
Optimal binary vote assignment for replicated data

Her-Kun Chang a,*, Shyan-Ming Yuan b

a Department of Information Management, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan
b Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan

Received 16 April 1999; received in revised form 10 August 1999; accepted 16 December 1999

Abstract

Data replication can be used to improve the availability of data in a distributed database system. In such a system, a mechanism

is required to maintain the consistency of the replicated data. Weighted voting is a popular solution for maintaining the consistency.

The performance of a voting system is determined by the vote assignment. It was shown in previous studies that ®nding the optimal

solution among nonnegative integer vote assignments requires O�2N2� time. So it is not suitable to ®nd the optimal integer vote

assignment (OIVA) for large systems. In this paper, we propose the optimal binary vote assignment (OBVA) considering only binary

vote assignments. It is shown that OBVA can achieve nearly the same availability of OIVA. On the other hand, OBVA requires only

O�N 2� time, which is preferred for large systems. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Distributed systems; Data replication; Availability; Weighted voting; Vote assignment

1. Introduction

In a distributed database system, replicated copies of
the same data are kept in di�erent sites in order to in-
crease the probability that an arriving operation can be
performed, i.e., to increase the availability of the data.

The issue of replica control occurs when multiple
copies of replicated data are stored at di�erent sites. The
goal of replica control is to maintain the consistency
among replicated copies of the same data, i.e., to guar-
antee that the multiple copies of the same data behave
like a single copy. Discussions concerned with the con-
sistency of replicated databases can be found in Bernstein
and Goodman (1981, 1985) and Davidson et al. (1985).

Weighted voting (Gi�ord, 1979) is a popular solution
for synchronizing read and write operations to repli-
cated data. With weighted voting:
· Every site is assigned some number of votes.
· A read operation must collect a read quorum of at

least r votes.
· A write operation must collect a write quorum of at

least w votes.

· To ensure consistency, r � w must be greater than the
total number of votes assigned to all copies.

The values of r and w are called read quorum and write
quorum, respectively. When the quorum for each oper-
ation is a majority of all votes assigned, it is called
majority voting or majority consensus (Thomas, 1979).

Vote and quorum assignments can deeply in¯uence
the availability of replicated data. The problem of vote
and/or quorum assignments has been discussed widely in
the literature. The key research subjects are involved in
determining the vote and quorum assignments to max-
imize the system performance (Garcia-Molina and
Barbara, 1985; Barbara and Garcia-Molina, 1987;
Ahamad and Ammar, 1989; Cheung et al., 1989; Tang
and Natarajan, 1989, 1993; Tong and Kain, 1991;
Spasojevic and Berman, 1994; Amir and Wool, 1998).
For instance, Barbara and Garcia-Molina (1987) de-
rived optimal vote assignments for several homogeneous
systems with majority voting. Then Tong and Kain
(1991) presented an O�2N � algorithm to compute an
optimal real number vote assignment and an O�N� ap-
proximation algorithm to ®nd a near-optimal integer
vote assignment with majority voting.

Recall that majority voting is a special case of
weighted voting. With majority voting, the read and
write operations are treated as the same. On the other
hand, weighted voting has the ¯exibility to tune the read

The Journal of Systems and Software 53 (2000) 73±82
www.elsevier.com/locate/jss

* Corresponding author.

E-mail address: hkchang@mail.cgu.edu.tw (H.-K. Chang).

0164-1212/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (0 0) 0 0 0 5 6 - X

and write quorums to achieve a better performance
according to the mixed ratio of read and write opera-
tions.

Ahamad and Ammar (1989) considered the problem
of optimal quorum assignment by choosing values for
read quorum r and write quorum w to maximize the
availability under uniform vote assignment (i.e., each
site is assigned a single vote). Later, Cheung et al. (1989)
studied the problem of ®nding the optimal solution from
nonnegative integer vote assignments and quorums for
read and write operations. The authors presented an
algorithm to enumerate a sequence of sets of vote as-
signments from which the optimal one can be found by
exhaustively searching and evaluating the enumerated
vote assignments. Although their algorithm can reduce
the number of enumeration by eliminating duplicated,
dominated and isomorphic assignments, the number of
enumeration is still lower bounded by O�2N2�.

