasoning scheme:

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2

...

Rp: IF X is Ap THEN Y is Bp
Fact: X is A0

Consequence: Y is B0
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where A0; A1; A2; : : : ; Ap are interval-valued fuzzy sets of the universe of discourse U; U = {u1; u2; : : : ; un}, and
B1; B2; : : : and Bp are interval-valued fuzzy sets of the universe of discourse V; V = {v1; v2; : : : ; vm}. Assume
that

Ai= {(u1; [xi1; x∗i1]); (u2; [xi2; x∗i2]); : : : ; (un; [xin; x∗in])};
Bj = {(v1; [yj1; y∗j1]); (v2; [yj2; y∗j2]); : : : ; (vm; [yjm; y∗jm])};

where 06i6p and 16j6p. Based on the previous discussions, the interval-valued fuzzy sets Ai can be
represented by the subscript vectors Ai and the superscript vectors Ai; 06i6p, where

A0 = 〈x01; x02; : : : ; x0n〉;
A1 = 〈x11; x12; : : : ; x1n〉;
A2 = 〈x21; x22; : : : ; x2n〉;

...

Ap= 〈xp1; xp2; : : : ; xpn〉;

A0 = 〈x∗01; x∗02; : : : ; x∗0n〉;
A1 = 〈x∗11; x∗12; : : : ; x∗1n〉;
A2 = 〈x∗21; x∗22; : : : ; x∗2n〉;

...

Ap=
〈
x∗p1; x

∗
p2; : : : ; x

∗
pn

〉
:

Assume that M (A0; Ai)= ki, where ki ∈ [0; 1], and the direction of matching from A0 to Ai can be decided
by formula (6), then the deduced consequence of rule Ri is “Y is B∗i ”, and the membership function of the
interval-valued fuzzy set B∗i ; 16i6p, is as follows:

B∗i = {(v1; [wi1; w∗
i1]); (v2; [wi2; w

∗
i2]); : : : ; (vm; [wim; w

∗
im])}; (23)

where wij and w∗
ij ; 16j6m, can be evaluated by the following two cases

Case 1: IF Supp(A0)=Supp(Ai) THEN
IF A0 = very Ai (i.e., x0k = x2ik ; x

∗
0k = x

∗2
ik and 16k6n)

THEN let

wij =y2ij ; (24)

w∗
ij =y

∗2
ij where 16j6m; (25)

IF A0 =more or less Ai (i.e., x0k = x
1=2
ik ; x

∗
0k = x

∗1=2
ik and 16k6n)

THEN let

wij =y
1=2
ij ; (26)

w∗
ij =y

∗1=2
ij where 16j6m; (27)



S.-M. Chen, W.-H. Hsiao / Fuzzy Sets and Systems 113 (2000) 185–203 193

IF the direction of matching from A0 to Ai is positive THEN

wij =y
ki
ij ; (28)

w∗
ij =y

∗ki
ij where M (A0; Ai)= ki; ki ∈ [0; 1] and 16j6m (29)

ELSE

wij =y
1=ki
ij ; (30)

w∗
ij =y

∗1=ki
ij where M (A0; Ai)= ki; ki ∈ [0; 1] and 16j6m: (31)

Case 2: IF Supp(A0) 6=Supp(Ai) THEN
IF M (A0; Ai)¿0:5 THEN
IF the direction of matching from A∗ to A is positive THEN

wij =y
ki
ij ; (32)

w∗
ij =y

∗ki
ij where M (A0; Ai)= ki; ki ∈ [0; 1] and 16j6m (33)

ELSE

wij =y
1=ki
ij ; (34)

w∗
ij =y

∗1=ki
ij where M (A0; Ai)= ki; ki ∈ [0; 1] and 16j6m (35)

ELSE

wij =yij ∗ ki; (36)

w∗
ij =y

∗
ij ∗ ki where M (A0; Ai)= ki; ki ∈ [0; 1] and 16j6m: (37)

Thus, the deduced consequence of the SISO interval-valued approximate reasoning scheme is “Y is B0”, where

B0 =B∗1 ∪B∗2 ∪ · · · ∪B∗p ; (38)

and “∪” is the union operator of the interval-valued fuzzy sets.
Conversely, consider the following SISO interval-valued approximate reasoning scheme:

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2

...

