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A b s t r a c t - - T e r m i n a l - p a i r  reliability (TR) in network management determines the probabilistic 
reliability between two nodes (the source and sink) of a network, given failure probabilities of all 
links. It has been shown that  T R  can be effectively computed by means of the network reduction 
technique. Existing reduction axioms, unfortunately, are limited to trivial rules such as valueless 
link removal and series-parallel link reduction. In this paper, we propose a novel reduction axiom, 
referred to as triangle reduction. The triangle reduction axiom transforms a graph containing a 
triangle subgraph to that excluding the base of the triangle. The computational complexity of the 
transformation is as low as O(1). With triangle reduction, the number of subproblems generated by 
parti t ion-based T R  algorithms, for simplified grid networks, can be reduced to O(((1 + x/5)/2)n).  
The paper further provides an assessment of the effectiveness of triangle reduction on parti t ion- 
based T R  algorithms with respect to the number of subproblems and computation time through 
experimenting on published benchmarks and random networks. Experimental results demonstrate 
that, incorporating triangle reduction, the path-based (cut-based) parti t ion TR algorithm yields a 
substantially reduced number of subproblems and computation time for all (most of the) benchmarks 
and random networks. ~) 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - T e r m i n a l - p a i r  reliability (TR), Path-based partition, Cut-based partition, Network 
reduction technique. 

1. I N T R O D U C T I O N  

The analysis of network reliability has been given considerable attention in network management. 
In particular, terminal-pair reliability (TR) [1-14] deals with the determination of the probabilis- 
tic reliability between two nodes (the source and sink) of a network, given failure probabilities of 
all links. Existing TR algorithms, which are based on the partition technique, such as the cut- 
based [2,6] and path-based algorithms [7], achieve efficient TR computation by means of simple 
network reduction rules [6,7,11], such as valueless link removal and series-parallel link reduction. 

The goal of the paper is to propose a novel reduction axiom [9], referred to as triangle re- 

duction. The triangle reduction axiom basically transforms a graph, in which the source is only 
adjacent to two one-way or two-way connected nodes, forming a triangle subgraph, to a simpler 
graph with the link(s) incident with the two nodes removed. The resulted success probabilities of 
the corresponding links, connecting the source to the two nodes, are reassigned via closed-form 
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equations. The computational complexity of the transformation is as low as O(1). Incorporating 
the triangle reduction axiom, we prove that  the number of subproblems generated by partition- 
based TR algorithms, for simplified grid networks, is reduced to O(((1 + v~)/2)n).  The paper 
further provides an assessment of the effectiveness of triangle reduction on partition-based TR 
algorithms with respect to the number of subproblems and computation time through experi- 
menting on published benchmarks and random networks. Our experimental results demonstrate 
that,  incorporating the triangle reduction, the path-based (cut-based) partition TR algorithm 
yields a substantially reduced number of subproblems and computation time for all (most of the) 

benchmarks and random networks. 
This paper is organized as follows. Section 2 gives an overview of the two partition-based TR 

algorithms, namely the cut-based and path-based algorithms. The new triangle reduction axiom 
is proposed in Section 3. Section 4 analyzes the reduction efficiency with and without triangle 
reduction, for simplified grid network. Section 5 provides performance assessment via experiments 
on benchmarks and random networks. Finally, conclusion remarks are given in Section 6. 

2. OVERVIEW OF PARTITION-BASED TR A L G O R I T H M S  

Existing partition-based TR algorithms, employing the traditional reduction technique, can be 
categorized [2,6,7] as: path-based partition with reduction (PPR), and cut-based partition with 
reduction (CPR). In both algorithms, networks are modeled as directed graphs with each link 
associated with a failure probability. These failure probabilities are assumed to be statistically 
independent. While PPR and CPR have great similarity in nature, they differ in the selection of 
the partition basis. Each of them is further described in detail as follows. 