In this study, we propose the optimal binary vote
assignment (OBVA) considering only binary vote as-
signments (i.e., the vote assigned to each site is either
zero or one). An O�N 2� algorithm is presented to ®nd
the optimal binary vote assignment for replicated copies.
In the following, the optimal solution found by Cheung
et al. (1989) is said to be the optimal integer vote as-
signment (OIVA). We compare OBVA with OIVA for
the system availability, the computational complexity
and the number of copies required. Experimental results
show that OBVA can achieve nearly the same avail-
ability of OIVA. On the other hand, OBVA require only
O�N 2� time, which is preferred for large systems as
compared to O�2N2� time required by OIVA. Moreover,
a binary vote assignment can be viewed as an allocation
of replicated copies such that a copy is allocated to a site
if and only if the vote assigned to the site is one. For a
given set of sites, OBVA usually uses less number of
copies than that required by OIVA because there may be
sites having vote `zero'.

The remainder of this paper is organized as follows.
The model and formulation are described in the next
section and the algorithm for OBVA is provided in
Section 3. Some experimental results are shown in Sec-
tion 4. The ®nal section summarizes this paper with
some concluding remarks.

2. Model and formulation

A distributed database system consists of a set of
sites, which may store multiple copies of the replicated
data. In this study, the sites of the system are assumed to
be fully connected with perfect links. A site is either
operational or failed and the state (operational, or failed)
of each site is statistically independent to the others. The
availability of a site is the probability that the site is
operational at any time instant. When a site is opera-

tional, the copy at the site is available; otherwise, it is
unavailable.

Let N be the number of sites in the system and
the sites in the system are labeled from 1 to N . Let pi

denote the availability of site i, we assume in the
following that

06 pN 6 � � � 6 p16 1:

With weighted voting, each site in the system is assigned
some number of votes. In this study, we consider binary
vote assignment, i.e., the vote assigned to each site is
either zero or one. A binary vote assignment Z is a
function such that

Z�i� 2 f0; 1g; 16 i6N ;

where Z�i� is the vote assigned to site i. A binary vote
assignment can be treated as an allocation of replicated
copies and a vote assigned to a site results in a copy
allocated at the site. That is,

1 vote � 1 copy:

Let

LZ �
XN

i�1

Z�i�:

Then, LZ is the total number of votes assigned to all sites
in the system and LZ is equal to the number of copies
allocated in the system.

Let r and w denote the read quorum and write quo-
rum, respectively. Using weighted voting for replica
control, an arriving read operation can be performed if
at least r copies are available. On the other hand, when a
write operation arrives, it can be performed only if at
least w copies are available.

To ensure that any pair of read and write operations
are not able to be performed concurrently and that a
read operation always gets the up-to-date value, r � w
must be greater than the total number of copies (votes)
assigned to all sites. The following conditions are used
to ensure consistency:

16 r6LZ ; 16w6 LZ ; �1�

r � w � LZ � 1: �2�
Conditions (1) and (2) ensures that there is a nonempty
intersection of copies between every pair of read and
write operations. Thus the conditions ensure that a read
operation can access to a most recently updated copy
(updated by the last write operation) of the replicated
data. Timestamps can be used to determine which copies
are most recently updated. 1 Under condition (2), a read

1 In some case, it is not allowed to perform two write operations at

the same time. An additional condition, 2w > LZ , is used to ®ll the

requirement and version numbers may be used to ®nd the most

recently updated copies.

74 H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82

quorum r can determine a unique write quorum w such
that

w � LZ � 1ÿ r: �3�

Let S�Z� be the set of sites at which replicated copies are
stored corresponding to the assignment Z. Then

S�Z� � fj jZ�j� � 1; 16 j6Ng:

For a quorum q, a quorum group is any subset of S�Z�
whose size is greater than or equal to q. The collection of
all quorum groups is de®ned as the quorum set. 2 For-
mally, let Q�Z; q� be the quorum set with respect to the
assignment Z and quorum q, then

Q�Z; q� � fG jG � S�Z� and jGjP qg:

For example, let N � 4, consider an assignment Z such
that

Z�1� � Z�2� � 1; Z�3� � 0; Z�4� � 1:

Then

LZ � Z�1� � Z�2� � Z�3� � Z�4� � 3

and

S�Z� � f1; 2; 4g:

If r � 1 and w � Lz ÿ r � 1 � 3, the quorum sets for
read and write operations are Q�Z; 1� and Q�Z; 3�, re-
spectively, where