Rp: IF X is Ap THEN Y is Bp
Fact: Y is B0

Consequence: X is A0

where

Ai= {(u1; [xi1; x∗i1]); (u2; [xi2; x∗i2]); : : : ; (un; [xin; x∗in])};
Bj = {(v1; [yj1; y∗j1]); (v2; [yj2; y∗j2]); : : : ; (vm; [yjm; y∗jm])};
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where 16i6p and 06j6p. Based on the previous discussions, the interval-valued fuzzy sets Bj can be
represented by the subscript vectors Bj and the superscript vectors Bj; 06j6p, where

B0 = 〈y01; y02; : : : ; y0m〉;
B1 = 〈y11; y12; : : : ; y1m〉;
B2 = 〈y21; y22; : : : ; y2m〉;

...

Bp= 〈yp1; yp2; : : : ; ypm〉;

B0 = 〈y∗01; y∗02; : : : ; y∗0m〉;
B1 = 〈y∗11; y∗12; : : : ; y∗1m〉;
B2 = 〈y∗21; y∗22; : : : ; y∗2m〉;

...
Bp=

〈
y∗p1; y

∗
p2; : : : ; y

∗
pm

〉
:

Assume that M (B0; Bi)= ki, where ki ∈ [0; 1], and the direction of matching from B0 to Bi can be decided
by formula (6), then the deduced consequence of rule Ri is “X is A∗i ”, and the membership function of the
interval-valued fuzzy set A∗i ; 16i6p, is as follows:

A∗i = {(u1; [ri1; r∗i1]); (u2; [ri2; r∗i2]); : : : ; (un; [rin; r∗in])}; (39)

where riw and r∗iw; 16w6n, can be evaluated by the following two cases:
Case 1: IF Supp(B0)=Supp(Bi) THEN
IF B0 = very Bi (i.e., yos =y2is; y∗os =y

∗2
is and 16s6m)

THEN let

riw = x2iw; (40)

r∗iw = x
∗2
iw where 16w6n; (41)

IF B0 =more or less Bi (i.e., yos =y
1=2
is ; y

∗
os =y

∗1=2
is and 16s6m)

THEN let

riw = x
1=2
iw ; (42)

r∗iw = x
∗1=2
iw where 16w6n; (43)

IF the direction of matching from B0 to Bi is positive THEN

riw = x
ki
iw; (44)

r∗iw = x
∗ki
iw where M (B0; Bi)= ki; ki ∈ [0; 1] and 16w6n (45)

ELSE

riw = x
1=ki
iw ; (46)

r∗iw = x
∗1=ki
iw where M (B0; Bi)= ki; ki ∈ [0; 1] and 16w6n: (47)

Case 2: IF Supp(B0) 6=Supp(Bj) THEN
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IF M (B0; Bj)¿0:5 THEN
IF the direction of matching from B0 to Bj is positive THEN

riw = x
ki
iw; (48)

r∗iw = x
∗ki
iw where M (B0; Bi)= ki; ki ∈ [0; 1] and 16w6n (49)

ELSE

riw = x
1=ki
iw ; (50)

r∗iw = x
∗1=ki
iw where M (B0; Bi)= ki; ki ∈ [0; 1] and 16w6n (51)

ELSE

riw = xiw ∗ ki; (52)

r∗iw = x
∗
iw ∗ ki where M (B0; Bi)= ki; ki ∈ [0; 1] and 16w6n: (53)

Thus, the deduced consequence of the SISO interval-valued approximate reasoning scheme is “X is A0”, where

A0 =A∗1 ∪A∗2 ∪ · · · ∪A∗p ; (54)

and “∪” is the union operator of the interval-valued fuzzy sets.

4. Examples

In this section, we use some examples to illustrate the bidirectional approximate reasoning process based
on the direction of matching between interval-valued fuzzy sets.

