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AbstractÐThis paper presents a design methodology for high-speed Booth encoded parallel multiplier. For partial product generation,

we propose a new modified Booth encoding (MBE) scheme to improve the performance of traditional MBE schemes. For final addition,

a new algorithm is developed to construct multiple-level conditional-sum adder (MLCSMA). The proposed algorithm can optimize final

adder according to the given cell properties and input delay profile. Compared with a binary tree-based conditional-sum adder, the

speed performance improvement is up to 25 percent. On average, the design developed herein reduces the total delay by 8 percent for

parallel multiplier. The whole design has been verified by gate level simulation.

Index TermsÐFinal adder, Booth encoding, multiple-level conditional-sum adder, and parallel multiplier.
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1 INTRODUCTION

IN various computing and signal processing applications,
parallel multiplier has been a basic building block for

many algorithms. Many high performance algorithms and
architectures have been proposed to accelerate multiplica-
tion. Multiplication can be divided into three steps:
generating partial products, summing up all partial
products until only two rows remain, and adding the
remaining two rows of partial products by using a carry
propagation adder.

In the first step, two methods are commonly used to
generate partial products. The first method generates partial
product directly by using a 2-input AND gate. The second
one uses radix-4 modified Booth encoding (MBE) to generate
partial products [1], [2]. Radix-4 MBE has been widely used
in parallel multipliers to reduce the number of partial
products by a factor of two. In [3], [4], the speed
performance of using radix-4 MBE was denied. However,
it is found herein that these results depend on the
implementation of MBE scheme.

After generating partial products, a partial product
reduction tree (PPRT) is used to sum up all the partial
products efficiently. The Wallace tree and Carry-save tree
were developed to solve this problem [5], [6]. Both
approaches employ 3:2 counter, i.e., full adder, as their
basic element. Generally, a counter compresses (n-1) rows
of partial products into log2�n� rows of partial products.
However, the delay of an �nÿ 1� : log2�n� counter is still
proportional to �log2�n� ÿ 1� times of a full adder (FA) as the
inputs are assumed to arrive simultaneously. Therefore,
using larger counters to build PPRT is not beneficial. The
introduction of 4:2 compressor was a departure from the
counter-based scheme [7], [8], [9]. As the delay paths are
well balanced, the latency for a 4:2 compressor is only three

XOR delays, rather than two full adder delays. Note that the
difference between the compressor and the traditional
balanced delay tree [10], [11] is that the compressor
considers the fast path and the slow path of a full adder.
To further speed up, a search algorithm, Three-Dimen-
sional-reduction-Method (TDM) [12], [13], was proposed.
The TDM algorithm finds optimal PPRT by carefully
modeling the delay paths of a counter and constructing
n:2 column compressor according to inputs arrival time.
Owing to the effectiveness of the column compressor, the
PPRT constructed by using TDM algorithm outperforms the
conventional designs. However, few studies have been
done on using TDM with MBE. This paper examines the
performance of parallel multiplier constructed with TDM
and MBE. According to our results, such a design can be
faster and occupy a smaller area than a non-Booth design.

To generate the product in 2's complement format, a fast
carry-propagation adder is required to add the final two
rows of partial products from the PPRT. The problem of
designing a final adder is that the input signals do not arrive
simultaneously, unlike the ordinary carry-propagation
adder design that assumes all the inputs arrive simulta-
neously. Several techniques have been developed to
eliminate or reduce the final adder delay [14], [15], [16].
The Left-to-Right-Carry-Free algorithm proposed in [14]
requires n-level conversions to generate n-bit MSB pro-
ducts. It was improved in [15] by reducing the levels
required. However, this approach still cannot fully exploit
the unequal delay profile because it applies to the MSB-part
only. In [16], a hybrid adder structure, which consists of
ripple-carry adder, carry-skip adder, and conditional-sum
adder blocks, was proposed. However, their empirical
methodology is not general enough and requires many
trials to determine the final adder partition boundary for
different sizes of multiplier, thus increasing design effort.