Q�Z;1��ff1g;f2g;f4g;f1;2g;f1;4g;f2;4g;f1;2;4gg

and

Q�Z; 3� � ff1; 2; 4gg:
For any assignment Z and quorum q, de®ne a�Z; q� to be
the probability that at least q sites in S�Z� are available,
then

a�Z; q� � Prfat least q sites in S�Z� are availableg

�
X

G2Q�Z;q�

Y
j2G

pj

Y
j2S�Z�ÿG

1
ÿ
ÿ pj

�!
:

The probabilities of successful read and write operations
are a�Z; r� and a�Z;w�, respectively. Let Av�Z; r;w� de-
note the availability corresponding to the assignment Z,

read quorum r and write quorum w. If the probability
that an arriving operation is read and the probability
that an arriving operation is write are f and 1ÿ f ,
respectively, then

Av�Z; r;w� � f a�Z; r� � �1ÿ f �a�Z;w�:
The notations used in this analysis are summarized as
follows:
· N : the number of sites in the system;
· pi: availability of site i;
· Z�i�: the vote assigned to site i, Z�i� 2
f0; 1g; 16 i6N ;

· LZ : total number of votes assigned to the sites in the
system, LZ �

PN
i�1 Z�i�;

· r: read quorum;
· w: write quorum, w � LZ ÿ r � 1;
· S�Z�: the set of sites with vote 1, S�Z� �
fj jZ�j� � 1; 16 j6Ng;

· Q�Z; q�: quorum group for the quorum q, Q�Z; q� �
fG jG � S�Z� and jGjP qg;

· a�Z; q�: the probability that at least q sites in S�Z� are
available,

a�Z; q� �
X

G2Q�Z;q�

Y
j2G

pj

Y
j2S�Z�ÿG

1
ÿ
ÿ pj

�!
;

· f : read probability;
· Av�Z; r;w�: system availability (availability of data),

Av�Z; r;w� � f a�Z; r� � �1ÿ f �a�Z;w�.
Giving N , f and p1; . . . ; pN (N P 1, 06 f 6 1,
06 pN 6 � � � 6 p16 1), the problem of OBVA can be
formulated as

P 0 : Maximize Av�Z; r;w�
Subject to Z�i� 2 f0; 1g; 16 i6N ;

16 r6 LZ ; 16w6LZ ;

r � w � LZ � 1:

3. Optimal binary vote assignment

The size of the solution space of P 0 is 2N , since there
are 2N distinct assignments. In this section, we show that
the number of assignments that need to be considered
for optimization is N . That is, the solution space can be
reduced from 2N to N .

Lemma 1. Let fp1; . . . ; pig be a subset of f1; . . . ;Ng such
that 16 p1 < � � � < pi6N . For 16 k6 i6N , let Z1, Z2

be two assignments such that S�Z1� � f1; . . . ; k ÿ 1;
pk; . . . ; pig and S�Z2� � f1; . . . ; k; pk�1; . . . ;pig, then
Av�Z1; r;w�6Av�Z2; r;w�, for any pair of read quorum r
and write quorum w.

Proof. Since 16 p1 < � � � < pi6N , thus pk P k and
pk P ppk , for all k � 1; . . . ; i. Let Z0 be the assignment

2 The concept of quorum sets de®ned in this paper is basically the

same as the concepts of coteries (Garcia-Molina and Barbara, 1985;

Cheung et al., 1989) and acceptance sets (Tang and Natarajan, 1989).

H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82 75

such that S�Z0� � S�Z1� ÿ fpkg � S�Z2� ÿ fkg, then, for
any quorum q

a�Z2;q� � Prfat least q sites in S�Z2� are availableg
� Prf�site k and at least qÿ 1 sites in S�Z0� are available�
or �site k fails and at least q sites in S�Z0� are available�g
� Prfsite k and at least qÿ 1 sites in S�Z0� are availableg
�Prfsite k fails and at least q sites in S�Z0� are availableg
� pka�Z0;qÿ 1� � �1ÿ pk�a�Z0;q�
� a�Z0;q� � pk�a�Z0;qÿ 1� ÿ a�Z0;q��:

Similarly,

a�Z1; q� � a�Z0; q� � ppk �a�Z0; qÿ 1� ÿ a�Z0; q��
and

a�Z2;q�ÿ a�Z1;q� � �pk ÿ ppk ��a�Z0;qÿ 1�ÿ a�Z0;q��P0:

That is a�Z1; q�6 a�Z2; q�, for any quorum q. Therefore,
for any pair of read quorum r and write quorum w,
Av�Z1; r; w� � f a�Z1; r� � �1 ÿ f �a�Z1; w� 6 f a�Z2; r��
�1 ÿ f � a�Z2; w� � Av�Z2; r; w�. �

For 16 i6N , de®ne Zi to be the assignment such that

S�Zi� � f1; . . . ; ig:

Theorem 1. Zi is optimal in the set of assignments
A � fZ j jS�Z�j � ig, 16 i6N .