2.1 .  P a t h - B a s e d  P a r t i t i o n  w i t h  R e d u c t i o n  ( P P R )  A l g o r i t h m  

The PPR algorithm [7] computes terminal-pair reliability, Rel(G), from source s to sink t 
in network G by Boolean algebra. First, the network is simplified by employing the network 
reduction technique [6,11], including removing valueless links (such as entering the source) and 
series-parallel link reduction, as shown in Figure 1. The path-based partition is in turn performed 
based on the shortest s - t path, which is a set of links, {el, e2 , . . . ,  ez }, constituting the shortest 
path from s to t. Based on the factoring theorem [11], the problem is decomposed into a set of 

subproblems. That  is, Rel(G) = ql x Rel(G - el) + Plq2 x Rel(G* el - e2) + . . .  + p i P 2 . . .  Pz-  lql x 

Rel(G * el * e2 *. ."  * et-1 - el) + p i P 2 . . .  P t - l P l ,  where Pi (qi) represents the success (failure) prob- 
ability of link e~, "*" ( " - " )  represents the contracting (deleting) operation of links, and Rel()'s 
correspond to the subproblems. The same reduction and partition procedures are recurrently 
applied to each newly generated subproblem until the source and sink are disconnected. 

2.2 .  C u t - B a s e d  P a r t i t i o n  w i t h  R e d u c t i o n  ( C P R )  A l g o r i t h m  

Similar to PPR, CPR [2,6] initially simplifies the network by using the network reduction 
technique. Rather than partition based on the shortest s - t path, CPR employs the cut-based 
partition by means of the source-cut consisting of all links emanating from the source. Given 
source-cut {el, e2 . . . .  , el ), based on the factoring theorem, a number of subproblems are similarly 
generated. The same reduction and partition procedures are recursively applied to each newly 
generated subproblem until the source and sink are contracted or disconnected. 

An example of how PPR and CPR algorithms perform is illustrated in Figure 2. Given a 
network (Figure 2a), based on the PPR algorithm (Figure 2b), according to reduction rule r5, 
serial links el and e2 can be first reduced to e7 with success probability PT, where P7 = PIP2. 

Then, after the shortest-path-based partition and factoring, Rel(G) is decomposed as Rel(G) = 
q7 x Re l ( G -  eT) +PTq5 x Rel(G* e7 - es) +PTP5. In the case of CPR, the network is first simplified 
reducing serial links el and e2 to eT. After the source-cut-based partition and factoring, Rel(G) 
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a. Source b. Sink 

r l .  Links entering the source or exiting from the sink are valueless. 

a. % L C )  b. O ~ O 

r2. Nodes (except source and sink) with no output links or input links are valueless. 

a. % ~ j ~ S i n k  b. Q . _ . l . ~ ,  '~Source 

r3. Links antiparallel to node's single input link or output link are valueless. 

"~'-....... GL.~--_..- --'~ ReI(G1) = p, x ReI(G2) 

~ . - -  ~ . . . I  
=:g:::> 

Rel(GO = Pe x Rel(G2) 
( 

r4. A single link going out of the source or into the sink could be contracted. 

Pk = Pi x pj 

r5. Series link reduction. 

Pk = 1-- qi × qi 

r6. Parallel link reduction. 

Figure 1. Existing reduction rules. 

is decomposed  as Rel (G)  = P7 x Re l (G  * eT) + q7P3 × Re l (G  - e7 * e3). In  bo th  case, all newly  

gene ra t ed  subp rob l ems  are  cont inuous ly  processed unti l  s and  t are con t rac ted  or  d i sconnec ted .  