Example 4.1. Consider the following single-input–single-output interval-valued approximate reasoning scheme

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2
R3: IF X is A3 THEN Y is B3
R4: IF X is A4 THEN Y is B4
R5: IF X is A5 THEN Y is B5
Fact: X is A0

Consequence: Y is B0

where A0; A1; A2; : : : ; and A5 are interval-valued fuzzy sets of the universe of discourse U; U = {u1; u2; : : : ;
u14}, and B0; B1; B2; : : : ; and B5 are interval-valued fuzzy sets of the universe of discourse V; V = {v1; v2; : : : ;
v14}. These interval-valued fuzzy sets are shown as follows:

A0 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0:90; 0:95]); (u4; [1; 1]); (u5; [0:90; 0:95]); (u6; [0; 0:8]);
(u7; [0; 0]); (u8; [0; 0]); (u9; [0; 0]); (u10; [0; 0]); (u11; [0; 0]); (u12; [0; 0]);

(u13; [0; 0]); (u14; [0; 0])};

A1 = {(u1; [1; 1]); (u2; [1; 1]); (u3; [0:82; 0:95]); (u4; [0; 0:7]); (u5; [0; 0]); (u6; [0; 0]);
(u7; [0; 0]); (u8; [0; 0]); (u9; [0; 0]); (u10; [0; 0]); (u11; [0; 0]); (u12; [0; 0]);

(u13; [0; 0]); (u14; [0; 0])};
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A2 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0:5]); (u4; [0:75; 0:8]); (u5; [0:94; 0:95]); (u6; [1; 1]);
(u7; [0:94; 0:95]); (u8; [0:75; 0:83]); (u9; [0; 0:5]); (u10; [0; 0]); (u11; [0; 0]);

(u12; [0; 0]); (u13; [0; 0]); (u14; [0; 0])};
A3 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]); (u7; [0; 0:6]);

(u8; [0:87; 0:92]); (u9; [1; 1]); (u10; [0:87; 0:92]); (u11; [0; 0:6]);

(u12; [0; 0]); (u13; [0; 0]); (u14; [0; 0])};
A4 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]); (u7; [0; 0]);

(u8; [0; 0]); (u9; [0; 0:6]); (u10; [0:87; 0:92]); (u11; [1; 1]);

(u12; [0:87; 0:92]); (u13; [0; 0:6]); (u14; [0; 0])};
A5 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]); (u7; [0; 0]);

(u8; [0; 0]); (u9; [0; 0]); (u10; [0; 0]); (u11; [0; 0]); (u12; [0; 0:6]);

(u13; [0:87; 0:92]); (u14; [1; 1])};
B1 = {(v1; [1; 1]); (v2; [0:94; 0:96]); (v3; [0; 0:65]); (v4; [0; 0]); (v5; [0; 0]);

(v6; [0; 0]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0]); (v12; [0; 0]);

(v13; [0; 0]); (v14; [0; 0])};
B2 = {(v1; [0; 0]); (v2; [0; 0:6]); (v3; [0:87; 0:92]); (v4; [1; 1]); (v5; [0:87; 0:92]);

(v6; [0; 0:6]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0]);

(v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])};
B3 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0:5]); (v5; [0:74; 0:82]);

(v6; [0:94; 0:95]); (v7; [1; 1]); (v8; [0:94; 0:95]); (v9; [0:74; 0:82]); (v10; [0; 0:5]);

(v11; [0; 0]); (v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])};
B4 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0]); (v5; [0; 0]); (v6; [0; 0]);

(v7; [0; 0:5]); (v8; [0:74; 0:82]); (v9; [0:94; 0:95]); (v10; [1; 1]); (v11; [0:94; 0:95]);

(v12; [0:74; 0:82]); (v13; [0; 0:5]); (v14; [0; 0])};
B5 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0]); (v5; [0; 0]); (v6; [0; 0]);

(v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0:6]); (v12; [0:87; 0:92]);

(v13; [1; 1]); (v14; [1; 1])}:

The membership function curves of these interval-valued fuzzy sets are shown in Fig. 1. The interval-valued
fuzzy sets Ai can be represented by the subscript vectors Ai and the superscript vectors Ai; 06i65, where

A0 = 〈0; 0; 0:90; 1; 0:90; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
A1 = 〈1; 1; 0:82; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
A2 = 〈0; 0; 0; 0:75; 0:94; 1; 0:94; 0:75; 0; 0; 0; 0; 0; 0〉;
A3 = 〈0; 0; 0; 0; 0; 0; 0; 0:87; 1; 0:87; 0; 0; 0; 0〉 ;
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Fig. 1. The membership functions of Ai and Bi; i=1; 2; : : : ; 5.