Proof. Let Y be any assignment in A and
S�Y � � fp1; p2; . . . ; pig with 16 p1 < p2 < � � � < pi6N .
Let Y k be the assignment such that S�Y k� � f1; . . . ; k;
pk�1; . . . ; pig, 16 k6 i. From Lemma 1, Av�Y ;r;w�6
Av�Y 1;r;w�6 �� �6Av�Y i;r;w��Av�Zi;r;w�, for any pair
of read quorum r and write quorum w. �

According to Theorem 1, the original problem can be
reduced to

P 0 : Maximize Av�Zi; r;w�
Subject to 16 i6N ;

16 r6 LZ ; 16w6 LZ ;

r � w � LZ � 1:

Theorem 2. The optimal solution of P 0 is also optimal for
P 0.

Proof. Let Y 0 and Y 0 be optimal solutions of P 0 and P 0,
respectively. Suppose jS�Y 0�j � i and Av�Y 0; r;w� >
Av�Y 0; r;w�, by Theorem 1, Av�Y 0; r;w�6Av�Zi; r;w�6
Av�Y 0; r;w�. It's a contradiction. �

Table 1

�p1; p2; p3; p4; p5� � �0:9; 0:8; 0:8; 0:8; 0:8�
f Optimal integer

vote assignment

r1 a1 Optimal binary

vote assignment

r2 a2 a2=a1

0.001 (1,1,1,1,1) 5 0.9992 (1,1,1,1,1) 5 0.9992 1.0

0.1 (1,1,1,1,1) 4 0.9741 (1,1,1,1,1) 4 0.9741 1.0

0.2 (2,1,1,1,1) 4 0.9677 (1,1,1,1,0) 3 0.9574 0.9894

0.3 (2,1,1,1,1) 4 0.9613 (1,1,1,1,1) 3 0.9574 0.9960

0.4 (1,1,1,1,1) 3 0.9574 (1,1,1,1,1) 3 0.9574 1.0

0.5 (1,1,1,1,1) 3 0.9574 (1,1,1,1,1) 3 0.9574 1.0

0.6 (1,1,1,1,1) 3 0.9574 (1,1,1,1,1) 3 0.9574 1.0

0.7 (2,1,1,1,1) 3 0.9613 (1,1,1,1,1) 3 0.9574 0.9960

0.8 (2,1,1,1,1) 3 0.9677 (1,1,1,1,0) 2 0.9574 0.9894

0.9 (1,1,1,1,1) 2 0.9741 (1,1,1,1,1) 2 0.9471 1.0

0.999 (1,1,1,1,1) 1 0.9921 (1,1,1,1,1) 1 0.9992 1.0

Table 2

�p1; p2; p3; p4; p5� � �0:9; 0:9; 0:8; 0:8; 0:8�
f Optimal integer

vote assignment

r1 a1 Optimal binary

vote assignment

r2 a2 a2=a1

0.001 (1,1,1,1,1) 5 0.9993 (1,1,1,1,1) 5 0.9993 1.0

0.1 (2,2,1,1,1) 5 0.9839 (1,1,1,1,0) 3 0.9796 0.9956

0.2 (2,2,1,1,1) 5 0.9741 (1,1,1,1,0) 3 0.9699 0.9957

0.3 (3,3,2,2,2) 7 0.9729 (1,1,1,1,1) 3 0.9699 0.9969

0.4 (3,3,2,2,2) 7 0.9718 (1,1,1,1,1) 3 0.9699 0.9981

0.5 (2,2,1,1,1) 4 0.9713 (1,1,1,1,1) 3 0.9699 0.9986

0.6 (3,3,2,2,2) 6 0.9718 (1,1,1,1,1) 3 0.9699 0.9981

0.7 (3,3,2,2,2) 6 0.9729 (1,1,1,1,1) 3 0.9699 0.9969

0.8 (2,2,1,1,1) 3 0.9741 (1,1,1,1,0) 2 0.9699 0.9957

0.9 (2,2,1,1,1) 3 0.9839 (1,1,1,1,0) 2 0.9796 0.9956

0.999 (1,1,1,1,1) 1 0.9993 (1,1,1,1,1) 1 0.9993 1.0

76 H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82

Table 4

�p1; p2; p3; p4; p5; p6; p7� � �0:9; 0:9; 0:6; 0:6; 0:6; 0:6; 0:6�
f Optimal integer

