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Design of Vocabulary-Independent Mandarin
Keyword Spotters

Chi-Min Liu, Chin-Chih Chiu, and Hung-Yuan Chang

Abstract—This paper considers the design of a vocabulary-independent
keyword spotter for Mandarin speech according to the framework by
Huang et al. [1]. This paper considers three varieties of filler model
structures for the framework based on subsyllabic grammar of Mandarin
speech. On the basis of the three structures, we infer the problems of this
framework through three arguments and presents two methods to modify
the spotting vehicle.

Index Terms—Keyword spotting, speech recognition.

I. INTRODUCTION

The objective of keyword spotters is to spot keywords embedded
in extraneous speech. Since keyword spotting techniques can provide
user-friendly interfaces for speech recognition systems, the research on
spotting techniques is receiving wide attentions in recent years [1]–[7].
Among these techniques, the hidden Markov modeling (HMM) is most
widely adopted. A keyword spotting system in general consists of two
processing modules: the keyword spotter and the keyword verification.
The keyword spotter spots the most likely words from an utterance
while the keyword verification verifies whether or not the spotted word
can be accepted. This paper considers the design of keyword spotters
based on the HMM modeling.

Designing suitable filler models to represent the extraneous speech
is the critical issue in keyword spotting techniques. After establishing
filler models, speech recognition techniques are then applied to deter-
mine the sequence of keyword and filler models that represent speech
utterances. Therefore the recognition technique and the design of filler
models are two fundamental topics for keyword spotting. The dimen-
sion of the above two topics depends strongly on the vocabulary size
of keywords and the allowable extraneous speech. This paper develops
keyword-spotting techniques based on the assumption that the contents
and size of keywords and extraneous speech are not limited. We test
various vocabulary size ranging from 500 to 25 000 and assume all the
Mandarin speech other than keywords are the extraneous speech.

Keyword spotters based on the speaker-independent Mandarin poly-
syllabic word recognition system [9], [10] are studied in this paper. This
Mandarin recognition system modeled polysyllabic words through sub-
syllabic units. Those units were trained from 74 speakers with ages
ranging from 20 to 40. The tree-trellis search algorithm [8], which
has been considered an efficient search algorithm for large vocabulary
Mandarin recognition, was applied to efficiently search for the most
probable word. Our previous experiments have demonstrated that the
time spent on searching slightly increased when vocabulary size grew
from 500 to 25 000. A framework as exhibited in Fig. 1 has been de-
veloped by Huanget al. [1] to extend tree-trellis efficient search al-
gorithm for keyword spotting. This framework models the extraneous
speech via the filler models positioned in the front and tail of keywords.
Since the phoneme units of a language can constitute the filler units,
that framework fulfills the assumption that all Mandarin speech other
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Fig. 1. Framework of the spotting system.

than keywords can be accounted to be extraneous speech. This paper
discusses the design of the spotting system based on the framework.

Section II presents three structures of fillers which are modeled
based on the subsyllabic grammar of Mandarin speech. On the basis
of the three filler structures, we infer the problems of this framework
through three arguments. The first argument challenges the precision
of the modeling units. The traditional concept that better precise
modeling units leads to better spotting rate is not always true from the
experiments on the framework in Fig. 1. The second argument sets
up the factor which degrades the merits of the modeling precision.
The third argument demonstrates the tradeoff between the degradation
and merits from the modeling precision. To avoid the degradation in
the second argument, we introduce an antitrust factor to improve the
performance in Section III. Furthermore, Section IV presents an inho-
mogeneous modeling method to keep a good balance for the tradeoff
in the third argument. The above two schemes are tested through
extensive experiments to demonstrate that the recognition system
based on the framework by Huanget al.can be enhanced individually
by 5.8%, 9.3%, and 8.7% for 500-, 5000-, and 25 000-words systems.
For comparing and setting up the design rule of filler modeling,
Section V gives concluding remarks.

II. M ANDARIN SPOTTING SYSTEMS

A. Baseline System

Mandarin speech is a syllabic language, where each character is
pronounced as a spoken syllable. Each word is composed of several
connected characters and is pronounced continuously through the
associated syllables. In the tree-trellis algorithm [2], all polysyllabic
words are arranged in a tree structure, where each arc is associated
with one syllable. The algorithm consists of two main processes:
the forward time-synchronous heuristic scoring and the backward
time-asynchronous A* searching. In the forward process, the Viterbi
decoding with looser grammar constraints was applied to prepare the
heuristic score for each node of the lexicon tree at each time instant.
The backward process utilized these heuristic scores to find theN -best
candidates sequentially along the lexicon tree.

