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Nature of the 45° vortex lattice reorientation in tetragonal superconductors
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The transformation of the vortex lattice in a tetragonal superconductor which consists of the 45° reorienta-
tion relative to the crystal axes is studied using the nonlocal London model. It is shown that the reorientation
occurs as two successive second order~continuous! phase transitions. The transition magnetic fields are cal-
culated for a range of parameters relevant for borocarbide superconductors in which the reorientation has been
observed.
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Properties of the vortex matter have recently attrac
great attention due to the diversity of phases and phenom
associated with them. One of the main research goals is
determination of the phase diagram. In high-temperature
perconductors the vortex matter phases include the vo
liquid and various vortex solids which exist due to the co
petition of intervortex interactions with fluctuations bo
thermal and those due to the quenched disorder.1 On the
other hand, in borocarbide superconductors a rich variet
quite perfect vortex crystals has been observed. The exp
mental information comes from such different measureme
as neutron diffraction, decoration, and scanning tunne
microscopy.2–4 For these near isotropic materials the entro
contribution to the free energy is small and phase transiti
in the vortex lattice are governed by competition betwe
intervortex interactions of different symmetry.

The borocarbides are materials of the tetragonal sym
try. Interactions of this symmetry should exist for any phy
cal subsystem of the crystal. In particular, in the mixed st
with the field along the fourfold tetragonal axis they wou
favor a square vortex lattice. However, the standard magn
repulsion of vortices is isotropic in this case. The isotro
interaction becomes dominant when the intervortex dista
is large enough and a sparse lattice is close to hexagona
most closely packed two-dimensional lattice. One, therefo
expects that the interplay of the interactions of different sy
metries may result in structural transformations of the vor
lattices, observed in borocarbides.

For the applied magnetic field along the fourfold symm
try axis, these transformations are as follows. With decre
ing magnetic field, the lattice undergoes a second or
phase transition, at which the square structure loses stab
and becomes a rhombic~distorted hexagonal! vortex
lattice.3,4 As the field further decreases, the rhombic latt
changes the orientation relative to underlying crystal by 4
PRB 620163-1829/2000/62~1!/111~4!/$15.00
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which has been classified as the first order transition.5,2,6 For
the field along the twofold axis, the 90° reorientation h
been reported.7

In this paper we study in detail the 45° reorientation a
clarify its nature. We show that this reorientation proceeds
two successive second order~continuous! transitions and not
as an abrupt first order transition, the scenario assumed
fore. Instead of considering a limited class of rhomb
lattices,6 we study the general class of arbitrary lattices. W
find that in the field region between the two second or
phase transitions, the lattice with the lowest possible sym
try is realized~with the inversion being the only symmetr
element!. This intermediate region is quite narrow and t
structural evolution in this field domain might be difficult t
discern experimentally. However, the thermodynamic ch
acteristics of the superconductor are different for the t
scenarios, and this can be tested. In particular, no latent
is expected during the lattice reorientation. We also predi
peak in the critical current in the transition region if th
pinning is of a weak collective type. Below we describe t
London model with nonlocal corrections relevant for t
mixed state of borocarbides. Then, the numerical proced
is outlined and the results are presented

A fruitful approach to the problem of the vortex lattic
phases is the extended London model. We start here
London equations corrected for nonlocality8,6

4p

c
j i~k!52

1

l2
qi j ~k!aj (k)

52
1

l2
~mi j

212l2ni j lmklkm!aj~k!. ~1!

Here aj5Aj1(F0/2p)] ju, Aj is the vector potential,u is
the order parameter phase, andF0 is the flux quantum. The
111 ©2000 The American Physical Society
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nonlocal response kernelqi j (k) is expanded up to the secon
order terms in the wave vectork. The tensor ni j lm
}^v iv jv lvm&g(T,l ) where v is the Fermi velocity and the
function g decreases somewhat with temperature and dr
fast for short mean-free pathsl.9 It is difficult to accurately
estimate the components ofn̂ because of uncertainties i
determination of Fermi velocities and, in particular, of t
mean-free path. At low temperatures,n̂;g/k2, wherek is
the Ginzburg-Landau parameter. Since good crystals of
rocarbides are clean materials withk510–15, one expects
the components ofn̂ to be of the order 1022. Note also that
for the problem of vortex lattices in fields well under th
upper critical field, the correctionl2n̂k2;j0

2k2!1 (j0 is the
zero-T coherence length!. Therefore, for strong type-II su
perconductors, the corrections to the standard London e
tions and the truncation in expansion~1! are well justified.

