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Abstract—Terminal-pair reliability (TR) in network management determines the probabilistic
reliability between two nodes (the source and sink) of a network, given failure probabilities of all
links. It has been shown that TR can be effectively computed by means of the network reduction
technique. Existing reduction axioms, unfortunately, are limited to trivial rules such as valueless
link removal and series-parallel link reduction. In this paper, we propose a novel reduction axiom,
referred to as triangle reduction. The triangle reduction axiom transforms a graph containing a
triangle subgraph to that excluding the base of the triangle. The computational complexity of the
transformation is as low as O(1). With triangle reduction, the number of subproblems generated by
partition-based TR algorithms, for simplified grid networks, can be reduced to O(((1 4+ v5)/2)").
The paper further provides an assessment of the effectiveness of triangle reduction on partition-
based TR algorithms with respect to the number of subproblems and computation time through
experimenting on published benchmarks and random networks. Experimental results demonstrate
that, incorporating triangle reduction, the path-based (cut-based) partition TR algorithm yields a
substantially reduced number of subproblems and computation time for all (most of the) benchmarks
and random networks. (© 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Terminal-pair reliability (TR), Path-based partition, Cut-based partition, Network
reduction technique.

1. INTRODUCTION

The analysis of network reliability has been given considerable attention in network management.
In particular, terminal-pair reliability (TR) [1-14] deals with the determination of the probabilis-
tic reliability between two nodes (the source and sink) of a network, given failure probabilities of
all links. Existing TR algorithms, which are based on the partition technique, such as the cut-
based [2,6] and path-based algorithms (7], achieve efficient TR computation by means of simple
network reduction rules [6,7,11], such as valueless link removal and series-parallel link reduction.

The goal of the paper is to propose a novel reduction axiom [9], referred to as triangle re-
duction. The triangle reduction axiom basically transforms a graph, in which the source is only
adjacent to two one-way or two-way connected nodes, forming a triangle subgraph, to a simpler
graph with the link(s) incident with the two nodes removed. The resulted success probabilities of
the corresponding links, connecting the source to the two nodes, are reassigned via closed-form
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equations. The computational complexity of the transformation is as low as O(1). Incorporating
the triangle reduction axiom, we prove that the number of subproblems generated by partition-
based TR algorithms, for simplified grid networks, is reduced to O(((1 + v/5)/2)"). The paper
further provides an assessment of the effectiveness of triangle reduction on partition-based TR
algorithms with respect to the number of subproblems and computation time through experi-
menting on published benchmarks and random networks. Our experimental results demonstrate
that, incorporating the triangle reduction, the path-based (cut-based) partition TR algorithm
yields a substantially reduced number of subproblems and computation time for all (most of the)
benchmarks and random networks.

This paper is organized as follows. Section 2 gives an overview of the two partition-based TR
algorithms, namely the cut-based and path-based algorithms. The new triangle reduction axiom
is proposed in Section 3. Section 4 analyzes the reduction efficiency with and without triangle
reduction, for simplified grid network. Section 5 provides performance assessment via experiments
on benchmarks and random networks. Finally, conclusion remarks are given in Section 6.

2. OVERVIEW OF PARTITION-BASED TR ALGORITHMS

Existing partition-based TR algorithms, employing the traditional reduction technique, can be
categorized [2,6,7) as: path-based partition with reduction (PPR), and cut-based partition with
reduction (CPR). In both algorithms, networks are modeled as directed graphs with each link
associated with a failure probability. These failure probabilities are assumed to be statistically
independent. While PPR and CPR have great similarity in nature, they differ in the selection of
the partition basis. Each of them is further described in detail as follows.