Fig. 2 illustrates the network diagram of forward heuristic scoring
process, where the string length is chosen to be three syllables for il-
lustration. In Fig. 2, the filler network is located in front of the keyword
syllable network. All the keywords are sorted according to the syllable
sequences and the sequence are sorted with orders and put into dif-
ferent levels of the network. Fig. 3 illustrates the network diagram of
the backward A* process. Following the method in [1], the tree-trellis
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Fig. 2. Network of forward heuristic scoring process, where the syllable length is assumed to be three for illustration.

search algorithm can then be applied to achieve the efficient search for
keyword spotting.

B. Three Filler Structures and Experiments

We examine three filler structures according to the characteristic of
Mandarin speech mentioned in the previous section. The first structure
is a syllabic network where each filler model in Fig. 1 was a syllable.
Mandarin speech consists of 408 syllables; hence, 408 syllable models
have been adopted for the first filler model. The second one is an INI-
TIAL/FINAL (I/F) structure where each filler unit is either an INITIAL
or a FINAL. Each Mandarin syllable is composed of one INITIAL con-
catenated by one FINAL, where each INITIAL is uttered as consonants
and each FINAL consists of at least one vowel. These INITIAL’s and
FINAL’s are generally modeled and trained as either context-dependent
(CI) or right-context-independent (RCD) models. We have adopted 27
INITIAL models and 38 FINAL models for CI case, and 109 INITIAL
models and 38 FINAL models for RCD one. Among the 27 INITIAL’s,
six INITIAL’s are trained for those syllables without INITIAL’s. The
last filler structure is an INITIAL-FINAL (I- F)-constrained network
where each INITIAL must be sandwiched between two FINAL’s and
each FINAL is required to be parenthesized into two INITIAL’s as il-
lustrated in Fig. 4.

The baseline system was trained through the use of 7400 utterances
spoken by 74 male speakers with ages ranging from 20 to 40. Each
utterance was composed of one to several syllabic units. It implies that
the utterance could be a monosyllabic word, a polysyllabic word, a
phrase, or a sentence. The training method is the standard forward-
backward method usually used for hidden Markov models.

Testing data were collected from five male speakers. Each speaker
offered 200 different utterances containing a single keyword embedded
in extraneous speech. The extraneous speech has a syllable length
ranging from zero to five. The tested keywords contain 500, 5000, and
25 000 Chinese names, respectively.

Two types of HMM models, CI (context independent) and RCD
(right context dependent) ones mentioned above were employed in the
experiments. Each model contained five states, and each state contained
four mixtures. All speech data were sampled at 16 kHz and pre-empha-
sized using a first order filter with a coefficient of 0.95. The frame size
was 320 digitized samples that were windowed by a Hamming window
with shifted length 160 samples. Twelve cepstrum coefficients were
derived from a mel-frequency analysis with 18 filter banks. A feature
vector composed of the 12 cepstrum and 12 delta cepstrum was utilized
to represent the features of each frame.

Fig. 3. Network of backward Asearch process, where the syllable length is
assumed to be three for illustration.

Fig. 4. Network of the I–F-constrained filler models.

Table I shows the recognition rates for the three filler structures based
on either CI or RCD models. The TOP5 column shows the inclusion of
five best recognition results in counting the recognition rate.
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C. Remarks

From the experiments, we discovered the following phenomenon.
Argument 1: The traditional concepts that more precise modeling

units lead to higher recognition rate in speech recognition systems is
not always applicable to the framework in Fig. 1.

Considering I/F and I-F-constrained fillers for 500 word vocabulary
in Table I, we found that the fillers based on RCD model units do not
always offer better recognition rates than CI models. But both our pre-
vious experiments on the same HMM models for speaker independent
recognition system [9] and those in other researches [11] illustrated
that the recognition systems based on the RCD units provided higher
recognition rate than that based on the CI units.

Taking the modeling units and the structure of fillers into account
may offer a reasonable interpretation for this phenomenon. All of the
above three filler structures try to model all Mandarin speech as the ex-
traneous speech. In Mandarin speech, there are 27 INITIAL’s and 38
FINAL’s. But there are only 408 syllables instead of (27�38 = 1026)
ones. For fillers networks constituted by INITIAL/FINAL (I/F) struc-
ture and INITIAL–FINAL(I–F)-constrained structure, these networks
represent 1026 syllables instead of the 408 syllables in Mandarin. All
the paths of the network associated with the syllables other than the
408 syllables are the illegal paths. When we utilize RCD models under
I/F or I–F-constrained filler structure, those illegal acoustic paths will
reduce the spotting rate.

The advantage of the approach in Fig. 1 is that any Mandarin speech
can be modeled through the fillers and hence there is no need to have
the priori knowledge on the extraneous speech. However, these filler
structures have the following problem.

Argument 2: The fillers based on phoneme models provide too
many acoustic paths for extraneous speech such that the speech frames
are unsuitably segmented or trapped to fillers.