For the tetragonal symmetry, the tensorn̂ in the crystal
frame has four independent componentsnxxxx, nxxyy, nzzzz,
andnxxzz. The inverse mass tensor has two different com
nentsmxx

215myy
21 and mzz

21 . The London free energy func
tional corresponding to Eq.~1! reads

F5
1

8pE dk

4p2
~ uhu22l2e i jke lmnkjkmqlk

21hnhi !, ~2!

whereh(k) is the magnetic field ande i jk is the unit antisym-
metric tensor. The nonlocal corrections preserve linearity
the London equations and do not change the standard
don result that the interaction of two vortices is proportion
to the field of one of them at the location of the other.9 As
usual, the free energy density of a vortex lattice is given
F5(B2/8pF0)(ghz(g) whereB is the magnetic induction,g
is a vector of the reciprocal lattice, andhz is the component
of the single vortex field along the vortex axes. We are
terested in the field along the fourfold symmetry axisz. Solv-
ing Eq. ~1! for a single vortex one can bring the free ener
density to the form6

F5(
g

B2/8p

11l2g21l4~n g41d gx
2gy

2!
, ~3!

wheren5nxxyy and d52(nxxxx23nxxyy). The free energy
F(B,T) is the thermodynamic potential, which is minimu
in equilibrium of a superconducting slab in a perpendicu
applied field. The temperature entersF(B,T) via T depen-
dent parametersl(T), n(T), andd(T) that can, in principle,
be calculated using a microscopic model. Note that bes
the factorB2, the induction enters via the area of the prim
tive lattice cell. We determine the stable lattice by numeri
minimization of F(B,T;g) with respect to the lattice struc
ture specified by a given set ofg’s.

The vortex lattice is completely defined by the basis v
tors a1 and a2, i.e., by four parameters. Since a unit ce
accommodates one flux quantum,a1a2sinb5F0 /B, three
parameters suffice. Following Ref. 10 we choosea, r
[(a2 /a1)cosb, and s[(a2 /a1)sinb as the needed thre
~see Fig. 1 for definitions ofa andb). The parametersr and
s are convenient because one can select a domain of
variation, each point of which corresponds to a lattice w
ps
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various equivalent choices of the basis vectorsa1,2. Thus,
the minimization ofF is done at fixedB, n, and d with
respect tor, s, and a for 0,a,p, 0<r<0.5, andr2

1s2>1.10 The minima ofF are often located on the bound
aries of this domain; we use the ‘‘Amoeba’’ numerical ro
tine convenient in such circumstances.11 The cutoff factor
exp(2j2g2) was introduced inside the sum~3! to properly
account for the failure of the London model in the vort
core. Changing parametersB and n,d we obtain the phase
diagram.

The main finding of this work is that the reorientation
the lattice proceeds as two steps. Figure 2 shows the tra
tion lines on theB,d plane for a fixedn50.015. The equi-
librium lattices both before and after the reorientation ha
the rhombic symmetryD2h .12 Their symmetry axes, which
coincide with the diagonals of a rhombic unit cell~with the
appropriate choice of such a cell, see Fig. 2!, are aligned with

@110# and@11̄0# at lower magnetic inductions, whereas th
symmetry axes are at@100# and @01̄0# for higherB’s. This
result is in accordance with data for YNi2B2C.5 In a narrow
region between the two rhombic phases, a less symme
lattice is stable. Here, the unit cell is a general parallelogra
All in-plane symmetry elements disappear except the inv
sion, and the symmetry group reduces toC2h .

FIG. 1. General vortex lattice and its orientation relative to t
crystal.