In this paper, we will propose a design methodology for
high-speed Booth encoded parallel multiplier. The rest of
this paper is organized as follows: Section 3 presents a new
modified-Booth encoding scheme for efficiently generating
partial products. When radix-4 MBE is used with TDM

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 7, JULY 2000

. The authors are with the Department of Electronics Engineering and the
Institute of Electronics, National Chiao Tung University, Hsinchu,
Taiwan, ROC. E-mail: wcyeh@twins.ee.nctu.edu.tw.

Manuscript received 1 Sept. 1999; revised 1 Feb. 2000; accepted 10 Mar. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111790.

0018-9340/00/$10.00 ß 2000 IEEE



algorithm, we found that the traditional MBE schemes are

either slow or area inefficient. We solve this problem by

using a new MBE recoder and an improved partial product

array. Compared with the fastest MBE design, the scheme

proposed performs equally fast, but requires smaller area.

The proposed modified Booth recoder has a latency of two

XOR delays and the Booth decoder consists of 18 transistors.

The derived new MBE partial product array improves the

speed performance at the LSB part. By combining both

approaches, it was found that radix-4 MBE design outper-

forms conventional non-Booth designs.
Section 4 proposes an algorithm which constructs final

adder efficiently. The proposed algorithm can build

multiple-level conditional-sum adder for any word-length

in linear time. This algorithm is based on the observation

that the delay profile of the inputs for final adder changes

gradually. Previous methods divide the final adder into two

parts [15] or three parts [16]. Instead of such a rough

partition, we optimize the final adder incrementally from

LSB to MSB. Conditional-carry adder [25] and conditional-

sum adder are used as our basic building elements and the

final adder is optimized bit by bit. Compared with tree-

based conditional-sum adder, the developed final adder

offers speed improvement up to 25 percent. On the average,

the speed improvement is 8 percent for a parallel multiplier.

To verify our design, Synopsys tools are employed which

consider buffer delay, capacitance loading, and driving

capability. Section 5 provides gate-level simulation of our

design. The simulation results closely match the estimation

from our algorithm.

2 NORMALIZED GATE DELAY MODEL

Throughout this paper, we will use normalized gate delay
model to analyze circuit performance. As in [12], [13], the
delay of a 2-input XOR gate is considered as one unit delay
to simplify the analysis. The delays of the other CMOS logic
gates in [17] are normalized with respect to the unit delay.
Table 1 summarizes the information for the logic gates used
in this work. By using the cells from [17], three different full
adders: Type_I, Type_II, and Type_III are available. Table 2
summarizes their characteristics. For the first row, the
symbols ªA,º ªB,º and ªCº denote the inputs of a full adder.
The symbol ªSº denotes the sum signal and ªCOº denotes
the carry out signal. The propagation delays from inputs to
outputs are summarized as shown in Table 2.

3 NEW RADIX-4 MODIFIED BOOTH ENCODING

SCHEME

3.1 New MBE Recoder

Three different MBE recoders, based on CMOS logic, are
evaluated here for their distinct unique features. Note that
these recoders can be realized by using pass-transistor logic
or other logic styles.

The first one, denoted as MBE_I in Table 3, was
presented in [18]. It uses only 10 transistors, making it the
smallest one of all the static logic designs. However, the
latency of this design is approximately three unit delays
and the recoder may suffer similar power efficiency
problem as the standard Booth recoder[20].

Fig. 1 shows the decoders of the next two MBE recoders.
The decoder illustrated in Fig. 1a was used in [19]. This
scheme is denoted as MBE_II in Table 3. Since the ªX2º
signal arrives at t = 1.5 unit delays, the total latency of this
design is 3.5 unit delays. If the 2-input XNOR gate can be
implemented using two transmission gates and two
inverters, and if the two 2-input AND gates and the 2-input
NOR gate are combined into one complex gate, then the
transistor count of this decoder is 16. Fig. 1b shows the third
design from [20] and this scheme is denoted as MBE_III in
Table 3. Because ªX1,º ªX2P,º and ªZPº arrive at t = 1.0 unit
delay, the total latency is reduced to two unit delays.
However, the area of the decoder increases to 24 transistors
for full CMOS implementation. As in the discussion of
MBE_II, it is possible to implement the decoder of MBE_III
scheme with 20 transistors.