3. T R I A N G L E  R E D U C T I O N  A X I O M  

T h e  t r i ang le  reduc t ion  ax iom [9] is app l ied  to  a source-based triangle subgraph of a g raph  

represen t ing  the  ne twork  under  considera t ion.  A subgraph  is defined as a source-based  t r i ang le  

s u b g r a p h  if i t  conta ins  the  source and  two one-way or two-way connec ted  nodes  to  which the  

source  is only  ad jacen t ,  forming a t r iangle ,  as shown in F igure  3a. Notice  t h a t  the  no t ion  of  the  

t r i ang le  s u b g r a p h  can be s imi la r ly  appl ied  to  a subgraph  including the  s ink ins tead  ( s ink-based) ,  

as shown in F igure  3b. For  simplici ty,  w i thou t  fur ther  dec la ra t ion ,  the  t r i ang le  s u b g r a p h  referred 

t h r o u g h o u t  the  rest  of  t he  pape r  is source-based.  Notice  t h a t  the  concept  of  the  t r i ang le  reduc t ion  

canno t  be app l i ed  to  the  cases in which the  source (sink) is incident  wi th  more  t h a n  two ou tgo ing  

( incoming)  edges due  to  exponen t ia l ly  increased complexi ty.  

In  F igu re  3a, t he  two nodes  to  which the  source is ad jacen t  are  deno ted  as n l  and  n2. T h e  two 

l inks connec t ing  from s to n l  and  n2, referred to as the  sides of the  t r iangle ,  are  labe led  as esl  
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(a) Network G. 

Delete eT, ~ o  Delete e8 sO 
remove e4 and e5, ~,-o ~ • t  
es=e3 U e6 t 

={es} 
eT=el u e2 esXl.fe6 

- ~ t  ~ . . ~ .  Delete e9 s •  
Shortest s-t path Contract e7, 
={eT, es} delete es,, ~'~'t • t  

eg=(e311e4 ) u e6 Shortest s-t path 
={eg} 

ReI(G) = PTP5 + qTP8 + PTqsP9 = PlP2P5 + (1-PlP2)P3P6 + PlP2qs(1--q3q4)p6 

(b) The PPR algorithm. 

eGs•,• e~s C ~ c t  e5 • s = t e 

Contract eT, e s S ~  
s_ e l O ~ l e 4  7 e 6  = t 

={e5, elo} e5, 
ez=el u ez es"~te6 contract e]o S urce cut 

sm ={e6} 

Source cut Delete eT, 
={e7, e3} contract e3, ~ ' t  ~ • s  = t 

remove e4 and e5 Source cut ConWact e6 

~ {e6} 

Rel(G) = PT(P5 + q~loP6) + qTP3P6 =PlP2(P5 + qs(1--q3q4)P6) + (1-plp2)p3p 6 

(c) The CPR algorithm. 

Legend: 
* Pi(qi): the success (failure) probability of link ei. 
• "U': the operation of combining series links. 
• Pj =P~Pt, if ej = ek Uet. 
• "//": the operation of combining parallel links. 
• P1 = 1 -  qkqt, ifej = ek//el .  

Figure 2. PPR and CPP, algorithms--an example. 

and es2 with success probabilities P81 and Ps2, respectively. The link connecting nl (n2) to n2 (nl), 
referred to as the base of the triangle, is labeled as ebl(eb2) with success probability Pbl(Pb2). 

Notice that,  if nl  and n2 axe two-way connected, the base of the triangle is comprised of two 
links. As a result, the three nodes (s, nl ,  and n2), the sides (es1 and e82), and the base (ebl 
and/or  eb2), constitute a triangle subgraph, denoted as G~. 

Basically, the triangle reduction axiom transforms a graph containing a triangle subgraph to 
a simpler graph with the base of the triangle deleted. In the following, the axiom for the two- 
link base is formally stated and proved. In the case of the one-link base, similar results can be 
obtained by replacing Phi or Pb2 with zero. 

T r i a n g l e  R e d u c t i o n  A x i o m  

In a given graph G, as shown in Figure 4, if there exists a triangle subgraph with three nodes 
(s, nl ,  and n2), two sides (esl and es2), and the base (ebl and/or eb2), G can be transformed 
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G 

f~6, e,,W,,/p¢~' ~, 

(a) A source-based triangle subgraph. 

Legend: 
• el(p~): link l with success probability P/" 
• Gt: the triangle subgraph of graph G. 
• G r :  graph G -  Gt. 
• s: the source node. 
• t:  the sink node. 