FIG. 2. Phase diagram of the vortex lattice in the region of
reorientation forn50.015. Nonlocal parametersn andd are defined
in the text. The magnetic inductionb is in units ofF0/2pl2.
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One could describe the reorientation process as a gra
rotation of the unit cell accompanied by a slight deformatio
Figure 3 shows how the anglesa and b change whenB
increases in the vicinity of the reorientation~for d50.05 and
n50.015). The transitions atB'3.18F0 /(2pl)2 and B
'3.27F0 /(2pl)2 are seen clearly. The anglesa, b, and
the other lattice parameters are continuous at the two tra
tion fields. We conclude that both phase transitions that
cur during the reorientation are of the second order. T
sequence of symmetry changes with the field decreasin
D2h→C2h→D2h . While at the first step of the reorientatio
the symmetry becomes lower, at the second step the sym

FIG. 3. Evolution of anglesa and b ~defined in Fig. 1! with
field b52pl2B/F0 during reorientation.
al
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try increases. Correspondingly, the ground state is dou
degenerate in bothD2h phases; the degenerate vacua~two
equilibrium structures of the same energy! are related by
rotations over 90°. The structure becomes four times deg
erate in the intermediateC2h phase~rotations over645° and
90°). Practically, this may lead to apparently increased d
order in theC2h phase.

It is worth noting that the relative energy differences b
tween the equilibriumC2h lattice and the rhombic ones i
exceedingly small. As an example, we provide this figure
d50.05 andn50.015: the relative difference between ene
gies of the rhombic lattice at the transition point and t
lattice in the middle of the field domain ofC2h structure is of
the order 1027. This is much smaller than 1022 for the rela-
tive energy differences usually cited for triangular and squ
lattices within the standard London or Ginzburg-Land
models.

The location of the phase transition lines is sensitive
bothn @the isotropic correction in Eq.~3!# andd ~the fourfold
symmetric correction!. Figure 4 shows the phase diagram
the vortex lattice onB,d andB,n planes in the region of the
reorientation process. The region of stability of the mon
clinic lattice is broader for smallern’s and largerd’s. Still,
as is seen at Fig. 4, this field region is narrow for values on
and d adopted in our simulations. For example, f
LuNi2B2C with l'710 Å , the field unitF0 /(2pl)2 is
about 100 G.

The new scenario of the lattice reorientation in a tetra
nal superconductor which is found this paper has impli
n
FIG. 4. Phase diagram of the reorientatio
transformation~a! in then,b plane for a set ofd’s
indicated and~b! in thed,b plane for a set ofn’s
indicated.
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tions for thermodynamic characteristics of the vortex latt
and its dynamic behavior. We have found, and this is
main result, that the reorientation proceeds as two succes
phase transitions of the second order when the applied
or temperature vary. Therefore, continuous variation of
entropy~i.e., no latent heat! and of the reversible magnetiza
tion are expected during reorientation. In contrast, the
scenario of the first order transition implied discontinuo
jumps of the above quantities.

As is seen at Fig. 4, for small values ofn and d, the
domain of monoclinic phase shrinks. Then, it would be d
ficult to distinguish experimentally this situation from fir
order transition, because the entropy would change fast
B during the reorientation~for the B sweep at a fixedT).
Still, one should not observe hysteresis, characteristic of
first order transitions. If the sequence of transitions we s
gest here is found, it would be of interest to suppressn andd
by making the mean-free path shorter and to see how
transition evolves@as has been done with doping Lu-bas
borocarbide crystals with Co~Refs. 13 and 14!#.

Both the upper and lower phase transitions (D2h↔C2h)
of the reorientation process cause uniform spontaneous
formations of the vortex lattice. As a result, a particular co
re
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bination of the elastic lattice moduli vanishes at the tran
tions. It has been recently shown that a change of ela
properties of this type leads generally to peculiarities in
critical current, provided a weak collective pinning opera
in the material.15 Therefore, the reorientation of the vorte
lattice in borocarbides may lead to a peak in the criti
current.

Finally, we would like to point to other possible applica
tions of our results. The London model we employed refle
properly the symmetry of the system. It was originally d
rived for an anisotropic Fermi surface and isotropic sup
conducting pairing.8 However, thed-wave type of pairing
also leads to a similar effective London model16 ~for not very
low temperature where the effects of the order param
nodes become essential!. The reorientation of the vortex lat
tice has indeed been found theoretically, and characterize
the first order transition.17 It would be of interest to check
whether or not our scenario of the reorientation applies
this case as well.
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