A4 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0; 0:87; 1; 0:87; 0; 0〉;
A5 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0:87; 1〉;
A0 = 〈0; 0; 0:95; 1; 0:95; 0:8; 0; 0; 0; 0; 0; 0; 0; 0〉;
A1 = 〈1; 1; 0:95; 0:7; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
A2 = 〈0; 0; 0:5; 0:8; 0:95; 1; 0:95; 0:83; 0:5; 0; 0; 0; 0; 0〉;
A3 = 〈0; 0; 0; 0; 0; 0; 0:6; 0:92; 1; 0:92; 0:6; 0; 0; 0〉;
A4 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0:6; 0:92; 1; 0:92; 0:6; 0〉;
A5 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0:6; 0:92; 1〉;

and the interval-valued fuzzy sets B1; B2; B3; B4; B5 can also be represented by the subscript vectors
B1; B2; B3; B4; B5 and the superscript vectors B1; B2; B3; B4; B5, respectively, where

B1 = 〈1; 0:94; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
B2 = 〈0; 0; 0:87; 1; 0:87; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
B3 = 〈0; 0; 0; 0; 0:74; 0:94; 1; 0:94; 0:74; 0; 0; 0; 0; 0〉;
B4 = 〈0; 0; 0; 0; 0; 0; 0; 0:74; 0:94; 1; 0:94; 0:74; 0; 0〉;
B5 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0:87; 1; 1〉;
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B1 = 〈1; 0:96; 0:65; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0〉;
B2 = 〈0; 0:6; 0:92; 1; 0:92; 0:6; 0; 0; 0; 0; 0; 0; 0; 0〉;
B3 = 〈0; 0; 0; 0:5; 0:82; 0:95; 1; 0:95; 0:82; 0:5; 0; 0; 0; 0〉;
B4 = 〈0; 0; 0; 0; 0; 0; 0:5; 0:82; 0:95; 1; 0:95; 0:82; 0:5; 0〉;
B5 = 〈0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0:6; 0:92; 1; 1〉;

then
(i) Because k1 =M (A0; A1)= 0:47 and because Supp(A0) 6=Supp(A1), by formulas (36)–(37), we can get

B∗1 = {(v1; [0:47; 0:47]); (v2; [0:44; 0:45]); (v3; [0; 0:3]); (v4; [0; 0]); (v5; [0; 0]);
(v6; [0; 0]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0]);

(v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])}:
(ii) Because k2 =M (A0; A2)= 0:53, and by formula (6) we can see that the direction of matching from A0 to
A2 is negative, and because Supp(A0) 6=Supp(A2), by formulas (34)–(35), we can get

B∗2 = {(v1; [0; 0]); (v2; [0; 0:38]); (v3; [0:77; 0:85]); (v4; [1; 1]); (v5; [0:77; 0:85]);
(v6; [0; 0:38]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0]); (v12; [0; 0]);

(v13; [0; 0]); (v14; [0; 0])}:
(iii) Because k3 =M (A0; A3)= 0 and Supp(A0) 6=Supp(A3), by formulas (36)–(37), we can get

B∗3 = {(vi; [0; 0]) | 16i614}:
(iv) Because k4 =M (A0; A4)= 0 and Supp(A0) 6=Supp(A4), by formulas (36)–(37), we can get

B∗4 = {(vi; [0; 0]) | 16i614}:
(v) Because k5 =M (A0; A5)= 0 and Supp(A0) 6=Supp(A5), by formulas (36)–(37), we can get

B∗5 = {(vi; [0; 0]) | 16i614}:
Finally, we can get the deduced consequence “Y is B0” of the SISO interval-valued approximate reasoning
scheme, where

B0 = B∗1 ∪B∗2 ∪B∗3 ∪B∗4 ∪B∗5
= {(v1; [0:47; 0:47]); (v2; [0:44; 0:45]); (v3; [0:77; 0:85]);

(v4; [1; 1]); (v5; [0:77; 0:85]); (v6; [0; 0:38]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]); (v11; [0; 0]);

(v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])}:
The reasoning result is shown in Fig. 2.