Legend: 

G 

¢'1 
k \  Or eb2(P ebl 

\ J 

(b) A sink-based triangle subgraph. 

Figure 3. Triangle subgraphs. 

G Gx 

X 

• et(pl): link l with success probability Pl. 
• Gt: the triangle subgraph of graph G. 
• Gr: graph G -  Gt. 

Figure 4. Triangle reduction axiom. 

to GN with the base removed. The new probability Pl of link es,nl of G x  connecting s to nl,  

and probability P2 of link es,n2 of G x  connecting s to n2, are reassigned as 

qslPs2Pb2 + Pslqs2Pbl + PslPs2 
Pl ~- (1) 

qslPs2qb2 + qslPs2Pb2 + Pslqs2Pbl + PslPs2 

and 
qslPs2Pb2 + Pslqs2Pbl + PslPs2 

P2 = Pslqs2qbl + qslPs2Pb2 + Pslqs2Pbl + PslPs2" (2) 

Moreover, the terminal-pair reliability of the transformed graph G x ,  Rel(Gx),  becomes the 

product of Rel(G) and the reduction factor, F 

Rel ( G x )  = Rel(G) × F, (3) 

where 
qslPs2Pb2-{-P..lqs2Phl'4-P~lPs2 

F = (Pslqs2qbl+qslPs2Pb2+Pslqs2PblWPslPs2)(qslPs2qb2+q~lPs2Pb2"+'Pslqs2Pbl+PslPs2)" (4) 

PROOF. According to the factoring theorem, Rel(G) can be partitioned to 16 subproblems, as 
given in Figure 5, corresponding to four graphs, Ga, Gb, Gc, and Gd. In the figure, for example, 

graph Gb is related to graph G by the presence of link esl and the absence of links es2 and ebl. 
Namely, Gb = G* esl - e s 2 -  ebl. According to reduction rules r4(a) and r l ,  s is contracted to nl,  

and valueless link eb2 is removed, resulting in two equal-valued subproblems, Rel(Gb) = Rel(G * 

esl - es2 - ebl -- eb2) = Rel(G* e~l - es2 - ebl * eb2). As a result, G x  can be associated with Gb by 
the presence of link e,,nl and the absence of link e,,,~, and thus, Rel(Gb) = Rel(Gx * e~,,~ 1 -e~,,~). 
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Decomposition 

G,, = G-..est-ea 

G b = G * esl-es2-ebl 

G¢ ~" G'~sl * en-eb~ 

G d = G*esl*es2 

Subproblems for G 

4 subproblems : 
Rel(G,)=Rel(G- e,t- ea-  ebl- ebb) 

=Rel(G- e , :  e a -  ebl * ebz) 

=Rel(G- e,i- e,2 * ebl- eb2) 

=Rel(G- e,l- e,2 * ebi * e~,2) 

2 subproblems : 

R e l ( G t , ) = R e l ( G  * e , t -  e a -  eb,- eh2) 
= R e l ( G  * e , t -  e a -  et, i * eb2) 

2 subproblems : 
ReI(G,)=ReI(G- e,l * ea-  e#l- eb2) 

=Rel(G- e,j * e,2 * ehj- ebb) 

8 subproblems : 
Rel(Ga)= ReI(G * e,I- ea * ebr  ebb) 

= ReI(G * e~l- ea * ebl * eb2) 
= R e l ( G -  e, t  * e ,2-  ebl * eb2) 

= ReI(G- e,l * e,2 * et, i * et,2) 
= Rel(G * e,l * ejr- ebL-- eb2) 
= ReI(G * e, ,  * e , 2 -  ebl * eb2) 

= R e l ( G  * e,i  * e a  * eb t -  eb:) 

=Rel(G * e~t * e,2 * e#t * e~z) 

Corresponding graph 
after factoring 

0 ( ~  G r ~  

Vd 

ReI(G) = P,lq,2qb' X Rel(Gb) + q,tP,2qb2 X ReI(G¢) 

+ (P:tq,aPbl + q.,P,2Pb2 +p,@,~) X ReI(Ga) 

Subproblems for Gx 

ReI(G,) 

=Rel(Gr--e~.,,ce,.,, 2) 
=0 

Rel(Gb) 

=Rel(Gx * e,.,,(-e,.,, 2) 

Rel(G~) 

=Rel(Gr--e,.,, i * e,.,?) 

