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Short Communication

An interval method for computing the stability margin
of real uncertainty problems

Zheng-Ming Ge*,s and Li-Wei Chut

Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
Taiwan 30010, R.O.C.

SUMMARY

Frequently, in practical control system design, some designing parameters are uncertain. These uncertain
parameters may vary with temperature, humidity or other environmental variable, and these variations will
have an impact on the stability of the system. In this paper, we use a global optimal method}interval
method, by which stability margins of these uncertain parameters can be computed. Copyright ( 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The original idea of interval analysis was to bound rounding errors. However, interval mathema-
tics can be said to have begun with the appearance of Moore's book [1] Interval Analysis in 1966.
Moore's work transformed this simple idea into a useful tool for error analysis. Since the
appearance of Moore's book, several persons have used interval analysis to solve the global
optimization problem and systems of non-linear equations [2, 3]. Thus, the interval analysis has
tended gradually to become an important mathematical tool for solving the problems of global
optimization and systems of nonlinear equations. And we can also use interval analysis in robust
control-system design.

Consider a robustness stability problem associated with real uncertain parameters. A funda-
mental problem addressed in a large number of papers [4, 5] is: Determine the maximum
uncertainty bound at which a system is stable. Our main technical objective in this paper is to
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Figure 1. A closed-loop feedback system.

show how interval analysis can be used to determine the stability margin of a robustness stability
problem associated with real uncertain parameters. Although structured singular value k-analysis
can solve the type of problem, the stability margin yielded by k-analysis is more conservative than
that obtained by using the interval method; see Section 2 for a detailed description.

2. PROBLEM FORMULATION

Consider a robustness stability problem as shown in Figure 1, where M(s)3RHn]n
=

, and the real
uncertain part *3Rn]n. We know that this is a structured singular value problem. If we claim the
closed-loop system is internally stable then the necessary and su$cient condition is

det(I!M( jw)*)O0 for w3[0,R).

Hence, if the uncertain part, E*E
=
)(k*(M))~1, then the system is always stable. But the

condition E*E
=
)(k*(M))~1 is stringent. Here, we will use the interval method to obtain a loosen

condition for the uncertain part * under which the system is still stable.
For convenience, we suppose M3Cn]n and * is a diagonal matrix with real uncertain elements

(if the block structure of * is not diagonal, we can transform the non-diagonal-structure problem
into diagonal-structure problem by using certain techniques from Cheng and DeMoor [6]). Let
*"Mdiag(d

1
I
31

,2, d
n
I
3n
) D d

i
3RN, and k* (M) is de"ned as

k* (M) :"
1

minMpN (*) D*3*; det(I!M*)"0N
.

Let *
r
is a subset of * de"ned as follows:

*
r
:" M* : *3*; Dd

i
D)r, i"1,2, nN where r3R`

hence, we can say *
r
is a &&square'' in which Dd

i
D)r, i"1,2, n, and the length of &&square'' is r.

At "rst we de"ned r
461

:"supMr: det(I!M*)O0, ∀*3*
r
N. Then we will prove k*(M)"1/r

461
which mean the calculation of k-norm is to determine the maximum &square' within which
det(I!M*)O0.

Let ** is a solution of det(I!M*)"0, where **3* and **"diag(d*
1

I
31

,2, d*
n
I
3n
). And let

pN (**)"minMpN (*) D*3*; det(I!M*)"0N. We know that pN (**)"maxMDd*
i
D: i"1,2, nN"r*, it

follows that k*(M)"1/r*.
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Figure 2. The plot of f
R
"f

I
"0.

If r
461

'r* then Dd*
i
D(r

461
(i"1,2, n). Hence, **3*

r461
and det(I!M**)O0, we have the

contradiction det(I!M**)"0. If r
461

(r* then there exist r@ and *@ where r
461

(r@(r*, and
*@3*

r{
such that det(I!M*@)"0 and pN (*@)"r@(r*. It is contradicte with minMpN (*) D*3*;

det(I!M*)"0N"pN (**)"r*. Therefore, r
461

"r* and k*(M)"1/r
461

.
From the above description, we know that the signi"cance of k-analysis is to determine the

maximum &square' of uncertain parameters within which det(I!M*)O0 (i.e. the system is
stable). Let det(I!M*)"f

R
(d

1
,2, d

n
)#f

I
(d

1
,2, d

n
) j, where f

R
, f

I
are the real and imaginary

parts of det(I!M*) dependent on d
1
,2, d

n
. If det(I!M*)O0, then f

R
(d

1
,2, d

n
)O0 or

f
I
(d

1
,2, d

n
)O0.