2.1. Path-Based Partition with Reduction (PPR) Algorithm

The PPR algorithm [7] computes terminal-pair reliability, Rel(G), from source s to sink ¢
in network G by Boolean algebra. First, the network is simplified by employing the network
reduction technique [6,11], including removing valueless links (such as entering the source) and
series-parallel link reduction, as shown in Figure 1. The path-based partition is in turn performed
based on the shortest s — ¢ path, which is a set of links, {e1, ez, ..., e}, constituting the shortest
path from s to t. Based on the factoring theorem [11], the problem is decomposed into a set of
subproblems. That is, Rel(G) = g1 X Rel(G —e1) +p1g2 X Rel(G*ey —eg)+- -+ p1p2...pi—1q1 X
Rel(G xej xeax---xei_1 —e;) +p1p2. .. Pi—1P1, Where pi(g;) represents the success (failure) prob-
ability of link e;, “+” (“—”) represents the contracting (deleting) operation of links, and Rel()’s
correspond to the subproblems. The same reduction and partition procedures are recurrently
applied to each newly generated subproblem until the source and sink are disconnected.

2.2. Cut-Based Partition with Reduction (CPR) Algorithm

Similar to PPR, CPR [2,6] initially simplifies the network by using the network reduction
technique. Rather than partition based on the shortest s —t path, CPR employs the cut-based
partition by means of the source-cut consisting of all links emanating from the source. Given
source-cut {e;, ez, ...,e}, based on the factoring theorem, a number of subproblems are similarly
generated. The same reduction and partition procedures are recursively applied to each newly
generated subproblem until the source and sink are contracted or disconnected.

An example of how PPR and CPR algorithms perform is illustrated in Figure 2. Given a
network (Figure 2a), based on the PPR algorithm (Figure 2b), according to reduction rule r5,
serial links e; and e; can be first reduced to e; with success probability p7, where p7 = pips.
Then, after the shortest-path-based partition and factoring, Rel(G) is decomposed as Rel(G) =
g7 X Rel(G — e7) +prgs x Rel(Gxe7 —es) + prps. In the case of CPR, the network is first simplified
reducing serial links e; and e2 to e7. After the source-cut-based partition and factoring, Rel(G)



Terminal-Pair Reliability 361

a. Source b. Sink

rl. Links entering the source or exiting from the sink are valueless.

S

r2. Nodes (except source and sink) with no output links or input links are valueless.

a. u # Sink b. P v # Source
~ L Q\dk O
—y

r3. Links antiparallel to node’s single input link or output link are valueless.

a. ? 5 b. o \Q?_JO

———

-

S—
Lo SOUTCE ~

Rel(G,) = p. x Rel(G,) —=—
7 Y 1 7 Sink g
(X e ) = < 1 ’
xx@_—7G T _~7 RelG)=p. xRellG) “~L2—

~a € &; — ~ —
€,
== = _Xo-0x
P = Pi XPj
r5. Series link reduction.
\\: : ef- @/' \\n €k C:/’
— K ~a — ~a

€
! Pe=1-4qixg

r6. Parallel link reduction.

Figure 1. Existing reduction rules.

is decomposed as Rel(G) = p7 x Rel(G * e7) + q7p3 x Rel(G — e7 x e3). In both case, all newly
generated subproblems are continuously processed until s and ¢ are contracted or disconnected.

3. TRIANGLE REDUCTION AXIOM

The triangle reduction axiom (9] is applied to a source-based triangle subgraph of a graph
representing the network under consideration. A subgraph is defined as a source-based triangle
subgraph if it contains the source and two one-way or two-way connected nodes to which the
source is only adjacent, forming a triangle, as shown in Figure 3a. Notice that the notion of the
triangle subgraph can be similarly applied to a subgraph including the sink instead (sink-based),
as shown in Figure 3b. For simplicity, without further declaration, the triangle subgraph referred
throughout the rest of the paper is source-based. Notice that the concept of the triangle reduction
cannot be applied to the cases in which the source (sink) is incident with more than two outgoing
(incoming) edges due to exponentially increased complexity.