Rel( G #) 

=Rel(Gx * e~.~ 1 * e,,, 2) 

Rel(Gx) = 
Plq2 X Rel(Gb) 

+ qlP2 × ReI(G~) 
+ PlP2 X ReI(G#) 

Figure 5. Association of l=tel(G) and Rel(Gx). 

Applying the  same logic of relating other  graphs (Ga, Gc,  and Gu) to  G x ,  we a t ta in  

Rel ( G x )  = Plq2 × Rel ( G x  * es,nl - es,n2) + qlP2 x Rel ( G x  - es,na * es,n2) + PiP2 

x Rel ( G x  * es ,m * es,n2) (5) 

= Plq2 x Rel(Gb) + qlp2 x Rel(Gc) + piP2 x Rel(Gd). 

In addit ion,  notice tha t  Rel(G) can be expressed as 

Rel(G) = Pslqs2qbl x Rel(Gb) + qslPs2qb2 x Rel(Gc) (6) 
+ (Pslqs2Pbl + qslPs2Pb2 + PslPs2) x Rel(Gd). 

Dividing equat ion (5) by a reduct ion factor F ,  we obtain 

1 Plq2 qlP2 PiP2 
x Rel ( G x )  = ---if-- x Rel(Gb) + - - ~  x Rel(Gc) + T x Rel(Gd). (7) 

Equa t ing  equat ions (6) and (7), we a t ta in  

Rel ( G x )  = ReI(G) x F (8) 

and 
plq2 qlp2 

F = Pslqs2qbl,  F = qslPs2qb2, and PlP.._.._~2 F = Pslqs2Pbl + qslPs2Pb2 + P s l P s 2 .  (9) 

Rearranging equat ion (9), we directly derive equations (1), (2), and (4) and thus, prove the 
theorem,  l 
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The computat ional  complexity of triangle reduction rests on the examination of the existence 

of triangle subgraphs and the transformation. Clearly, examining the existence of triangle sub- 

graphs, namely an output-degree of the source of two and the adjacency of the source with 
two one-way or two-way connected nodes, only requires computational  complexity of a constant 

time. With the closed formulas given in equations (1)-(4), the computational  complexity of the 

t ransformation is apparent  O(1). 

4. R E D U C T I O N  E F F I C I E N C Y  A N A L Y S I S  
F O R  S I M P L I F I E D  G R I D  N E T W O R K  

To exhibit the effectiveness of triangle reduction, we analyze the numbers of subproblems 
generated by P P R  and CPR, with and without the triangle reduction axiom, for a s impl i f ied  grid 

n e t w o r k .  A network with n + 2 nodes including s and t (numbered from 0 to n + 1) is defined as 
an n-level simplified grid network, denoted by S G n ,  if any three consecutive nodes of the network 
form a complete graph, as shown in Figure 6. For ease of description, the parti t ion basis in P P R  

or C P R  is selected in an increasing node number manner. The number of subproblems generated 
by P P R  (CPR) for S G n  is denoted as NSPn ( N S C ) .  In S G ~ ,  the link incident from i to j is 

denoted as ei,j. In addition, the P P R  and CPR algorithms with triangle reduction applied are 

denoted as P P R  + and CPR +, respectively. 

..n n 

Figure 6. An n-level simplified grid network--SGn. 

LEMMA 1. 

= i?  / + ig  / ' 
for n _> 2 and N S  P = 1. 

PROOF. According to reduction rules r l ,  r5, and r6, the fact that  T R  of SG1  can be directly 
computed without any partition leads to N S  P = 1, for n = 1. Through simple derivation, one 
can simply get tha t  N S  P = 3 and N S  P = 5. For n >_ 4, the derivation can be discussed in the 

following two cases, as illustrated in Figure 7. 