Example 4.2. Consider the single-input–single-output approximate reasoning scheme as shown in Example 4.1.
Assume that given “A0 =more or less A3”, where

A0 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]); (u7; [0; 0:775]);
(u8; [0:933; 0:959]); (u9; [1; 1]); (u10; [0:933; 0:959]); (u11; [0; 0:775]);

(u12; [0; 0]); (u13; [0; 0]); (u14; [0; 0])};
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Fig. 2. The reasoning result of Example 4.1.

then
(i) Because k1 =M (A0; A1)= 0 and Supp(A0) 6=Supp(A1), from formulas (36)–(37), we can get

B∗1 = {(vi; [0; 0]) | 16i614}:
(ii) Because k2 =M (A0; A2)= 0:3 and because Supp(A0) 6=Supp(A2), from formulas (36)–(37), we can get

B∗2 = {(v1; [0; 0]); (v2; [0; 0:18]); (v3; [0:26; 0:28]); (v4; [0:3; 0:3]); (v5; [0:26; 0:28]);
(v6; [0; 0:18]); (v7; [0; 0]); (v8; [0; 0]); (v9; [0; 0]); (v10; [0; 0]);

(v11; [0; 0]); (v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])}:
(iii) Because Supp(A0)=Supp(A3) and because A0 =more or less A3, from formulas (26)–(27), we can get

B∗3 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0:707]); (v5; [0:860; 0:906]);
(v6; [0:970; 0:975]); (v7; [1; 1]); (v8; [0:970; 0:975]); (v9; [0:860; 0:906]);

(v10; [0; 0:707]); (v11; [0; 0]); (v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])}:
(iv) Because k4 =M (A0; A4)= 0:43 and because Supp(A0) 6=Supp(A4), from formulas (36)–(37), we can get

B∗4 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0]); (v5; [0; 0]); (v6; [0; 0]); (v7; [0; 0:22]);
(v8; [0:32; 0:35]); (v9; [0:40; 0:41]); (v10; [0:43; 0:43]); (v11; [0:40; 0:41]);

(v12; [0:32; 0:35]); (v13; [0; 0:22]); (v14; [0; 0])}:
(v) Because k5 =M (A0; A5)= 0 and Supp(A0) 6=Supp(A5), from formulas (36)–(37), we can get

B∗5 = {(vi; [0; 0]) | 16i614}:
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Fig. 3. The reasoning result of Example 4.2.

Finally, based on formula (38), we can get the deduced consequence “Y is B0” of the SISO interval-valued
approximate reasoning scheme, where

B0 = B∗1 ∪B∗2 ∪B∗3 ∪B∗4 ∪B∗5
= {(v1; [0; 0]); (v2; [0; 0:18]); (v3; [0:26; 0:28]); (v4; [0:3; 0:707]); (v5; [0:860; 0:906]);

(v6; [0:970; 0:975]); (v7; [1; 1]); (v8; [0:970; 0:975]); (v9; [0:860; 0:906]);

(v10; [0:43; 0:707]); (v11; [0:40; 0:41]); (v12; [0:32; 0:35]); (v13; [0; 0:22]); (v14; [0; 0])}:

The reasoning result is shown in Fig. 3.

