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High Temperature Formed SiGe P-MOSFET’s with
Good Device Characteristics

Y. H. Wu and Albert Chin, Senior Member, IEEE

Abstract—We have used a simple process to fabricate
Si0 3Ge0 7/Si p-MOSFET’s. The Si0 3Ge0 7 is formed using
deposited Ge followed by 950 C rapid thermal annealing and
solid phase epitaxy that is process compatible with existing
VLSI. Hole mobility of 250 cm2/Vs is obtained from Si0 3Ge0 7

p-MOSFET that is two times higher than Si control devices
and results in a consequent substantially higher current drive.
The 228Å Si0 3Ge0 7 thermal oxide grown at 1000 C has a high
breakdown field of 15 MV/cm, low interface trap density ( )
of 1 5 10

11 eV 1cm 2, and low oxide charge of7 2 10
10

cm 2. The source-drain junction leakage after implantation and
950 C RTA is also comparable with Si counterpart.

Index Terms—Hole mobility, P-MOSFET, reliability, SiGe.

I. INTRODUCTION

SiGe p-MOSFET’s have attracted much attention [1]–[10]
because of the improved mobility and current drive capa-

bility. However, one difficult technology barrier to integrate
SiGe into CMOS process is the required low temperature
( 800 C) to avoid strain relaxation and defect generation.
This is because rough surface and pinholes may form during
strain relaxation that degrades the device performance [8]–[10].
Unfortunately, the limited low temperature processing may
also degrade both gate oxide integrity and source-drain junc-
tions [11], and high dopant activation and low pn junction
leakage after source-drain implantation can only be obtained
at a reasonable high annealing temperature. Furthermore, the
required low temperature processing for SiGe p-MOSFET
is not compatible to current Si n-MOSFET technology and
modern high-K gate dielectrics [12], [13]. In this letter, we
provide a simple approach to fabricate SiGe/Si p-MOSFET
with good device characteristics that is fully compatible to
the existing ULSI technology without the constraint of low
temperature processing. Further, selectively formed SiGe can
be easily achieved only in p-MOSFET without alternating the
performance of Si n-MOSFET.

II. EXPERIMENTAL

Standard 4-in (100) Si wafers with concentrations of
cm were used in this study. In addition to

SiGe p-MOSFET’s, Si control devices were also fabricated
as references. After device isolation, amorphous Ge layer
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Fig. 1. Room-temperatureI –V characteristics of 3-�m Si Ge and
standard Si p-MOSFET’s.

is selectively deposited. An HF-vapor passivation is used to
suppress the native oxide formation before Ge deposition
[12], [14]–[15]. A 50-nm thick Si Ge was then formed
in the active region by rapid thermal annealing (RTA) at
950 C, as measured by TEM and SIMS. X-ray diffraction
(XRD) was used to determine the Ge composition and a sharp
peak comparable to Si substrate was measured that indicates
good crystalline quality of Si Ge . More detailed material
characterization can be found in our previous study [16]. Gate
oxide was then grown by dry Oat 1000 C to a thickness
of 228 Å and 212 Å on Si Ge and Si, respectively. The
oxide thickness was carefully measured by ellipsometer and
TEM, and the near identical thickness of Si and SiGe
oxides is due to the same oxidation rate by dry O[1]. After
a 3000 Å poly-Si deposition and patterning, source, drain,
and gate were implanted by Bat 15 KeV with a dose of

cm and subsequently annealed at 950. Besides
MOSFET’s, source-drain p-n diodes and MOS capacitors
were also fabricated on the same wafer to characterize the
junction leakage and gate oxide quality.

III. RESULTS AND DISCUSSION

Fig. 1 shows the room-temperature output characteristics of
3- m Si Ge and standard Si p-MOSFET’s. To eliminate the
effect of threshold voltage ( ) difference in both devices, we
have plotted – instead of as a function of current. As
shown in Fig. 1, Si Ge p-MOSFET possesses substantially
higher current output than that of conventional Si device.

To further study this current drive improvement, we have
plotted the – curve and room-temperature effective mo-
bility ( ) in Fig. 2 for wide channel MOSFET’s. In addition
to the higher saturation currents, the SiGe MOSFET’s
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Fig. 2. Room-temperature effective mobility for SiGe and Si
p-MOSFET’s derived from the insertI –V curves.

Fig. 3. Gate oxide breakdown field distribution for thermal oxide grown on
Si Ge and Si. The interface trap density is also shown in the inset figure.

maintain the same subthreshold swing as Si counterpart. The
Si Ge -channel devices has a peak hole mobility of 250
cm /Vs that is two times higher than Si control sample
[17]. Because of the near identical measured capacitance for
Si and Si Ge , the improved current drive capability is due
to the higher hole mobility in Si Ge MOSFET’s rather
than a higher-K [12]. In contrast to previous low temperature
processed and strained p-MOSFET’s [1]–[9], the achieved
good Si Ge mobility and device performance may be due
to the high temperature formed and strain-relaxed SiGe
that results in a more stable material during thermal cycle
[11],[18]–[19]. This is confirmed by the very sharp XRD
linewidth after oxidation and post implantation RTA with near
identical peak position and linewidth to as formed SiGe .
The higher mobility may be due to the smaller effective mass
of Ge than Si even without strain [20]–[21].

We have also characterized the gate oxide integrity of high
temperature formed Si Ge p-MOSFET’s. Fig. 3 shows the
breakdown field distribution and the interface trap density of
Si Ge gate oxide. The high breakdown electrical field of
15 MV/cm, low interface trap density ( ) of eV
cm , and low oxide charge of cm indicate excel-
lent oxide integrity can be achieved on high temperature formed
Si Ge . The slightly higher in Si Ge may be due to
Ge pile-up at oxide–SiGe interface, but it is still one order of
magnitude lower than previous works [1] and has limited ef-

Fig. 4. Source-drain pn junction leakage distribution of Si Ge and Si
measured at 3.3 V reverse bias.

fect on mobility. The reason why this work enjoys much im-
proved hole mobility could be attributed to extremely flat inter-
face which is evidenced by TEM observation.

Source-drain junction leakage is another important param-
eter for practical process integration. We have also measured
the junction leakage and is shown in Fig. 4. Although the junc-
tion leakage of Si Ge is comparable with Si, the slightly
higher value may be due to either lower bandgap or dislocation
formation in Si Ge . This low junction leakage can be also
explained by the high RTA annealing temperature for dopant
activation and defect annihilation on high temperature formed
Si Ge .

IV. CONCLUSION

We have demonstrated a simple method to fabricated SiGe
p-MOSFET with good mobility, gate oxide integrity and junc-
tion leakage. Furthermore, this method is fully compatible to
the existing VLSI technology. The good device performance is
related to the high forming temperature of SiGe.
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