In Figure 3a, the two nodes to which the source is adjacent are denoted as n; and ny. The two
links connecting from s to n; and ng, referred to as the sides of the triangle, are labeled as eg;
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Legend:
® pi(g:): the success (failure) probability of link e;.
e “U": the operation of combining series links.
* pj =pipi, ifej = e Uey.
e “//”: the operation of combining parallel links.

e pi=1-quq,ife; =er//e.

Figure 2. PPR and CPR algorithms—an example.

and e, with success probabilities p,; and p,g, respectively. The link connecting n(nsy) to na(ny),
referred to as the base of the triangle, is labeled as ep1(ep2) with success probability p, (po2)-
Notice that, if n; and n, are two-way connected, the base of the triangle is comprised of two
links. As a result, the three nodes (s, n1, and ny), the sides (e,; and es2), and the base (ep;
and/or ey;), constitute a triangle subgraph, denoted as G;.

Basically, the triangle reduction axiom transforms a graph containing a triangle subgraph to
a simpler graph with the base of the triangle deleted. In the following, the axiom for the two-
link base is formally stated and proved. In the case of the one-link base, similar results can be
obtained by replacing py; or pyy with zero.

Triangle Reduction Axiom

In a given graph G, as shown in Figure 4, if there exists a triangle subgraph with three nodes
(s, n1, and ny), two sides (es1 and e,2), and the base (ep1 and/or ep3), G can be transformed
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(a) A source-based triangle subgraph. (b) A sink-based triangle subgraph.

Legend:

e;(p1): link [ with success probability p,.
e G;: the triangle subgraph of graph G.

e G,: graph G — Gy.

e s: the source node.

e t: the sink node.

Figure 3. Triangle subgraphs.

/ e
2
™~ e \..,"\JJ Rel(G) = *-Il;. X Rel(Gy)

Legend:
e ¢;(p;): link ! with success probability p;.
e Gy: the triangle subgraph of graph G.
o Gy: graph G — G¢.
Figure 4. Triangle reduction axiom.

to Gx with the base removed. The new probability p; of link e; », of Gx connecting s to nj,
and probability ps of link e, n, of Gx connecting s to ng, are reassigned as

= gs1Ps2Pb2 + Ps14s2Pb1 + Ps1Ps2 (1)
ds1Ps2qb2 + @s1Ps2Db2 + Ps1952Pb1 + Ps1Ds2

and

_ Gs1Ps2Pb2 + Ps19s2Pb1 + Ps1Ps2
p2 = . (2)
DPs19s2961 + @s1Ps2Pb2 + Ps19s2Pb1 + Ps1Ps2

Moreover, the terminal-pair reliability of the transformed graph Gx, Rel(Gx), becomes the
product of Rel(G) and the reduction factor, F

Rel (Gx) = Rel(G) x F, (3)
where
Fe= 9a1Ps2Pb2+Ps1942Pb1 +Pu1Px2 (4)
(Ps1952061+951P:2Pp2+P51922Pb1 +Pe1P+2 (0192062 +4:1Ps2P02+Ps1952P61 +Ps1Ps2)

PROOF. According to the factoring theorem, Rel(G) can be partitioned to 16 subproblems, as
given in Figure 5, corresponding to four graphs, G,, G, G¢, and G4. In the figure, for example,
graph Gy is related to graph G by the presence of link e,; and the absence of links e,; and ep;.
Namely, Gy = G *eg; —eg2 —ep1. According to reduction rules r4(a) and rl, s is contracted to n,
and valueless link ey is removed, resulting in two equal-valued subproblems, Rel(Gp) = Rel(G *
es1 —eg2 —ep1 — ep2) = Rel(G*es) —eg2 —epy xepn). As aresult, Gx can be associated with Gy by
the presence of link e, ,, and the absence of link e, ,, and thus, Rel(Gy) = Rel(Gx *eg,n, —€4,n,)-
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Figure 5. Association of Rel(G) and Rel(Gx).