The new MBE recoder was designed according to the
above analysis. Table 4 presents the truth table of the new
encoding scheme. The ªZº signal makes the output zero to
compensate the incorrect ªX2_bº and ªNegº signals. Fig. 2
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presents the new MBE scheme. In Fig. 2, the encoder and
the decoder receive 3-bit x inputs and n-bit y inputs,
respectively. Fig. 3 presents the circuit diagram of the
encoder and decoder. The encoder generates ªX1_b,º
ªX2_b,º and ªZº signals by encoding the three x-signals.
The yLSB signal is the LSB of the y signal and is combined
with x-signals to determine the Row_LSB and the Neg_cin
signals. Similarly, yMSB is combined with x-signals to
determine the sign extension signals. For simplicity, we
omitted the Row_LSB, Neg_cin, and sign extension circuitry
in Fig. 3. Fig. 4 shows an overview of the partial product
array. From Fig. 2 and Fig. 3, it is easy to verify that the
delay for any path is equivalent to two unit delays only. The
new recoder has the same speed performance as MBE_III,
but uses only 18 transistors for the decoder. Furthermore, if
we can provide Neg and yj, then the XOR gate can be
replaced with only two transmission gates. Thus, the
decoder would use only 14 transistors. However, since the
cell library used here does not provide transmission gates,
we still use the decoder shown in Fig. 3a.

3.2 Area Analysis

The transistor count of the decoder is very important for the
overall area of a parallel multiplier. To analyze the area cost,
we can compare the transistor count for each scheme. At
first, a non-Booth n� n multiplier will require approxi-
mately n2 FAs and n2 2-input AND gates (for partial
product generation), while a radix-4 MBE will require

approximately n2

2 FAs and n2

2 decoders. An FA with fast
carry output property can be realized by 24 transistors [21].
Because the area complexity of encoder and sign-extension
circuitry is only of order n, they are neglected here for
simplicity. Hence, the PPRT area ratio between non-Booth
and radix-4 MBE can be written as:

Area ratio � AFA � n2 �AAND � n2

AFA � n2

2 �ADECODER � n2

2

� 30

12� ADECODER

2

:

�1�

The area ratio is calculated by using the transistor count
for each decoder listed in Table 3. The area ratio ranges
from 1.36 to 1.76. MBE_I is the most area efficient design
because the decoder is shared for successive two bits and
the decoder uses transmission-gate logic. Compared with
non-Booth design, MBE scheme saves area significantly in
terms of transistor count. The new scheme presented here is
the fastest design with good area performance. If other logic
families are available, the area performance will be better,
as done in [18]. Note that (1) should not be applied without
including the O(n) terms for small word length multipliers.
Also, it is possible to generate partial product using 2-input
NAND gate instead of using 2-input AND gate for the non-
Booth design.

3.3 Modified Partial Product Array

Fig. 4a illustrates the conventional MBE partial product
array for an 8� 8 multiplier. We use the sign extension
circuitry developed in [22] and [23]. The conventional MBE
partial product array has two drawbacks: 1) an additional
partial product term at the (n-2)th bit position; 2) poor
performance at the LSB-part compared with the non-Booth
design when using the TDM algorithm. To remedy the two
drawbacks, the LSB part of the partial product array is
modified. Referring to Fig. 4a, the Row_LSB (gray circle)
and the Neg_cin terms are combined and further simplified
using Boolean minimization. The new equations for the
Row_LSB and Neg_cin can be written as (2) and (3),
respectively.

Row LSBi � yLSB � �x2iÿ1 � x2i� �2�

Neg cini � x2i�1 � x2iÿ1 � x2i � x2iÿ1 � yLSB � x2i � yLSB: �3�
Referring to Table 1, we can see that the delay for either
equation is within two unit delays. Note that x2iÿ1 is zero
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TABLE 3
Comparison of Partial Product Generation

Fig. 1. The decoder from (a) MBE_II; (b) MBE_III.

