
A coverage-based genetic knowledge-integration strategy

Ching-Hung Wanga, Tzung-Pei Hongb,* , Ming-Bao Changc, Shian-Shyong Tsengc

aChunghwa Telecommunication Laboratories, Chung-Li 32617, Taiwan, ROC
bDepartment of Information Management, I-Shou University, Kaohsiung 84008, Taiwan, ROC

cInstitute of Computer and Information Science, National Chiao-Tung University Hsin-Chu, 30050, Taiwan, ROC

Abstract

In this paper, we propose a coverage-based genetic knowledge-integration approach to effectively integrate multiple rule sets into a
centralized knowledge base. The proposed approach consists of two phases: knowledge encoding and knowledge integration. In the knowl-
edge-encoding phase, each rule in the various rule sets that are derived from different sources (such as expert knowledge or existing
knowledge bases) is first translated and encoded as a fixed-length bit string. The bit strings combined together thus form an initialknowledge
population. In the knowledge-integration phase, a genetic algorithm applies genetic operations and credit assignment at each rule-string to
generate an optimal or nearly optimal rule set. Experiments on diagnosing brain tumors were made to compare the accuracy of a rule set
generated by the proposed approach with that of the initial rule sets derived from different groups of experts or induced by various machine
learning techniques. Results show that the rule set derived by the proposed approach is more accurate than each initial rule set on its own.
q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Developing an expert system requires construction of a
complete, consistent, and unambiguous knowledge base.
Conventional approaches to knowledge base construction
involve interaction and dialogue between knowledge engi-
neers and domain experts. Gaines and Shaw mentioned that
the knowledge required to develop knowledge-based
systems is often distributed among groups of experts rather
than being available for elicitation from a single expert
(Gaines & Shaw, 1993). Acquiring and integrating multiple
knowledge inputs from many experts or by various knowl-
edge-acquisition techniques thus plays an important role in
building effective knowledge-based systems (Baral, Kraus
& Minker, 1991; Boose, 1985; Boose & Bardshaw, 1987;
Gaines, 1989). Integrating multiple knowledge sources in
developing an expert system has the following benefits
(Medsker, Tan & Turban, 1995):

1. Existing knowledge can be reused.
2. Knowledge acquired from different sources usually has

better validity than that from only one source.

3. The resulting knowledge base is usually more compre-
hensive than that from only one source.

4. Knowledge integration by computers facilitates faster
and more inexpensive building of knowledge-based
systems than that by human experts.

Generally, knowledge integration can be though of as a
multi-objective optimization problem (Yuan & Zhuang,
1996), in which, due to the large search space, it is very
difficult to find an optimal solution. A genetic algorithm
(GA) was usually used to discover a desirable but not neces-
sarily optimal set of rules (Cordon, Herrera & Lozano,
1997; Holland, 1985; Holland & Reitman, 1983; Smith,
1980). Several knowledge-integration strategies based on
genetic search have been proposed (Wang, Hong &
Tseng, 1997; Wang, Hong & Tseng, 1998a; Wang, Hong,
Tseng & Liao, 1998b; Wang, Hong & Tseng, 2000).
Wang et al. proposed GA-based knowledge integration
strategies that operated at the rule-set level to auto-
matically integrate multiple rule sets in a distributed-
knowledge environment (Wang et al., 1997, 1998b,
2000). In addition, a self-integrating knowledge-based
brain tumor diagnostic system based on these strategies
was successfully developed (Wang, Hong & Tseng,
1996).

In this paper, we propose a coverage-based genetic
knowledge-integration approach which operates at the rule
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level for effectively integrating multiple rule sets into one
centralized knowledge base. The proposed approach takes
less memory and processing time than those in (Wang et al.,
1998b). It does not need to apply any domain-specific
genetic operators to solve the redundancy (Giarratano &
Riley, 1993), subsumption (Giarratano & Riley, 1993),
and contradiction (Giarratano & Riley, 1993) problems.
Instead, it used an instance-coverage approach to effectively
solve them. In addition, domain experts need not intervene
in the integration process since the work is executed by
computers.