Applying the same logic of relating other graphs (G,, G., and Gg) to Gx, we attain
Rel (Gx) = p1g2 X Rel (Gx * €5, — €5.n,) + q1P2 X Rel(Gx — €50, * €5,n,) + P1D2
X Rel (Gx * €50, * €sny) (5)
= p1g2 X Rel(Gy) + q1p2 x Rel(Gc) + p1p2 X Rel(Ga).
In addition, notice that Rel(G) can be expressed as

Rel(G) = ps1¢s2qs1 X Rel(Gy) + qo1Ps2Gp2 X Rel(Ge)

6
+ (pslq.92pb1 + qs1Ps2Db2 t+ p31p52) X Rel(Gd)' ( )
Dividing equation (5) by a reduction factor F', we obtain
1 _ha qip2 p1p2
7 X Rel(Gx) = 7 X Rel(Gy) + X Rel(G.) + - X Rel(Gy)- (7)
Equating equations (6) and (7), we attain
Rel (Gx) = Rel(G) x F (8)

and

P1q2 q1P2 Pip2

“F T Psids291, T = ds1Ps2Qb2, and —F = Ps19s2Pb1 + @s1Ps2Pb2 + Ps1Ps2-  (9)
Rearranging equation (9), we directly derive equations (1), (2), and (4) and thus, prove the
theorem. ]
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The computational complexity of triangle reduction rests on the examination of the existence
of triangle subgraphs and the transformation. Clearly, examining the existence of triangle sub-
graphs, namely an output-degree of the source of two and the adjacency of the source with
two one-way or two-way connected nodes, only requires computational complexity of a constant
time. With the closed formulas given in equations (1)—-(4), the computational complexity of the
transformation is apparent O(1).

4. REDUCTION EFFICIENCY ANALYSIS
FOR SIMPLIFIED GRID NETWORK

To exhibit the effectiveness of triangle reduction, we analyze the numbers of subproblems
generated by PPR and CPR, with and without the triangle reduction axiom, for a simplified grid
network. A network with n + 2 nodes including s and ¢ (numbered from 0 to n + 1) is defined as
an n-level simplified grid network, denoted by SGn, if any three consecutive nodes of the network
form a complete graph, as shown in Figure 6. For ease of description, the partition basis in PPR
or CPR is selected in an increasing node number manner. The number of subproblems generated
by PPR (CPR) for SG,, is denoted as NS¥ (NSZ). In SG,, the link incident from i to j is
denoted as e; ;. In addition, the PPR and CPR algorithms with triangle reduction applied are
denoted as PPR* and CPR™, respectively.

m n-1 t(n+1)

Figure 6. An n-level simplified grid network—SG,.

LEMMA 1.

NSP = (5 +1?)\/5> <1+2\/§> + <5_13\/5) <1 _2\/§> , forn>2and NSF = 1.

PRrROOF. According to reduction rules rl, r5, and r6, the fact that TR of SG; can be directly
computed without any partition leads to N SP =1, for n = 1. Through simple derivation, one
can simply get that NS = 3 and NS = 5. For n > 4, the derivation can be discussed in the
following two cases, as illustrated in Figure 7.

CASE (a). n 1S ODD. According to reduction rule rl, valueless links e; s, €2 s, €t,n—1, and e, can
be immediately removed, leading to a new shortest s —t path of SGp, s =2 —4— .- > n-1
— ¢t. Based on the path-based partition and factoring, Rel(SGy) is decomposed to ((n—1)/2+1)
newly generated subproblems, namely Rel(SGp, —e52), Rel(SGp ;2 —€24),...,Rel(SG, xe5 2%
€2 4% *€n_5n-3 — €n_3n-1), and Rel(SGn * €2 % €04 % -~  * €n_3n_1 — en—1,¢). According
to reduction rules rl, r3 to r6, the first (n — 1)/2 subproblems can be reduced to lower-level
simplified grid networks, as shown in Case (a) of Figure 7. The last subproblem (SG, * €52 *
€24%**€n—3n—1—€n—1,¢) can be repeatedly reduced to the simplest network with only source
and sink, resulting in the generation of one subproblem. Accordingly,

(n=1)/2
NSE=1+| > NS ppi+1
k=1

=NSP  +NSF_,,  forn>4.