CASE (a) .  n IS ODD. According to reduction rule r l ,  valueless links el,~, e2,s, e t ,n -1 ,  and Ct,n can 

be immediately removed, leading to a new shortest s - t path of S G n ,  s ~ 2 --* 4 --* • • • --* n - 1 

---* t. Based on the path-based partition and factoring, Rel(SGn) is decomposed to ( ( n -  1)/2 + 1) 

newly generated subproblems, namely R e l ( S G n  - es,2), Rel(SGn * e8,2 - e2,4), • • •, Rel(SG~ * e~,2 * 

e2,4 * " "  * e n - 5 , n - 3  -- en-3,n-1),  and R e I ( S G n  * es,2 * e2,4 * " "  * e n - 3 , n - 1  -- e n - l , t ) .  According 
to reduction rules r l ,  r3  to r6, the first (n - 1)/2 subproblems can be reduced to lower-level 

simplified grid networks, as shown in Case (a) of Figure 7. The last subproblem ( S G n  * es,2 * 

e2,4 * ' ' "  * e n - 3 , n - 1  - -  e n - l , t )  can be repeatedly reduced to the simplest network with only source 
and sink, resulting in the generation of one subproblem. Accordingly, 

= 1 + lvSL  +, + 1 (lO) 

= N S ~ _ I  + NSPn-2, for n > 4. 
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case (a): n is odd 

SG~ 
s -  2 4 n-1 t 

~ apply rl 

shortest s--t path = 
s~2~4 . . . . .  n-l~t 

case (b): n is even 

sG. 

o • •  

t 
~ apply rl 

• • n - ~ t  

shortest s--t path = 
s ~ l ~ 3  . . . . .  n- l~t  

Partitions l 

S Gn--e s, 2 

Reductions 

. - v ~  - 5  - n  

Res u l t ed  
Network 

SGn_I 

s a n * e s 2 - . e 2 4 ~  5 n) n ~ rl,r6,r3,rS, 4r~n_l n ~ • , r6,r4,rl ~ . . .  t SGn-3 
o o .  t s ~ 5  

• o s 

• • • 

• @ • 

r I ,r6,r3,r5,r6,r3,rS, 
.... r6,r3,rS~6,r4,rl 

SGn* e,,2 ~e2,4 "'" ~n-5~)-3 -en-3~-i 
t & n  - 

• -, -, ---_ -n 
SGn * e,.2 ~.4"'" *e~-3~-l-e~-l., 

s 

SGn--.e s, 1 

t 

SG *e,.1-e 1,3 

S G n * e  s, l*e l ,3 -e3 ,5  _ n_~ - 

SGn*es'l*el'~e3'5-~es'72~!O ~n~_ - n 

SGn* e$, I ~ 1,3"°°I~_J~_3"~ 

rl,r6,r3,r5,r6,r3,r5, 
.... r6,r3,rS,r6,r4 

t, s 
r4,r 1,r3,rS,r6 

~ 5 '  n-2 n 

• " n - ~ t  

rl,r6,r4,rl ~ 5  * ' ' n -n-~  

rl,r6,r3,r5, 
r6,r4,rl 

o o o  

rl,r6,r3,r5,r6, 
r3,r5,r6,r4,rl S ~ .  

@o 

rl,r6,r3,r5,r6,r3,r5 .... 
r6dr3,r5,r6,r4,r 1 S n _ ~ f  

r 1,r6,r3,rS,r6,r3,r5 .... 
r6,r3,rS,r6,r4 

~ t  

~3,n I 

SGtI* e$o I ~el,3... ~ce n..3,a..l"~ a.. i, t 

SG2 

2-node 
network 

SGn-2 

SG~_2 

SO~_4 

SG~_~ 

SG2 

2-node 
network 

Figure 7. PPR. algorithm for an n-level simplified grid network. 