The use of this approach to develop a brain tumor diag-
nostic system is also described. Results show that the
knowledge base derived by our approach is much more
accurate than each initial rule set on its own. These initial
rule set sets may be acquired from different experts or
induced by various machine learning techniques. Results
also show that knowledge integration is a successful appli-
cation of genetic classifier systems.

The remainder of this paper is organized as follows. A
genetic knowledge-integration framework is proposed in
Section 2. The knowledge-encoding strategy used in the
proposed approach is stated in Section 3. The knowledge-
integration strategy used in the proposed approach is stated
in Section 4. Experimental results on the brain tumor diag-
nosis are reported in Section 5. Conclusions and future work
are given in Section 6.

2. A genetic knowledge-integration framework

The proposed genetic knowledge-integration framework
is shown in Fig. 1. Four types of knowledge and data,

including knowledge sets, knowledge dictionaries, data
setsand data dictionaries, may be obtained from various
sources. Knowledge from each source might be directly
obtained by a group of human experts using a knowledge-
acquisition tool, or derived from a machine-learning
method. Here, we assume that all knowledge sources are
represented by rules since almost all knowledge derived
by knowledge-acquisition (K.A.) tools or induced by
machine-learning (M.L.) methods may easily be translated
into or represented by rules.

In Fig. 1, each knowledge set (rule set) is associated
with one knowledge dictionary; and each data set is
associated with one data dictionary. The knowledge
dictionary defines the vocabulary set used in the knowl-
edge set. The vocabulary set defines features and classes
occurring in the condition and conclusion parts of rule sets.
The data set contains a variety of sources including docu-
mentary evidence, instances or historical records. The data
dictionary defines the vocabulary set used in the data set.
The vocabulary set defines features and classes used in the
data sets.

The proposed approach consists of two phases:encoding
and integration. The encoding phase first transforms each
rule among a rule set into an intermediary representation,
and further encodes each intermediary representation as a
bit-string structure. After encoding, the bit strings derived
from various rule sets are gathered together to form an
initial knowledge population, which is then ready for inte-
grating. The integration phase chooses bit-string rules for
“mating”, gradually creating better offspring rules. The
offspring rules then undergo recursive “evolution” until an
optimal or nearly optimal set of rules is found. After evolu-
tion, all the rules in a population are then combined to form
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a resulting rule set. The proposed genetic knowledge-inte-
gration algorithm is stated as follows.

Coverage-based genetic knowledge-integration algorithm:

INPUT: mrule sets from different knowledge sources and
a set of test objects including documentary evidence,
instances or historical records.
OUTPUT:one integrated rule set.

Knowledge-encoding phase:

STEP 1:collect multiple rule sets from various sources
such as expert knowledge or existing knowledge bases.
STEP 2:transform each rule among various sources into
an intermediary representation.
STEP 3: encode the intermediary representation as a
bit string that will act as an individual in the initial
population.

Knowledge-integration phase:

STEP 1:evaluate the fitness value of each rule using the
predefined evaluation procedure and the set of test
objects.
STEP 2:if the predefined number of generations has been
reached, then go to STEP 4; otherwise, do the next step.
STEP 3:select “good” rules and performcrossoverand

mutation operations to generate offspring rules; go to
STEP 1.
STEP 4:combine all the rules in the population to form a
resulting rule set as the final knowledge base.

The proposed algorithm is illustrated in Fig. 2, whereRS1,
RS2, …, RSm are the rule sets obtained from different knowl-
edge sources,rij is thej-th rule in the rule setRSi, andRSis a
resulting rule set integrated fromRS1, RS2, …, RSm. These
two phases are described in detail in the following sections.

3. Knowledge-encoding phase

Having an appropriate data structure to encode rule sets is
very important to the genetic learning systems. Two general
approaches have been proposed to represent knowledge
structures and work on genetic learning systems. One is
the classifier systems with genetic operations and credit
assignment applied at the rule level, that encode individual
rules into fixed-length bit strings (Holland, 1985; Holland &
Reitman, 1983; Wilson, 1994). The other is the classifier
systems with genetic operations and credit assignment
applied at the rule-set level, that encode rule sets into vari-
able-length bit strings (Carse, Fogarty & Munro, 1996;
DeJong, Spears & Gordon, 1993). Since each genetic opera-
tion in our proposed approach is applied at the rule level,
representation of fixed-length rules is preferred here. Each
rule is then encoded as a fixed-length chromosome. During
encoding, each rule must first be translated into a uniform
intermediate representation, which is similar to that in Wang
et al. (1998b), to preserve its syntactic and semantic
constraints.