(10)
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Figure 7. PPR algorithm for an n-level simplified grid network.

CASE (b). n 1s EVEN. According to reduction rule rl, valueless links e; 5, €24, €¢,n—1, and e,
can also be removed, leading to a shortest s — ¢ path of G, s 41 23> .- 5 n-1—1t.
Based on the path-based partition and factoring, Rel(SG,) is decomposed to (n/2 + 1) newly
generated subproblems, namely Rel(SG,, —e;,1), Rel(SG, xe5 1 —e13),...,Rel(SG,, xe5 1 x ey 3%

“%€n_Bn—3—€n-3n-1), and Rel(SGpxe,1%€1 3% - *€n_3n_1—€n_1). According to reduction
rules rl, and r3 to r6, the first n/2 subproblems can be reduced to SGp-2,SGn_2,SGn_4,...,
and SGa, respectively, as shown in Case (b) of Figure 7. The last subproblem (SG, x e, 1 % €13 *
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v % ep_3n-1— €n—1,t) can be repeatedly reduced to the simplest network with only source and
sink, resulting in the generation of one subproblem. Accordingly,

(n-2)/2
NSP=1+|NSE,+ Y NSE,+1
P (11)

=NSP | +NSP_,, forn > 4.
From equations (10) and (11), we obtain the recurrence relation

NSP =NSP_,+NSP,  forn>4 (12)

Solving equation (12}, the lemma can be directly proved. ]

LEMMA 2.

NSO - <5+5\/5) (1 +2\/3)"+ (5~5\/5> (1—2\/5>"_1, orn > 1

PROOF. Through simple derivation, one can get NS¢ = 1 and NS§ = 3. For n > 2, according
to reduction rule r1, valueless links e; 4, €25, €:,n—1, and e; ,, are removed, as shown in Figure 8.
Based on the source-cut-based partition and factoring, Rel(SG,,) is further decomposed to two
new subproblems, Rel(SGy*es 1) and Rel(SG, —e,,1%€,,2). The former can be reduced to SGp._1,
and the latter can be reduced to SG,_3. Thus, we obtain

NS =NSS | +NSS ,+1, forn>2. (13)

Solving the equation, the lemma is directly proved. ]
Partitions Reductions Resulted
Network

SGn ts.l

SG, L, 2 4 na o | o
oo m...% see SGn—I
s o 3 5 n-1 ¢ 5 n-1 ¢

ty rl
% apply r SGn‘e;,‘lles,Z n-! 3506 s, 4 02
AR «@E 4 o
n—
X 5 n-1 -t 35 ol
3 S n-1 t

Figure 8. CPR algorithm for an n-level simplified grid network.

LEMMA 3. With triangle reduction augmented, both PPR™ and CPR* result in the generation
of only one subproblem for SG,,.
PROOF. According to reduction rule r1(a) and triangle reduction, links e; s, ez, €1,2, and ez 1,

are first removed, as shown in Figure 9. Through reduction and contraction, SG, is further
reduced to SGp_1,...,SGs, and ultimately to the simplest network with only source and sink. B

THEOREM 4. The reduction efficiency ratios of PPR to PPR* and CPR to CPR* are O(((1 +
V5)/2)"), for SGp, n > 2.