We can illustrate the geometrical signi"cance of k*(M) by n"2, the geometrical signi"cance of
k*(M) is shown in Figure 2(a), which means f

R
O0 or f

I
O0 within the largest square on a plane

consisting of d
1
, d

2
. Therefore, the structured singular value of k*"1/r.

From Figure 2(a), we know that if the uncertain part E*E
=
)(k*(M))~1"r, i.e. Dd

1
D)r and

Dd
2
D)r, then the system is always stable. But this claim is stringent. In fact, i.e. we let d

1
and d

2
fall

within the rectangle shown in Figure 2(b), then the system is still stable. Therefore, the robustness
stability problem can be transformed into a problem of systems of equations:

f
R
(d

1
,2, d

n
)"0

f
I
(d

1
,2, d

n
)"0

(M3Cn]n) (1a)
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or
f
R
(d

1
,2, d

n
, w)"0

f
I
(d

1
,2, d

n
, w)"0

(M (s)3RHn]n
=

) (1b)

where d
i
3[d

i
, d

i
]; i"1,2, n; w3[0,R).

Our aim is to determine the maximum uncertainty bound d
i
at which the systems of equations

(1) have no solutions. In the next section, we introduce a method for using interval analysis to
solve this problem.

3. INTERVAL ALGORITHM

Consider a function f (x
1
,2, x

n
), x

i
3X

i
(i"1,2, n), we expand f with Taylor's theorem [2].

f (y
1
,2, y

n
)"f (x

1
,2, x

n
)#

n
+
i/1

g
i
(f

1
,2, f

i
, x

i`1
,2, x

n
) (y

i
!x

i
)

where g
i
"(Lf/Lx

i
) (i"1,2, n). If x

i
3X

i
and y

i
3X

i
, then this holds for some number f

i
3X

i
. In

our applications, we sometimes want a linear bound on f (y
1
,2, y

n
) for all y

i
3X

i
(i"1,2, n).

Thus, we replace f
i
with the bounding interval X

i
(i"1,2, n) and obtain

f (y
1
,2, y

n
)3f (x

1
,2, x

n
)#

n
+
i/1

g
i
(X

1
,2, X

i
, x

i`1
,2, x

n
) (y

i
!x

i
) (2)

If y is a zero of f, then f (y)"0 and we replace Equation (2) with

f (x)#g (x, X) (y!x)"0. (3)

We de"ne the solution set of Equation (3) to be S"My : f (x)#g (x, f) (y!x)"0N for all f3X.
This set contains any point y3X for which f (y)"0. From Equation (3), we let

>
i
"x

i
!

f (x
1
,2, x

n
)#+i~1

j/1
g
j
) (y

j
!x

j
)#+n

j/i`1
g
j
) (y

j
!x

j
)

g
i
(X

1
,2, X

i
, x

i`1
,2, x

n
)

(i"1,2, n) (4)

and the set Y"M(>
1
,2, >

n
)N. Thus, the set SLY, where the right-hand member of (4) is obtained

by simple evaluation using interval arithmetic [3].
For future reference, it is desirable to have a distinctive notation for the solution of Equation

(3). In place of >
i
and Y, we shall use the notation N

i
(x, X) and N(x, X), which emphasizes the

dependence on X and x.
From Equation (3), we de"ne an iterative algorithm of the form

f (x(k))#g (x(k), X(k)) [N(x(k), X(k))!x(k)]"0 (5a)

X(k`1)"X(k)WN (x(k), X(k)) (5b)

for k"0, 1, 2,2, where x(k) is the centre of X(k).
The components of N(x(k), X(k)) will be computed sequentially. The intersection in (5b) should

be performed as soon as a new component is obtained so that components computed later will
be narrower intervals. And proof of convergence for Equation (5) can be found in Moore [1],
Krawczky [7] and Alefeld [8].
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Figure 3. The steps of interval method.

Now, we consider the robustness stability problem in Section 2. If d
6 i
, d6

i
, i"1,2, n, is given in

Equation (1), we can use the iterative algorithm given in Equations (5) to solve Equation (1). If
there are solutions in box d

i
3[d

6 i
, d6

i
] (i"1,2, n), then we will decrease the size of box, otherwise,

we will increase the size of the box. We can tune the size of box successively until we
get a maximum box from numerical computation such that no solutions exist in the box for
Equation (1).