CASE (b). n IS EVEN. According to reduction rule r l ,  valueless links el,s, e2,s, et,n-1, and et,,~ 
can also be removed, leading to a shortest s - t path of SGn, s --+ 1 --* 3 . . . .  --* n - 1 --* t. 
Based on the path-based partition and factoring, Rel(SG,)  is decomposed to (n/2 + 1) newly 
generated subproblems, namely Rel( SGn - e8,1), Rel( SGn * e8,1 - el,3), • • •, Rel( SGn * es,1 * el,3 * 
• " "*e, , -s ,n-3-en-3,n-1) ,  and Rel(SGn*es , l*el ,3* '"*en-3 .n-1  - e , - 1 , t ) .  According to reduction 
rules r l ,  and r3 to r6, the first n/2  subproblems can be reduced to SGn-2,  S G , - 2 ,  SGn-4 , .  •., 
and SG2, respectively, as shown in Case (b) of Figure 7. The last subproblem (SG,~ * e,,l * el,3 * 
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• " * en-3,n-1 - en-l, t)  can be repeatedly reduced to the simplest network with only source and 

sink, resulting in the generation of one subproblem. Accordingly, 

= NSn_2k + 1 1 +  N s L 2 +  P 
k=l (11) 

= NsP_I  + NSff_2, for n > 4. 

From equations (10) and (11), we obtain the recurrence relation 

N S P = N S P _ I + N S P _ 2 ,  for n > 4. (12) 

Solving equation (12), the lemma can be directly proved. 

LEMMA 2. 

N S C = ( 5 + - 5 - ~ ) ( l + - 2 - ~ ) n q - ( 5 - - 5 - v ~ ) ( 1 - - - 2 - ~ ) n - 1 ,  for n_> 1. 

PROOF. Through simple derivation, one can get N S  C = 1 and N S  C = 3. For n > 2, according 

to reduction rule r l ,  valueless links el,s, e2,s, et,n-1, and et,n are removed, as shown in Figure 8. 
Based on the source-cut-based partition and factoring, Rel(SGn) is further decomposed to two 

new subproblems, Rel(SGn * es, 1) and Re l (SG n -  es, 1 * es,2). The former can be reduced to SGn_ 1, 
and the latter can be reduced to SGn-2. Thus, we obtain 

N S  c = NsC_I + NsC_2 + 1, for n > 2. (13) 

Solving the equation, the lemma is directly proved. 

sv.  

O 0 0  ~ 

I 

t 

l;ooq t 

Resulted Partitions Reductions 
Network 

rl,r6 S G n  *g $,l 2 ' n -  n 

. o .  t 

rl,r3,rS~-6 

O Q e  

5 t 

" 3~5  T M  -n-I - t 

SG.-I 

SG,,-z 

Figure 8. CPR algorithm for an n-level simplified grid uetwork. 

LEMMA 3. With triangle reduction augmented, both PPR + and CPR + result in the generation 
of only one subproblem for SGn. 

PROOF. According to reduction rule r l ( a )  and triangle reduction, links el,8, e2,s, el,2, and e2,1, 
are first removed, as shown in Figure 9. Through reduction and contraction, SGn is further 
reduced to S G n - 1 , . . . ,  SG2, and ultimately to the simplest network with only source and sink. ] 

THEOREM 4. The reduction e~cieney ratios of PPR to PPR + and CPR to CPR + are O(((1 + 
v~) /2)~) ,  for S G , ,  n > 2. 

PROOF. Based on Lemmas 1 and 3, the reduction efficiency ratio of P P R  to P P R  + is N S  P to 
one, for all n > 2. The reduction efficiency ratio of CPR to CPR +, by Lemmas 2 and 3, is N S  C 
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~ apply rl(a),r7 

~ : • : -  n - ~ t  
~ apply r3,r5 

SGn-1 

ply r7 

~ apply r3,r5 

apply r3,r5 

n SC,2 
n-I  t 

apply r7,r5,r6 
~----~O t 

Figure 9. The reduction procedures of P P R  + and CPR + for an n-level triangle 
network. 
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to one, for all n >_ 1. Thus, we attain 

= O  - , for n > 2. 