PROOF. Based on Lemmas 1 and 3, the reduction efficiency ratio of PPR to PPR* is NSE to
one, for all n > 2. The reduction efficiency ratio of CPR to CPR*, by Lemmas 2 and 3, is N s¢
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to one, for all n > 1. Thus, we attain
p (5438 (1+VB)  [(5-3v8) (1-vB)
NS"_( 10 2 + 10 2
< NSC - <5+5\/5) (1+2\/5> +<5—5\/3> (1—2\/5> . (14)

=O<<1+2\/5) ), for n > 2. |

5. PERFORMANCE COMPARISONS

To demonstrate the effectiveness of triangle reduction, we experimented on various networks
using four algorithms, PPR, CPR, PPR*, and CPR*, which were implemented in C language and
executed on Sun ServexStation 5. The experimented networks include the benchmarks (3,6,7,11-
14], as summarized in Figure 10, and randomly generated networks with various link degrees.
In all experiments, two performance metrics, the number of subproblems and computation time,
have been observed.

Figures 11 and 12 show performance comparisons among these four algorithms under published
benchmarks. In Figure 11, as was expected, the number of subproblems generated by either the
PPR* or the CPRt algorithm is lower than that of both the PPR and CPR algorithms for
all benchmarks. The performance superiority is particularly prominent under Benchmarks 1, 3,
and 22, owing to the existence of higher numbers of triangle subgraphs. As for computation
time, PPR* (CPR™) also outperforms PPR (CPR) algorithm in all (most of the) benchmarks,
as shown in Figure 12.
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Figure 11. Comparisons of the number of subproblems under benchmarks.
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Figure 12. Comparisons of computation time under benchmarks.
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Figure 13. Comparisons of the number of subproblems under benchmarks.
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Figure 14. Comparisons of computation time under benchmarks.
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Figure 15. Comparisons of the number of subproblems under randomly generated networks.
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Figure 16. Comparisons of computation time under randomly generated networks.
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Figure 17. Performance comparisons under randomly generated networks.

Figures 13 and 14 show the performance improvement of PPR*/CPR* compared to
PPR/CPR, under all benchmarks. In Figure 13a, the number of subproblems generated by
PPRt is improved by a magnitude of four. As shown in Figure 13b, while the improvement ratio
of CPR* to CPR is less significant than that of PPR* to PPR, CPR* still outperforms CPR
by a magnitude of two. In Figure 14, we have observed that the contribution of the triangle
reduction to the computation time is more significant in PPR* than in CPR* as well.

Figures 15 and 16 display the performance improvement of PPR* and CPR* under a set of
randomly generated networks, from sparse to dense, with 15 nodes in each network. As shown in
both figures, the improvement of PPR* in both performance metrics increases with the link degree
of the network. In contrast, the improvement of CPR™ is almost irrelevant to the link degree.
By drawing direct comparisons between PPR* and CPR™ in Figure 17, we have learned that,
while PPR yields poorer performance [6] than CPR, PPR*' with triangle reduction augmented
achieves surprisingly better performance under sparse networks. As for denser networks, CPR*
still outperforms PPR* due to its simplicity in determining the partition basis [6].
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6. CONCLUSIONS

This paper proposed a triangle reduction which transforms a graph containing a triangle sub-
graph to that excluding the base of the triangle, with constant complexity. The paper also proved
that both the reduction efficiency ratios of PPR to PPR* (ie., N Sf to one) and CPR to CPRt
(i.e., NSS to one) are O(((1++/5)/2)™), for simplified grid networks. The paper further provided
an assessment of the effectiveness of triangle reduction on partition-based TR algorithms with
respect to the number of subproblems and computation time through published benchmarks and
randomly generated networks. Experimental results revealed that, PPRt and CPR™* outperform
PPR and CPR algorithms under most of the benchmarks and randomly generated networks. The
improvement of PPR™ in both performance metrics increases with the link degree of the network,
while the improvement of CPR* is almost irrelevant to the link degree. In addition, even though
PPR was shown in literature to exhibit much poorer performance than CPR, PPR* achieves
surprisingly better performance under sparse networks.
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