To illustrate the method described above, suppose n"2, due to this being a two-dimensional
case, hence there are four variables d

6 1
, d6

1
, d

6 2
and d6

2
to be determined. First, let d

6 1
"d

6 2
"!r,

d6
1
"d6

2
"r, as shown in Figure 3(a). If there are no solutions in box d

1
3[d

1
, d

1
] and

d
2
3[d

2
, d

2
], then we increase the magnitude of r. Otherwise, we decrease the magnitude of r.

Until r"dN *
2
, as shown in Figure 3(b). Hold d6

2
"d6 *

2
and let d

6 1
"d

6 2
"!r, d6

1
"r, then tune the

magnitude of r until r"dN *
1
, as shown in Figure 3(c). Then hold d6

1
"d6 *

1
and tune the magnitude of

Dd
6 1

D and Dd
6 2

D again, until Dd
6 1

D"Dd
6 2

D"Dd
N
*D, as shown in Figure 3(d). Thus, we can decide the

magnitude of d
6 1

, d6
1
, d

6 2
and d6

2
and determine the maximum uncertain bounds for d

1
and d

2
.

Simultaneously, to avoid the maximum uncertain bound values tend to in"nite, we will limit the
maximum uncertain bound values less than a which is a very large number.

Finally, we have to note that M(s)3RHn]n
=

in the real uncertainty problem. Let
M( jw)"[R

i,j
(w)#I

i,j
(w) j]; i, j"1,2, n; w3="[0,R), where R

i,j
(w) and I

i,j
(w) are the real
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and imaginary parts of M( jw), and M( j=)"[R
i,j

(=)#I
i,j

(=)j] (i, j" 1,2, n) is an interval
matrix.

Although, we cannot use interval arithmetic to compute R
i,j

(=) and I
i,j

(=) (i, j"1,2, n)
since="[0,R] is an unbounded interval. We can restrict= within [0,wN ], where wN is a very
large number or use the eigenvalue technique [9] to obtain the interval of R

i,j
(=) and I

i,j
(=) for

="[0,R].
We now describe the steps in the interval algorithm. The subroutine for the iterative algorithm

(5) solving Equation (1) is omitted [9, 10].

Step 1: Input r, *r, m and a, let r
N i
"rN

i
"r, *r

N i
"*rN

i
"*r; i"1,2, n.

Step 2: Let I"J"0.
Step 3: Let d

6 i
"!r

N i
, d6

i
"rN

i
; i"1,2, n.

Step 4: Using the iterative algorithm (5a) and (5b), if there are solutions in the box d
i
3[d

6 i
, d6

i
]

(i"1,2, n), w3[0,R], then decrease the size of box: let I"1, *r
N i
"(0.5)J*r

N i
and

*rN
i
"(0.5)J*rN

i
, r
N i
"r

N i
!*r

N i
and rN

i
"rN

i
!*rN

i
(i"1,2, n).

Step 5: Otherwise, increase the size of box, let J"1, *r
N i
"(0.5)I*r

N i
and *rN

i
"(0.5)I*rN

i
,

r
N i
"r

N i
#*r

N i
and rN

i
"rN

i
#*rN

i
(i"1,2, n).

Step 6: If max(*r
N 1

,2, *r
N n

, *rN
1
,2, *rN

n
))m, then determine which r

N j
or rN

j
should be held; let the

r
N j

or rN
j
be held at r

N j
!m or rN

j
!m, and set the corresponding *r

N j
or *rN

j
to zeros, and let

the other *r
N i
"*r and *rN

i
"*r (i"1,2, n); reset I"J"0.

Step 7: If every *r
N i

and *rN
i
(i"1,2, n) are zeros or max(r

N 1
,2, r

N n
, rN

1
,2, rN

n
)*a, then stop and

print out d
6 i

and d6
i
; i"1,2, n.

Step 8: Otherwise, go to step 3.

4. EXAMPLE

In this section, we give a comparison between using k-analysis and the interval method in
determining the stability margins of a real uncertainty problem.