5 .  P E R F O R M A N C E  C O M P A R I S O N S  

- 1 ( 1 4 )  

To demonstrate the effectiveness of triangle reduction, we experimented on various networks 
using four algorithms, PPR, CPR, PPR +, and CPR +, which were implemented in C language and 
executed on Sun ServexStation 5. The experimented networks include the benchmarks [3,6,7,11- 
14], as summarized in Figure 10, and randomly generated networks with various link degrees. 
In all experiments, two performance metrics, the number of subproblems and computation time, 
have been observed. 

Figures 11 and 12 show performance comparisons among these four algorithms under published 
benchmarks. In Figure 11, as was expected, the number of subproblems generated by either the 
PPR + or the CPR + algorithm is lower than that of both the PPR and CPR algorithms for 
all benchmarks. The performance superiority is particularly prominent under Benchmarks 1, 3, 
and 22, owing to the existence of higher numbers of triangle subgraphs. As for computation 
time, PPR + (CPR +) also outperforms PPR (CPR) algorithm in all (most of the) benchmarks, 
as shown in Figure 12. 8. 18 6 6 
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F i g u r e  11. C o m p a r i s o n s  of  t h e  n u m b e r  of  s u b p r o b l e m s  u n d e r  b e n c h m a r k s .  
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F igure  13. Compar i sons  of the  number  of subprob lems  under  benchmarks .  
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F igure  14. Compar i sons  of c ompu t a t i on  t ime  under  benchmarks .  
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F igure  15. C ompar i sons  of the  number  of  subprob lems  under  r andomly  genera ted  networks.  
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F igure  16. C ompar i sons  of compu t a t i on  t ime  
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F igure  17. Per fo rmance  compar i sons  under  r andomly  genera ted  networks.  

Figures 13 and 14 show the performance improvement of P P R + / C P R  + compared to 
P P R / C P R ,  under all benchmarks. In Figure 13a, the number of subproblems generated by 
P P R  + is improved by a magnitude of four. As shown in Figure 13b, while the improvement ratio 
of CPR + to CPR is less significant than that of P P R  + to PPR, CPR + still outperforms CPR 
by a magnitude of two. In Figure 14, we have observed that  the contribution of the triangle 
reduction to the computation time is more significant in P P R  + than in CPR + as well. 

Figures 15 and 16 display the performance improvement of P P R  + and CPR + under a set of 
randomly generated networks, from sparse to dense, with 15 nodes in each network. As shown in 
both figures, the improvement of PPR  + in both performance metrics increases with the link degree 
of the network. In contrast, the improvement of CPR + is almost irrelevant to the link degree. 
By drawing direct comparisons between PPR + and CPR + in Figure 17, we have learned that,  
while P P R  yields poorer performance [6] than CPR, P P R + with triangle reduction augmented 
achieves surprisingly better performance under sparse networks• As for denser networks, CPR + 
still outperforms P P R  + due to its simplicity in determining the partition basis [6]. 
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6. C O N C L U S I O N S  

This paper proposed a triangle reduction which transforms a graph containing a triangle sub- 

graph to that  excluding the base of the triangle, with constant complexity. The paper also proved 

that  both the reduction efficiency ratios of P P R  to PPR + (i.e., N S  P to one) and CPR to CPR + 

(i.e., N S  C to one) are O(((1 + v/5)/2)u), for simplified grid networks. The paper further provided 

an assessment of the effectiveness of triangle reduction on partition-based TR algorithms with 

respect to the number of subproblems and computation time through published benchmarks and 

randomly generated networks. Experimental results revealed that, P P R  + and CPR + outperform 

P P R  and CPR algorithms under most of the benchmarks and randomly generated networks. The 

improvement of P P R  + in both performance metrics increases with the link degree of the network, 

while the improvement of CPR + is almost irrelevant to the link degree. In addition, even though 

P P R  was shown in literature to exhibit much poorer performance than CPR, P P R  + achieves 

surprisingly better performance under sparse networks. 
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