vote assignment

r1 a1 Optimal binary

vote assignment

r2 a2 a2=a1

0.001 (1,1,1,1,1,1,1) 7 0.999 (1,1,1,1,1,1,1) 7 0.999 1.0

0.1 (1,1,0,0,0,0,0) 2 0.972 (1,1,0,0,0,0,0) 2 0.972 1.0

0.2 (5,5,1,1,1,1,1) 10 0.955 (1,1,0,0,0,0,0) 2 0.954 0.999

0.3 (4,4,1,1,1,1,1) 8 0.943 (1,1,0,0,0,0,0) 2 0.936 0.993

0.4 (3,3,1,1,1,1,1) 6 0.933 (1,1,0,0,0,0,0) 2 0.918 0.984

0.5 (3,3,1,1,1,1,1) 6 0.933 (1,1,1,0,0,0,0) 2 0.918 0.984

0.6 (3,3,1,1,1,1,1) 6 0.933 (1,1,0,0,0,0,0) 1 0.918 0.984

0.7 (4,4,1,1,1,1,1) 6 0.943 (1,1,0,0,0,0,0) 1 0.936 0.993

0.8 (5,5,1,1,1,1,1) 6 0.955 (1,1,0,0,0,0,0) 1 0.954 0.999

0.9 (1,1,0,0,0,0,0) 1 0.972 (1,1,0,0,0,0,0) 1 0.972 1.0

0.999 (1,1,1,1,1,1,1) 1 0.999 (1,1,1,1,1,1,1) 1 0.999 1.0

Table 3

�p1; p2; p3; p4; p5; p6; p7� � �0:95; 0:9; 0:85; 0:8; 0:75; 0:7; 0:65�
f Optimal integer vote

assignment

r1 a1 Optimal binary

vote assignment

r2 a2 a2=a1

0.001 (3,3,2,2,1,1,1) 11 0.9995 (1,1,1,1,0,0,0) 4 0.9994 0.9999

0.1 (7,5,4,3,2,2,1) 15 0.9909 (1,1,1,1,0,0,0) 3 0.9872 0.9963

0.2 (13,10,8,6,5,4,3) 28 0.9872 (1,1,1,1,1,1,0) 4 0.9806 0.9933

0.3 (10,8,6,5,4,3,2) 21 0.9852 (1,1,1,1,1,0,0) 3 0.9768 0.9915

0.4 (8,6,5,4,3,2,2) 16 0.9840 (1,1,1,1,1,0,0) 3 0.9768 0.9926

0.5 (7,5,4,3,3,2,1) 13 0.9836 (1,1,1,1,1,0,0) 3 0.9768 0.9931

0.6 (8,6,5,4,3,2,2) 15 0.9840 (1,1,1,1,1,0,0) 3 0.9768 0.9926

0.7 (10,8,6,5,4,3,2) 18 0.9852 (1,1,1,1,1,0,0) 3 0.9768 0.9915

0.8 (13,10,8,6,5,4,3) 22 0.9872 (1,1,1,1,1,1,0) 3 0.9806 0.9933

0.9 (7,5,4,3,2,2,1) 10 0.9909 (1,1,1,1,0,0,0) 2 0.9872 0.9963

0.999 (3,3,2,2,1,1,1) 3 0.9995 (1,1,1,1,0,0,0) 1 0.9994 0.9999

Fig. 1. Comparison of system availability for �p1; . . . ; p7� � �0:9; 0:9; 0:6; 0:6; 0:6; 0:6; 0:6�.

H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82 77

According to Theorem 2, we can ®nd an optimal
assignment from the set fZi j i � 1; . . . ;Ng. Recalling
that for 16 q6 i

a�Zi; q� � Prfat least q sites in S�Zi� are availableg:
Thus

a�Zi; 1� � Prfat least 1 sites in S�Zi� are availableg

� 1ÿ
Yi

j�1

�1ÿ pj�

and

a�Zi; i� � Prfat least i sites in S�Zi� are availableg

�
Yi

j�1

pj:

Note that a�Z1; 1� � p1. For i > 1 and 1 < q < i, a�Zi; q�
is given as following.