Assume the 5]5 transfer matrix

M(s)"

1

s2#3s#2

1

s2#8s#17

1

s2#3s#2

1

s2#7s#12

1

s2#3s#2
1

s2#12s#61

s!7

s2#9s#22

1

s2#20s#96

1

s2#18s#82

1

s2#27s#170
s#1

s3#6s2#10s#8

1

s2#8s#15

s!1

s2#12s#11

s#5

s3#6s2#11s#6

s#4

s3#11s2#43s#65
1

s#14

1

s2#16s#15

1

s2#2s#10

1

s#7

1

s2#9s#8
1

s2#4s#29

s#1

s2#2s#17

1

s2#10s#74

1

s#3

1

s2#3s#2

,
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and the corresponding real uncertainty matrices

*"

d
1

0 0 0 0

0 d
1

0 0 0

0 0 d
2

0 0

0 0 0 d
3

0

0 0 0 0 d
4

, d
i
3R, i"1,2, 4.

Because k*(M(s))"0.8471, the closed-loop system consists of M(s) and * being stable in E*E
=
)

(k* (M (s)))~1"1.1804. So, the stability margin yielded by k-analysis is Dd
1
D)1.1804,

Dd
2
D)1.1804, Dd

3
D)1.1804 and Dd

4
D)1.1804. But, if we use the interval algorithm described in

the preceding section to compute the stability margin of d
1
, d

2
, d

3
and d

4
. We can obtain the

maximum uncertain bounds !3.1049)d
1
)1.1804, !3.1049)d

2
)1.1804, !3.1049)d

3
)

1.1804 and !a)d
4
)1.1804, where a"10000, within which the system is stable. So, the

stability margin yielded by k-analysis is more conservative than that obtained by using the
interval algorithm.

5. CONCLUSIONS

Recently, the following two important problems have attracted a lot of attention [11}13].

Problem 1 (Stability radii problem). For given matrices A3Cn]n, B3Cn]m, C3Cp]n and a
nontrival partition of the complex plane C"C

g
XC

b
, where C

g
is open region, and *3K is an

unknown disturbance matrix belonging to a given perturbation set Kmeasure the distance of the
stable matrix A to instability, i.e. "nd

BK(A; B, C; C
b
):"infME*E ; *3Km]p, p (A#B*C)WC

b
O0N

where E*E is any operator norm.
Problem 2. For the given stable matrices A, B and C "nd the largest interval matrix *I with

elements belonging to a given perturbation set K such that the interval matrix A(*I)"
A#B*IC is stable.

This two above problems can also be solved by interval method. The real stability radii
problem (K"R) BK(A;B, C; C

b
) can be represented as follows:

BK (A;B,C; C
b
) :" infME*E ; *3Km]p, p (A#B*C)WC

b
O0N

" supMr :p (A#B*C)WC
b
"0, ∀*3*

r
N

where *
r
is de"ned by

*
r
:"M* : *3Km]p, E*E)rN, r3R`

Let *"[d
ij
] (1)i)m, 1)j)p), and det(jI!A*(*)A(*))"D(*, j)"D(d

i,j
, j)"D(d

i,j
, p2),

where p3C
b
WR` and A(*) :"A#B*C.
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If the following two conditions hold:

(a) the intersection C
b
WR` can be formulated in interval-form;

(b) DD*DD)r can also be formulated as d
i,j
3[d

6 i,j
, d6

i,j
], where * are the real perturbation block,

*"[d
i,j

] (1)i)m, 1)j)p); then the interval method can solve real stability radii
problem.

In addition, because of A, B and C are stable matrices for Problem 2, then the necessary
and su$cient condition for A(*I) to be stable is det(I!A*(*)A(*))O0, ∀*3*I. Let
*"[d

i,j
], d

i,j
3[d

6 i,j
, d6

i,j
], it follows that det(I!A* (*)A(*))"f

R
(d

i,j
)#f

I
(d

i,j
) j, where

f
R

and f
I
are the real and imaginary parts of det(I!A*(*)A(*)) depend on d

i,j
(1)i)m,

1)j)p).

Therefore, Problem 2 can be transformed into as a problem of systems of equations as
Equation (1). We can use the interval method (illustrated in Figure 3) to determine the maximum
uncertainty bound d

i,j
at which det(I!A*(*)A(*))O0, ∀*3*I. Therefore, the largest interval

matrix *I can be determined by the interval method within which A(*I ) is stable. The above
results dealing with Problems 1 and 2 are obvious. The reader can easily get the results as the
derivation in Section 2. Hereby, we will not derive them in further detail.

APPENDIX: NOMENCLATURE

det determinant
diagM ) N diagonal matrix
I unit matrix
sup supremum
inf in"mum

Greek letters

* structured uncertainty matrix
k* structured singular value with structured uncertainty matrix *
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