TABLE 4
Truth Table of New MBE Scheme



for the first row. Fig. 4b shows the new partial product
array. The additional partial product term is now moved to
(n-1)th bit position, and the LSB-part array becomes more
regular. Note that this optimization does not incur any
overheads.

3.4 Effects of Using the New MBE Scheme

To examine the effects of applying the new MBE scheme,
the delay profiles for each design are compared. The non-
Booth delay profile used here is from [13]. The MBE delay
profiles are generated by applying the TDM algorithm. For
a fair comparison, only Type_III FA is used in the TDM
program. However, similar results can be obtained for the
other types of FA. Note that the partial product generation
delay is included in the figures. The latency of partial
product generation is 0.5 unit delays for non-Booth design
and two unit delays for MBE design. The comparison
between the conventional array and our modified array is
shown in Fig. 5. For 32� 32 and 48� 48 parallel multipliers,
most of the outputs arrive at the same time. However, at the

bit positions: 0, 2, 5, 14, 25, 42, 43, 54, and 55, the modified

array performs better than the conventional array. In Fig. 6,

the new MBE scheme is 0.5 unit delays faster than the non-

Booth scheme at almost every bit position. At bit positions

from 0 to 5, our scheme is slower, but this will not reduce

the overall performance at all. Obviously, the proposed

MBE scheme is superior to the non-Booth design and

conventional MBE schemes.

4 MLCSMA ALGORITHM

This section introduces the properties of the conditional-

sum adder (CSMA) and the conditional-carry adder (CCA).

CSMA and CCA are then used to construct the novel

multiple-level conditional-sum adder (MLCSMA). The

performance evaluation is given in the last subsection.
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Fig. 2. The structure of the new MBE scheme.

Fig. 3. The Encoder and Decoder for the new MBE scheme. (a) 18-

transistor decoder. (b) Simple encoder.

Fig. 4. 8� 8 MBE partial product array. (a) Traditional MBE partial

product array. (b) New MBE partial product array.



4.1 Hybrid Structure Using CCA and CSMA

The previous designs in [14], [15], [16] partition the final
adder into two or three blocks. Since the delay profile
generated by the TDM algorithm changes gradually, these
partition methods do not fully exploit the delay profile. The
method presented herein is developed to optimize the final
adder bit by bit. CSMA is chosen as the basic building block
because the performance of a tree-based CSMA is compar-
able to that of a carry-lookahead adder. Moreover, the
structure of a tree-based CSMA is very regular. The
conventional CSMA [24] completes n-bit addition within
�dlog2�n�e � 1� � tMUX. Conditional-carry adder (CCA) was
proposed to save area [25] and its delay is about
�dlog2�n�e � 1:5� � tMUX. Therefore, we use a hybrid struc-
ture as shown in Fig. 7. Note that in Figs. 7, 8, and 9, the
blocks with gray are actually composed of two gates. For
example, there are two 2-input multiplexers in a ªmuxº
block with gray. In Fig. 7, CCA structure is used to save area
for the first four bits. For the last block, from bits 4 to 7,
CSMA structure is used to retain speed. The hybrid
structure has the same latency as CSMA and saves area
for those blocks using CCA. The hybrid adder shown in
Fig. 7 was designed for equal delay input profile. However,
as we will show in the following subsections, the new
algorithm can be applied to any input delay profile.

4.2 Fundamentals of the MLCSMA Algorithm

The algorithm initially receives the outputs with the arrival

timing information from PPRT and then processes the

inputs from LSB to MSB. Let n denote the bit position index

and cn denote the carry signal for the nth bit. To construct

CCA or CSMA, all the r terms, g terms, and p terms must

first be generated from the inputs. The equations for the r, g,

and p are:

rn � an � bn �4�

gn � an � bn �5�

pn � an � bn: �6�
The symbols ª�,º ª�,º and ª�º are ªor,º ªand,º and

ªexclusive-orº Boolean operations, respectively. The design

presented here uses 2-input NOR gate and 2-input NAND

gate to generate rn and gn, respectively, to reduce delay.

They are then corrected by using inverted MUX (MUXI_2 in

Table 1) gates. The higher levels of r term and g term are

generated by using the following equations:

ri;n � riÿ1;n � rj;m � riÿ1;n � gj;m �7�
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Fig. 5. PPRT delay profiles of the conventional array and the modified

array.