Example 4.3. Consider the following single-input–single-output (SISO) approximate reasoning scheme:

R1: IF X is A1 THEN Y is B1
R2: IF X is A2 THEN Y is B2
R3: IF X is A3 THEN Y is B3
R4: IF X is A4 THEN Y is B4
R5: IF X is A5 THEN Y is B5
Fact: Y is B0

Consequence: X is A0

where X and Y are linguistic variables, A0; A1; A2; A3; A4, and A5 are interval-valued fuzzy sets of the
universe of discourse U; U = {u1; u2; : : : ; u14}; B1; B2; B3; B4, and B5 are interval-valued fuzzy sets of the
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universe of discourse V; V = {v1; v2; : : : ; v14}. The membership functions of these interval-valued fuzzy sets
are the same as those shown in Example 4.1. Assume that given “B0 = very B3”, where

B0 = {(v1; [0; 0]); (v2; [0; 0]); (v3; [0; 0]); (v4; [0; 0:25]); (v5; [0:548; 0:672]); (v6; [0:884; 0:903]);
(v7; [1; 1]); (v8; [0:884; 0:903]); (v9; [0:548; 0:672]); (v10; [0; 0:25]);

(v11; [0; 0]); (v12; [0; 0]); (v13; [0; 0]); (v14; [0; 0])};
then
(i) Because k1 =M (B0; B1)= 0 and Supp(B0) 6=Supp(B1), from formulas (52)–(53), we can get

A∗1 = {(ui; [0; 0]) | 16i614}:
(ii) Because k2 =M (B0; B2)= 0:27 and because Supp(B0) 6=Supp(B2), from formulas (52)–(53), we can get

A∗2 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0:14]); (u4; [0:20; 0:22]); (u5; [0:25; 0:26]);
(u6; [0:27; 0:27]); (u7; [0:25; 0:26]); (u8; [0:20; 0:22]); (u9; [0; 0:14]);

(u10; [0; 0]); (u11; [0; 0]); (u12; [0; 0]); (u13; [0; 0]); (u14; [0; 0])}:
(iii) Because B0 = very B3, from formulas (40)–(41), we can get

A∗3 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]);
(u7; [0; 0:36]); (u8; [0:76; 0:85]); (u9; [1; 1]); (u10; [0:76; 0:85]); (u11; [0; 0:36]);

(u12; [0; 0]); (u13; [0; 0]); (u14; [0; 0])}:
(iv) Because k4 =M (B0; B4)= 0:38 and because Supp(B0) 6=Supp(B4), from formulas (52)–(53), we can get

A∗4 = {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0]); (u4; [0; 0]); (u5; [0; 0]); (u6; [0; 0]);
(u7; [0; 0]); (u8; [0; 0]); (u9; [0; 0:23]); (u10; [0:33; 0:35]); (u11; [0:38; 0:38]);

(u12; [0:33; 0:35]); (u13; [0; 0:23]); (u14; [0; 0])}:
(v) Because k5 =M (B0; B5)= 0 and Supp(B0) 6=Supp(B5), from formulas (52)–(53), we can get

A∗5 = {(ui; [0; 0]) | 16i614}:
Finally, based on formula (54), we can get the deduced consequence “X is A0” of the SISO interval-valued
approximate reasoning scheme, where

A0 = A∗1 ∪A∗2 ∪A∗3 ∪A∗4 ∪A∗5
= {(u1; [0; 0]); (u2; [0; 0]); (u3; [0; 0:14]); (u4; [0:20; 0:22]); (u5; [0:25; 0:26]);

(u6; [0:27; 0:27]); (u7; [0:25; 0:36]); (u8; [0:76; 0:85]); (u9; [1; 1]); (u10; [0:76; 0:85]);

(u11; [0:38; 0:38]); (u12; [0:33; 0:35]); (u13; [0; 0:23]); (u14; [0; 0])}:
The reasoning result is shown in Fig. 4.

5. Conclusions

In this paper, we have extended the work of [10] to present a new bidirectional approximate reasoning
method for rule-based systems based on the direction of matching between interval-valued fuzzy sets, where
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Fig. 4. The reasoning result of Example 4.3.

the concept of “direction of matching” is presented in order to intelligently modify the consequences of the
deduced rules. We also have used some examples to illustrate the bidirectional approximate reasoning process
of the rule-based systems based on the direction of matching between interval-valued fuzzy sets. From the
examples shown in Section 4, we can see the proposed interval-valued bidirectional approximate reasoning
method is more reasonable and more powerful than the one presented in [10]. The proposed method can
overcome the drawbacks of the one we presented in [10]. It can provide a useful way to deal with bidirectional
approximate reasoning for rule-based systems using interval-valued fuzzy sets.
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