Theorem 3. For all i > 1 and 1 < q < i,

a�Zi; q� � pia�Ziÿ1; qÿ 1� � �1ÿ pi�a�Ziÿ1; q�:

Proof. By de®nition,

a�Zi;q� � Prfat least q sites in S�Zi� are availableg
� Prf�site i and at least qÿ 1 sites in S�Ziÿ1� are available�
or �site i fails and at least q sites in S�Ziÿ1� are available�g
� Prfsite i and at least qÿ 1 sites in S�Ziÿ1� are availableg
� Prfsite i fails and at least q sites in S�Ziÿ1� are availableg
� pia�Ziÿ1;qÿ 1� � �1ÿ pi�a�Ziÿ1;q�: �

To assist in evaluating the values of a�Zi; q�'s, we de®ne
a�Zi; 0� � 1, for all i P 1 and a�Zi; q� � 0, for all
16 i < q. Then the values of a�Zi; q�'s, for all 16 i6N
and 16 q6 i, can be evaluated by the following proce-
dure:

Procedure Alpha
a�Z1; 1� � p1

for i � 2 to N do
for q � 1 to i do
a�Zi; q� � pia�Ziÿ1; qÿ 1� � �1ÿ pi�a�Ziÿ1; q�
end-for

end-for
end-Alpha

Fig. 2. Comparison of system availability for 12-site systems. (1) Patterns 1a, 1b, 1c. (2) Patterns 2a, 2b, 2c. (3) Patterns 3a, 3b, 3c.

78 H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82

The complexity of Procedure Alpha is O�N 2� since the
nested two ``for'' loops spend at most N 2 time units.

Given 06 pN 6 � � � p16 1, and 06 f 6 1, the following
algorithm can be used to ®nd an optimal binary vote
assignment and corresponding quorums.

Algorithm Opt-Binary
call Procedure Alpha
Amax � p1; Lopt � 1;Ropt � 1
for i � 2 to N do

for r � 1 to i do 3

w � i� 1ÿ r
AVB � f a�Zi; r� � �1ÿ f �a�Zi;w�
if AVB > Amax then

Amax � AVB
Lopt � i
Ropt � r
end-if

end-for
end-for

end-Opt-Binary

The ®nal values of Amax, Lopt and Ropt denote the maxi-
mized availability, optimal degree of replication (num-
ber of copies) and read quorum, respectively. Note that
OBVA is ZLopt and according to Condition (3), the write
quorum corresponding to the optimal assignment is
wopt � Lopt � 1ÿ ropt.

Theorem 4. Given 06 pN 6 � � � 6 p16 1, and 06 f 6 1,
Algorithm Opt-Binary can find an optimal assignment and
corresponding quorum within O�N 2� time.

Proof. Since Procedure Alpha needs O�N 2� time and the
nested two ``for'' loops also requires O�N 2� time. Thus
the total complexity is O�N 2�. �

4. Experimentation

In this section, we compare OBVA with OIVA pro-
posed by Cheung et al. (1989) and other comparable
works. Tables 1±4 illustrate the following measures of
several experimental results:
· r1: read quorum corresponding to OIVA;
· a1: availability of OIVA;

Fig. 3. Comparison of system availability for 12-site systems. (1) Patterns 1a, 2a, 3a. (2) Patterns 1b, 2b, 3b. (3) Patterns 1c, 2c, 3c.

3 When condition 2w > i is added, this statement may be modi®ed as

``for r � 1 to bi=2c do''. The remainder of the algorithm need not be

changed.

H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82 79

· r2: read quorum corresponding to OBVA;
· a2: availability of OBVA.
The compared data of OIVA is derived from Cheung
et al. (1989). The system considered in Table 1 con-
sists of ®ve sites where four sites have the same
availability, 0.8, and the availability of the other site is
0.9. It is shown that OBVA and OIVA are nearly the
same.

Table 2 considers a system consisting of ®ve sites
where three sites have the same availability, 0.8, and the
availability of the other two sites is 0.9. a2=a1 is not less
than 99:56% in Table 2.

In Table 3, a system consisting seven sites is consid-
ered. The availability of sites is distributed uniformly
from 0.95 to 0.65 and a2=a1 P 99:15%.