This mis-segmentation degrades the recognition rate of keywords
and may provide the reason why the I/F and I–F-constrained fillers
based on RCD’s have a worse performance. This mis-segmentation as
well indicates the following tradeoff.

Argument 3: There is a tradeoff between the modeling accuracy and
the acoustic paths that the fillers can provide.

RCD units model Mandarin speech through a larger number of units
than CI units. Meanwhile, the large number of model units also indi-
cates the larger acoustic paths or a higher possibility for mis-segmenta-
tion. However, this tradeoff also suggests that the recognition rate can
be improved if undesirable segmentation can be controlled.

To describe the effects of mis-segmentation, we concatenate the filler
models which represent the extraneous speech of each test utterance.
Then the testing is performed again to acquire the recognition rate. In
other word, the testing assumes that the extraneous speech is determi-
nate and well modeled. The results provide the optimum recognition
rate for the filler design in Fig. 1. The recognition results are displayed
in Table II. We could conclude by comparing Tables I and II that the
optimum system provides about 9%, 20%, and 22% improvement po-
tentials for 500-, 5000-, and 25 000-words systems respectively. These
numbers are utilized as the technical reference for developing new
techniques. The next two sections present two solutions to control the
mis-segmentation.

III. A NTITRUST FACTOR FORFILLERS

If the fillers span a large space for extraneous speech as mentioned
in Argument 2,the illegal acoustic paths should somehow be restricted
or reduced to improve the recognition rate. We introduce an antitrust
factor to reduce the trapping effects. To illustrate the method, we can
consider Viterbi search of the recognition system. LetF be the set of
filler, andF i denotes the set of filler sequences constructed by con-

TABLE I
RECOGNITION RATE (%) OF THREE FILLER

MODELS, WHERE Sy, IF, AND IFC DENOTE SYLLABIC , I/F, AND

I–F-CONSTRAINED FILLER MODELS

TABLE II
THE RECOGNITIONSYSTEM WITH KNOWN EXTRANEOUSSPEECH

catenatingi filler units fromF . The closure ofF , denotedF � is the
setF � � 1

i=0
F i. Given an utterance sequence (O1 � OT ) with

frame lengthT , the keyword spotter finds the most likely keyword by
the following rule:
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where
 is positive and is greater than 1. Since the density function
is mostly less than 1, the factor will reduce the weights of the two
likelihood functions P O
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factor
 can be easily included in Viterbi search of the A* algorithm
illustrated in Section II with little overhead. For implementation, the
logarithmic function has been always realized by memory look-up ta-
bles to speed up the computation time. In the situation, the logarithmic
function and the multiplication factor
 can be jointly implemented
by memory-look-up tables without overhead. Boulardet al. [6] have
incorporated a weighting factor for the transitions between filler
models and those between fillers and keywords. A garbage transition
penalty was introduced to inhibit the frames trapping from fillers
and give score compensation for keyword models. To compare with
the penalty method, we derive the associated joint probability. As
indicated in Fig. 1, the penalty method gives a penalty score� < 1 in
the transition between fillers. The joint probability is then
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wherei1 andi2 are the number of filler units associated with the path
s
t

1 and sTt +1. The probability in (5) can be computed through the
logarithmic form as follows:
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Comparing (6) and (4), we know that the penalty method avoids
the trapping effects through the bias related with the number
of filler units (i1 + i2 � 2) while the antitrust method adjusts
each probability through the multiplication term
. The trap-
ping effects come from the two probabilitiesP O

t

1 s
t

1 jF � and
P OT

t +1; s
T

t +1jF
� . Since the two joint probabilities are multi-

plication of the probabilities from individual observation frameOi,
i.e., P O

t

1 ; s
t

1 jF � = t

k=1
P (Okjsk; F

�)P (skjsk�1; F
�)

and P OT

t ; sTt jF � = T

k=t
P (Okjsk; F

�)P (skjsk�1; F
�).

The trapping effects relate with the two factors: the number of the
multiplication terms,t1 and(T � t2), and the two probability terms:
P (Okjsk; F
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Although the inclusion of the bias in (5) can ease the trapping effects,
the concept that a larger number of filler units leads to a higher
penalty is in general not true. It is known that a large number of
frames may correspond to just one filler unit (or phoneme unit)
due to different utterance manner. From the two probability terms
P (Okjsk; F

�)P (skjsk�1; F
�) andP (Okjsk; F
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the large number of frames implies the higher trapping effect. Although
we can increase the value of penalty factor� to cover the trapping, the
reliance on the number of utterance frames leads to value uncertainty
and some vehicles need to handle the problem. For comparison, the
formula (4) associated with antitrust method is rewritten as
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Obviously, the two methods are equivalent when
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That is, for every value of
, there will be a corresponding value of�
covering the trapping effects. The problem is the value determination
of factor�. For the antitrust method, the last term of (7) can naturally
consider the number of trapping frames through a factor
. Also from
(3), the method with the factor in exponents can give different pun-
ishing extent for different probability values. Since a higher likelihood
probability of a frame provides higher fidelity, the probability should
be punished less to reflect the fidelity that is the feature of the exponent
weights. Following the above discussion, the antitrust factor provides
an ease to control the trapping phenomenon with consideration to frame
length, probability fidelity, and simple complexity. Table III illustrates
the experimental results with various values of antitrust factor. We can
give the remarks for the experiment results as follows.