Fig. 6. PPRT delay profiles of non-Booth scheme and new MBE

scheme.

Fig. 7. 8� 8 hybrid structure adder.



gi;n � giÿ1;n � rj;m � giÿ1;n � gj;m: �8�
For the subscript index of r and g, the first index denotes the

level and the second index denotes the bit position. rÿ1;n

and gÿ1;n are defined as rn and gn, respectively. Note that

the values of ªjº and ªmº are determined by the previous

level. To generate carry and sum, the following equations

are used:

cn�1 � cn � rn � cn � gn �9�

sn � cn � pn: �10�

Observation 1. By recursively decomposing (9) and

representing carry signal by r, g, and ck, where the k �
2i and i � 0; 1; . . . ; blog2�n�c, we can find the same

equations that generate carry signals for CSMA or

CCA. However, k does not have to be 2i. In other words,

we can generate arbitrary carry or sum signal by the

selected carry signals and intermediate r and g terms.

Observation 2. For CSMA, pn is combined with rnÿ1 and

gnÿ1 using two XOR gates at the beginning of addition.

For CCA, pn is combined with cn using one XOR gate to

generate the sum at the last step.

The two observations can be deduced from the two basic
properties, associative and noncommute properties, of the
multiplexing operation used in (7)-(9). For example, to
generate c10, c8 (k = 8) is combined with the intermediate
r and g terms, r8, g8, r9, and g9, as in the tree-based CSMA or
CCA. Alternatively, c10 can be generated by combining c7

with r0;8, g0;8, r9, and g9, where the r0;8 and g0;8 are generated
by combining the r7, g7, r8, and g8 first. Note that, when
applying associative property to combine the multiplexing
operations, one should not violate the noncommute prop-
erty. For example, ri;n and gi;n will be incorrect if (riÿ1;n,
giÿ1;n) and (rj;m, gj;m) are exchanged in (7) and (8). Based on
the above two observations and using the equations from
(4) to (10), we developed our MLCSMA algorithm. Its
pseudocode is listed in the next subsection. For the last
block, CSMA block is used to obtain the optimal perfor-
mance. For the other blocks, the sum signals and carry
signals are generated by using CCA structure to save area.
As we will show in this subsection, the partition of final
adder is determined by the delay profile and cell properties.

To illustrate the MLCSMA algorithm, we can examine a
typical example, shown in Fig. 8, first. The carry signal c26

arrives at t = 10 and the inputs a26, a27, b26, and b27 arrive at
t = 7.5. Because the timing difference is sufficiently large to
span another level of CCA, the program constructs a 2-bit
CCA section and generates r0;27 and g0;27 by using (7) and
(8). Similarly, 2-bit CCA sections are constructed for the
successive 6 bits. However, since the timing difference of
r0;31 and r0;33 is smaller than one unit delay, both the level
spanned at n = 31 and the level spanned at n = 33 are
terminated and combined to form r1;33 and g1;33 by using (7)
and (8). By repeating these steps, c33 is produced at t = 11.
The sum signals from n = 26 to n = 33 are generated by
using the method described in [25]. In this example, the
algorithm spans four levels and completes an 8-bit block
with one unit delay.

The algorithm can also handle LSB part easily. Two
examples are shown in Fig. 9. In Fig. 9a, because an and cn
arrive at the same time, an FA is fast enough to generate
cn�1. In Fig. 9b, a typical case for the LSB part is shown. It
takes two unit delays to complete 8-bit addition.

From the above examples and discussion, we can see that
the algorithm can handle any delay profile easily. Because
CSMA is used at the last block, the area of a MLCSMA is
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Fig. 8. An example of carry generation for MSB part. An 8-bit block is

completed in one unit delay.

Fig. 9. Examples for LSB part: (a) Ripple carry adder is fast enough; (b) typical case for the LSB-part. Two 4-bit blocks are completed in two unit

delays.



always between CSMA and CCA. Moreover, the delay will

be smaller than the delay of a CSMA due to the multiple-

level configuration and less capacitance loading along the

carry propagation path. Most importantly, this algorithm is

technology independent and solves the final adder problem

in linear time. Thus, the algorithm can be applied to any

delay profile.