A system consisting of seven sites is considered in
Table 4. Five sites have the same availability 0.6 and the
availability of the other two sites is 0.9. In this case,
OIVA is quite di�erent from OBVA and the smallest
value of a2=a1 is 98:4%, which is lowest in Tables 1±4.
However, note that, the number of copies required by
OBVA is less than OIVA. This is because OIVA assign
the lowly available sites (with availability 0.6) a small
vote (one) rather than zero in OBVA.

Several notable observations from Tables 1±4 are:
· The availability of OBVA is not less than 98:4% of

OIVA in those cases.
· When the sites have nearly the same availability,

OBVA and OIVA are almost the same (Table 1).
· If the availability of the sites is distributed uniformly

(Tables 2 and 3), OIVA is di�erent from OBVA but
OBVA can achieve almost the same availability of
OIVA.

· If some sites are highly available and the others are
lowly available (Table 4), the availability of OBVA is
a little lower than that of OIVA (within 98:4% in those
examples); however, the number of copies required by
OBVA is quite less than that required by OIVA.

In Fig. 1, we compare OBVA with OIVA (Cheung et al.,
1989), the optimal quorum assignment with uniform
vote assignment (Ahamad and Ammar, 1989), read
majority/write majority, and read one/write all (Ahamad
and Ammar, 1989). The values of the other algorithms
shown in Fig. 1 are derived from Cheung et al. (1989). It
is shown that OBVA performs very closely to OIVA and
better than the others.

The algorithm for OIVA is based on an enumeration
and an exhaustive search of all vote assignable read

Fig. 4. Comparison of system availability for 18-site systems. (1) Patterns 1a, 1b, 1c. (2) Patterns 2a, 2b, 2c. (3) Patterns 3a, 3b, 3c.

80 H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82

coteries for all valid read quorums. Basically, this fol-
lows the work of Garcia-Molina and Barbara (1985),
which discussed the problem of how to assign votes to
achieving optimal performance with majority voting. It
was shown in Garcia-Molina and Barbara (1985) that
the number of (majority) vote assignable coteries is
O�2N2�. Since the algorithm of Cheung et al. (1989)
needs an enumeration of all vote assignable read coteries
for all read quorums (including majority), the com-
plexity of the enumeration is at least O�2N2�. This is
unfeasible for large scale systems. In the contrast, our
algorithm needs only O�N 2� time. For large systems, our
algorithm would be preferred.

To do more experiments with the sensitivity of
OBVA, we also apply OBVA to di�erent availability
patterns of 12-site and 18-site systems. Four availability
patterns used to experiment on 12-site systems are:

1: p1 � 0:99,
pk � pkÿ1 ÿ d for k � 2; . . . ; 12.

2: p1 � 0:99,
p7 � p6 ÿ 0:5,
pk � pkÿ1 ÿ d for k � 2; . . . 6; 8; . . . ; 12.

3: p1 � 0:99,
p5 � p4 ÿ 0:5,

p9 � p8 ÿ 0; 5,
pk � pkÿ1ÿ d for k � 2; . . . ;4;6; . . . ;8;10; . . . ;12.

The availability patterns for 18-site systems are:
1: p1 � 0:99,

pk � pkÿ1 ÿ d for k � 2; . . . ; 18.
2: p1 � 0:99,

p10 � p9 ÿ 0:5,
pk � pkÿ1 ÿ d for k � 2; . . . 9; 11; . . . ; 18.

3: p1 � 0:99,
p7 � p6 ÿ 0:5,
p13 � p12 ÿ 0:5,
pk � pkÿ1ÿ d for k � 2; . . . ;6;8; . . . ;12;14; . . . ;18.

According to the values of d, each of the above patterns
has three subpatterns:

a. d � 0:01;
b. d � 0:015;
c. d � 0:02.

The experimental results are illustrated in Figs. 2±5.
Figs. 2 and 3 plot the system availability against the read
probability �f � for di�erent patterns of 12-sites systems.
Figs. 4 and 5 show similar experiments on 18-sites sys-
tems. The ®gures show that the system availability is
highly dependent on the availability pattern of the sites
in the system. One notable observation is that the system

Fig. 5. Comparison of system availability for 18-site systems. (1) Patterns 1a, 2a, 3a. (2) Patterns 1b, 2b, 3b. (3) Patterns 1c, 2c, 3c.

H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82 81

availability is very sensitive to the read probability. In
other words, read probability is a signi®cant factor that
can a�ect the system availability. We note that, in the
case of large f or small f , OBVA performs better than in
the other cases. The reason is that, when f is large (or
small), OBVA can tune the read (and write) quorum to
achieve high performance on the read (or write) opera-
tions by sacri®cing the performance on the write (or
read) operations. On the other hand, when the gap be-
tween the read probability and the write probability is
close on, the system performance cannot be tuned up by
sacri®cing any kind of operations.