• All the results illustrate improvement over those in Table II,
which indirectly certificatesArgument 2.

• The experiments also demonstrate that the value of the antitrust
factor can not be increased without limit because a large value
of the factor violates the role of filler for modeling extraneous
speech. In other words, a large value leads to an over-segmenta-
tion of speech frames for keywords, which leads to recognition
degradation although can avoid the trapping effects from fillers.

• The value of the antitrust factor depends on the filler space and
keyword space. The factor can be suitably trained or tuned if the
extraneous speech and keyword of applications are determined.

• Comparing the performance of the fillers based on CI units with
that on RCD units, we found again that RCD fillers do not have a
better performance than the correspondent CI fillers under I-F-
constrained and I/F filler structures, which also hints that the
tradeoff mentioned inArgument 3has not been excluded through
the antitrust factor.

• The TOP 5 inclusion rate in Table III is greater than the TOP 1
inclusion rate in Table II, which indicates that the method has
also greatly enhanced the potential of the system. Next section
will further improve the system based on the technique.

IV. I NHOMOGENEOUSMODELING UNITS FOR KEYWORDS AND

FILLERS

The antitrust factor is considered fromArgument 2and has been
proved to have improved the recognition rate of the baseline system.
As mentioned inArgument 3, there is a tradeoff between the modeling
accuracy and the acoustic paths the fillers can provide. We can specu-
late that the tradeoff comes from the need for the modeling accuracy of
keyword and the extraordinarily large paths of fillers. To give a good
balance between the two factors, this section considers an inhomoge-
neous modeling method, which modeled keywords through RCD units
and fillers through the CI units.

Table IV illustrates the experiment results combining the inhomoge-
neous method and the antitrust factor. The experiment results are sum-
marized as follows:

• By combining the inhomogeneous modeling units with the an-
titrust factors, we can enhance the recognition rate by 3%–9%
depending on the vocabulary size. The results also illustrate that
the inhomogeneous modeling unit can control well the tradeoff
mentioned inArgument 3.
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TABLE III
RECOGNITION RATE (%) OF THE THREE FILLER MODELS WITH VARIOUS

VALUES OF ANTITRUST FACTOR 


• The noticeable condition is that the INITIAL–FINAL-con-
strained (IFC) fillers can achieve better performance than the
syllabic fillers. Since the number of modeling units for the
syllabic fillers is much larger than the IFC ones, the complexity
of the search will be lower for IFC than that for syllabic units.
Hence this condition will emphasize the merits of the IFC fillers.

• There is more than 5% rate difference between the TOP 1 rate
and the TOP 5 rate, which indicates that there is still large space
for finding the better methods.

V. CONCLUDING REMARKS

This paper has considered the design of vocabulary-independent
keyword spotters for Mandarin speech. We established keyword
spotting systems based on the framework in Fig. 1. The framework
can model all speech other than the keywords as extraneous speech
and well integrated with the tree-trellis search algorithm to achieve
efficient search in large vocabulary systems. We have designed
three filler structures for the framework, named syllabic fillers, I/F
(INITIAL/FINAL) fillers, and I–F-constrained fillers. Also, the three
structures can be constructed either by the context-dependent units or
the context-independent ones. Section II has shown the performance
of the three fillers. The results lead to three important arguments,
which motivates the study in Sections III–V of the paper. For reducing
the filler space mentioned inArgument 2, Section III has presented
an antitrust factor to control the space. To achieve a good tradeoff
in modeling accuracy and filler space mentioned inArgument 3,
Section IV shows an inhomogeneous modeling method. From Tables I

TABLE IV
RECOGNITIONRATE (%) OF SPOTTINGSYSTEMS, WHERE CI UNITS ARE USED

TO MODEL FILLERS WHILE RCD UNITS TO KEYWORDS

and IV, the inhomogeneous model jointed with antitrust factor can
improve the original system by 5.8%, 9.3%, and 8.7% individually
for 500-, 5000-, and 25 000-words systems. Also, if we compare the
results between Tables II and IV, there is still large gap between the
presented methods and the ideal spotters, which indicates that there is
still large space for finding the better methods.
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