4.3 Pseudocode for MLCSMA Algorithm

n: current bit position.
M: current level.
L: current level length.
next_L: next level length.
tn: max arrival time of the nth bit.
t cur c: current level carry delay(same for r, g delay).
t pre c: previous level carry delay.
t next c: next level carry delay.
last_block: block reaching the last bit or not.
tMUX : delay of 2-input multiplexer.
tNOR 2: delay of 2-input NOR gate (generate rn).

Begin function
Use a half-adder for the first bit;
n=n+1; begin_pos=0;

While �n < adder width�
Check n and adder_width, set last_block.
t cur c = max(t cur c, t next c)+tMUX ;
if (t cur cÿ tn > 0:5� �tNOR 2 � tMUX))

Build_next_level(t_cur_c, n, m);
// Update current level length

L=L+next_L;
if last_block is true

Use CSMA architecture:
Construct sum signals for current level

from n to begin_pos+L;
else

Use CCA architecture:
Generate all carries of this level;
Construct sum signal for previous level;
t cur c=max(t cur c, t next c)+tMUX;

// Timing difference is small, ripple adder is fast enough.
else

Connect a FA for current level, current bit;
n=n+1; L=L+1;
Update timing information.

End While
End function

// Recursive function
Begin function
Build_next_level (t pre c, pre m, n)

begin_pos=n; M=pre_m+1;
Connect 2-bit CCA block;

generate r and g of current position.
Current level carry delay:
t cur c=max(tn, tn�1)+tMUX;

n=n+2; L=2;
Check n and adder_width, set last_block.

While �n < adder width�
Find t_max=max(tn, tn�1);
Check t_max and previous level carry info., t_pre_c:
if ((t cur cÿ t max� > 0:5� �tNOR 2 � tMUX�) and

(t pre cÿ t cur c� > 0:5� tMUX�
// Timing difference is large enough,

span next level recursively.
Build_next_level(t_cur_c, M, n);

// Update current level length
L=L+next_L;
n=begin_pos+L;
t cur c= max(t cur c, t next c)+tMUX;
Generate all carries required for next level.

else
if ((t pre cÿ t cur c� > 0:5� tMUX) and

(t pre cÿ tn� > 0:5� �tNOR 2 � tMUX))
Connect a FA for bit n.
n=n+1; L=L+1;

else
Finish this level;
Return to previous level with L, n, t_cur_c info.

End While
End function

4.4 Performance Evaluation

To evaluate the performance of the algorithm, the new

design generated from the algorithm is compared with the

design from [16] first. Fig. 10 illustrates the delay profiles of

a 32� 32 PPRT from [16] and a 48� 48 PPRT from [13].

Note that the figure includes the delay of generating partial

products (0.5 unit delays). The design in [16] partitions the

final adder into three blocks. The central block is an 8b block

from n = 33 to n = 40. An 8b-CSMA, which takes 3.5 unit

delays to generate carry_out signal, is used to process this

block. The result is then combined with the LSB adder block

and with the MSB adder block. Therefore, this design takes

5.5 unit delays (8b-CSMA + two MUX selections) to

complete. Thus, the design completes the addition at

t = 11.5 + 5.5 = 17. The new design uses MLCSMA from

n = 1 to the last bit. Fig. 10 shows several block boundaries.

For example, the carry signal c33 generated at t = 15 is

denoted by 33/15 in the figure. For the 32� 32 PPRT, the
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Fig. 10. Delay profiles from [13] and [16] and partition boundaries for

final adder.



addition is completed at t = 17. The performance is the same

in terms of gate delay in this case. For the 48� 48 PPRT

delay profile, our design completes addition at t = 19.