5. Concluding remarks

The availability is an important metric for replicated
data. With voting, the availability is determined by the
vote assignment. In previous works, the optimal as-
signment with integer votes was studied. Although
OIVA can achieve the maximal availability, it requires
O�2N2� time. In practice, the time required to ®nd OIVA
for a system having more than seven nodes is not ac-
ceptable. In this paper, we propose OBVA providing an
e�cient way to ®nd the optimal assignment with binary
votes. The proposed algorithm requires only O�N 2� time
to ®nd OBVA. The trade-o� of the time saving is the
decrease in availability. We compare OBVA with OIVA
and other related works. It is shown that OBVA can
achieve nearly the same availability of OIVA and the
availability of OBVA is higher than that of the others. A
binary vote assignment can also be viewed as an allo-
cation for the copies of the replicated data. In this as-
pect, a node with vote `zero' will not be allocated a
replicated copy. That is, replicated copies are allocated
only to the nodes having vote `one'. Thus, for a given set
of nodes, the number of copies required by OBVA is
usually less than that required by OIVA. As a result,
OBVA may also reduce the communication and storage
cost.

To sum it up, OIVA can achieve the maximal system
availability, but the computational time, O�2N2�, is not
acceptable for large systems. On the other hand, OBVA
can achieve near-optimal availability with less compu-
tational time. Consider the example of N � 7, OIVA
requires more than 1014 time units and OBVA requires
about only 102 time units. Thus OBVA would be pre-
ferred for large systems.

In the future, we plan to investigate heuristic algo-
rithms on other voting schemes or on other performance
metrics.

Acknowledgements

The authors would like to thank the anonymous re-
viewers. Their valuable comments lead a signi®cant
improvement of the paper. This work was supported
partially by the National Science Council on the grant
number NSC-88-2520-S-182-005.

References

Ahamad, M., Ammar, M.H., 1989. Performance characterization of

quorum consensus algorithms for replicated data. IEEE Trans.

Soft. Eng. 15, 492±496.

Amir, Y., Wool, A., 1998. Optimal availability quorum systems:

theory and practice. Information Process. Lett. 65, 223±228.

Barbara, D., Garcia-Molina, H., 1987. The reliability of voting

mechanisms. IEEE Trans. Comput. 36, 1197±1208.

Bernstein, P.A., Goodman, N., 1981. Concurrency control in

distributed database systems. ACM Computing Surveys 13, 185±

221.

Bernstein, P.A., Goodman, N., 1985. Serializability theory for repli-

cated databases. J. Comput. Syst. Sci. 31, 355±374.

Cheung, S.Y., Ahamad, M., Ammar, M.H., 1989. Optimizing vote and

quorum assignments for reading and writing replicated data. IEEE

Trans. Knowledge Data Eng. 1, 387±397.

Davidson, S.B., Garcia-Molina, H., Skeen, D., 1985. Consistency in

partitioned networks. ACM Computing Surveys 17, 341±370.

Garcia-Molina, H., Barbara, D., 1985. How to assign votes in a

distributed system. J. ACM 32, 841±860.

Gi�ord, D.K., 1979. Weighted voting for replicated data. In:

Proceedings of the Seventh Symposium on Operating System

Principles, pp. 150±162.

Spasojevic, M., Berman, P., 1994. Voting as the optimal pessimistic

scheme for managing replicated data. IEEE Trans. Parallel

Distributed Syst. 5, 64±73.

Tang, J., Natarajan, N., 1989. A static pessimistic scheme for handling

replicated databases. In: Proceedings of the ACM SIGMOD

Conference on Management of Data, pp. 389±398.

Tang, J., Natarajan, N., 1993. Obtaining coteries that optimizing the

availability of replicated databases. IEEE Trans. Knowledge Data

Eng. 5, 309±321.

Thomas, R.H., 1979. A majority consensus approach to concurrency

control for multiple copy databases. ACM Trans. Database Syst. 4,

180±209.

Tong, Z., Kain, R.Y., 1991. Vote assignments in weighted voting

mechanisms. IEEE Trans. Comput. 40, 664±667.

82 H.-K. Chang, S.-M. Yuan / The Journal of Systems and Software 53 (2000) 73±82