However, it is hard to apply the method in [16] to the

48� 48 PPRT delay profile because no adder partition

methodology was provided. The 8-bit block in 32� 32 PPRT

delay profile is a special case.
To examine the performance of the MLCSMA algo-

rithm for the optimized MBE scheme, the delay profiles

are generated by using the new MBE scheme with TDM

algorithm. Fig. 11 shows the delay profiles. The MLCSMA

algorithm is then applied to these delay profiles to

measure their performance. Note that, since Type_I FA

and Type_II FA are used in our TDM program, the delay

profiles have shorter latency than the delay profiles in

[12], [13]. Depending on the heuristics and the basic cells

used in the TDM program, various different delay

profiles may be obtained. Table 5 lists the delays for

MLCSMA and CSMA. Note that, for an n� n multiplier,

the delay of the final adder based on tree-based CSMA is

�dlog2�2� nÿ 2�e � 1� � tMUX . The performance improve-

ment of the final adder in the table is calculated as:

Improvement � �CSMA delayÿMLCSMA delay�
CSMA delay

� 100%:

�11�
For the 12� 12 multiplier, the performance improvement of

the final adder is 25 percent. The average performance

improvement of multiplier is around 8 percent.

5 SIMULATION

Cells are selected from the standard cell library [17] with
the properties described in Table 1 and Table 2. The PPRT
is optimized by TDM algorithm according to the timing
information given in Table 2. Then, the MBE scheme and
the optimized PPRT are implemented by using the
selected cells. We use Verilog code to describe the design.
The code is fed into Synopsys Design_Analyzer to insert
appropriate buffers. In this step, the only work done by
Design_Analyzer is buffer insertion. No cell is changed or
removed from our design. The PPRT delay profile, which
considers buffer delay, capacitance loading, and driving
capability, is obtained from Design_Analyzer. The delay
profile is then used as the inputs to the MLCSMA
algorithm. In this step, the maximum path delay of
multiplexer is used in our MLCSMA algorithm. The
maximum path delay of the multiplexer is 0.41ns. After
the final adder is generated, the PPRT and the final adder
are merged into a complete multiplier. Again, the Verilog
code of the multiplier is fed into Design_Analyzer to do
buffer insertion.

We estimate the delay of PPRT by multiplying the delay
profile in Fig. 11 with unit delay (0.46ns). Fig. 12 shows the
result and the delay profiles from Design_Analyzer.
Clearly, the estimated delay profiles of PPRT are almost
the same as those from Design_Analyzer. The delay of final
adder can also be found in Fig. 12. For example, the delay of
final adder is 2.3ns (= 6.46ns-4.16ns) for 32� 32 multiplier.
Because the delay of the 2-input multiplexer used to
construct MLCSMA is smaller than one unit delay, the
delay of final adder should be normalized with respect to
one MUX delay. Therefore, the final adder delay is
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Fig. 11. Delay profiles for several sizes of new MBE scheme.

TABLE 5
Performance Improvement for n� n Multiplier



2.3/0.41=5.6 MUX delays. The error for the estimated delay

is 6.5-5.6 = 0.9 MUX delays. Similarly, the error of the

estimated final adder delay for 24� 24 multiplier is 0.43

MUX delays. In both cases, the error is smaller than one

MUX delay.

6 CONCLUSION

In this paper, we have shown how to build a high-speed

Booth encoded parallel multiplier. By combining the

proposed new MBE recoder and the modified partial

product array, the MBE-based multiplier can perform better

than the non-Booth based design. For the final adder, a new

algorithm that optimizes final adder incrementally is

proposed. The proposed algorithm solves final adder

problem efficiently for any size and shows performance

improvement up to 25 percent for the final adder. This work

has been verified by gate level simulation that considers the

effects of buffer delay, capacitance loading, and driving

capability. The simulation results meet the estimated delay

closely.
The area and timing properties for several MBE schemes

investigated in Section 3 suggest that the effects of using

different modified Booth recoders should be considered

more carefully, especially when different logic styles are

available. The proposed MLCSMA algorithm may also be

applied to other unequal delay profile problems. For

example, the signal delay profile from the output of a

direct form filter or a multiple-constant multiplication

module also has unequal delay profile characteristics. The

final addition can be accelerated in these designs by using

the novel MLCSMA algorithm. The various effects of using

MLCSMA algorithm will be examined in the future studies.
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