The steps for translating each rule into an intermediate
representation are described below.

1. Collect the features and possible values occurring in the
condition parts of all the rule sets and objects. All
features gathered together comprise the global feature
set.

2. Collect classes (i.e. possible conclusions) of objects
occurring in the conclusion parts of all the rule sets and
objects. All classes gathered together comprise the global
class set.

3. Translate each rule into an intermediate representation
that retains its essential syntax and semantics. If some
features in the global feature set are not used by the rule,
dummytests are inserted into the condition part of the
rule. Each intermediate rule is then composed ofN
feature testsand oneclass pattern, whereN is the number
of global features collected.

Here, an example for deciding what sport to play accord-
ing to Sunday’s weather (Yuan & Shaw, 1995) is given to
demonstrate the process of forming intermediate representa-
tion. Three sports {Volleyball, Swimming, Weight-lifting}
are to be decided by four features {Outlook, Temperature,
Humidity, Wind}. Assume FeatureOutlook has three
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possible values {Sunny, Cloudy, Rain}, FeatureTempera-
ture has three possible values {Cool, Mild, Hot}, Feature
Humidity has two possible values {Humid, Normal}, and
Feature Wind has two possible values {Windy, Not-
windy}. Also, assume that a rule setRSq from a knowledge
source has the following three rules:

rq1: If (Temperatureis Mild) and (Wind is Not-windy)
thenVolleyball;
rq2: If (Outlook is Sunny) and (Temperatureis Hot) then
Swimming;
rq3: If (Outlook is Rain) and (Temperatureis Hot) then
Weight-lifting.

The intermediate representation of these rules would then
be:

r 0q1: If (Outlook is Sunny or Cloudy or Rain) and
(Temperature is Mild) and (Humidity is Humid or
Normal) and (Wind is Not-windy) thenVolleyball;
r 0q2: If (Outlook is Sunny) and (Temperatureis Hot) and
(Humidity is Humid or Normal) and (Wind is Windy or
Not-windy) thenSwimming;
r 0q3: If (Outlook is Rain) and (Temperatureis Hot) and
(Humidity is Humid or Normal) and (Wind is Windy or
Not-windy) thenWeight-lifting.

The tests with underlines aredummy tests. Also, r 0qi is logi-
cally equivalent torqi, for i � 1;2; 3: After translation, the
intermediate representation of each rule is composed of four
feature tests and one class pattern.

Although the intermediate representation may include
irrelevant tests and increase search space during integration,
it can easily map each intermediate rule into a fixed-length
string representation. The condition part of each intermedi-
ate rule is represented in a conjunctive form with internal
disjunctions that can describe complex rules. Irrelevant tests
(don’t-cares) can also be removed in the knowledge decod-
ing process after the knowledge-integration phase is
finished.

After translation, each intermediate rule in a rule set is
ready for being encoded as a bit string. If thefeature testsor
class patternsare numerical, they are first discretized into a
number of possible intervals. Each feature test is then
encoded into a fixed-length binary string, whose length is

equal to the number of possible test values. Each bit thus
represents a possible value. For example, the set of legal
values for featureOutlook is {Sunny, Cloudy, Rain}, and
three bits are used to represent this feature. Thus, the bit
string 101 would represent the test forOutlook being
“Sunny” or “ Rain”. Similarly, the class pattern is encoded
into a fixed-length binary string with each bit representing a
possible class.N feature tests and one class pattern are then
encoded and concatenated together as a fixed-length rule
substring. Each rule in the intermediary representation is
then encoded as a fixed-length bit string. The length of
each rule would then be:

Length�rule� �
XN
i�1

number of possible values for Feature�i�
" #

1number of Classes;

whereN is the number of features. The process of encoding
intermediate rules is illustrated by the following example.

Continuing the above example, assume each intermediate
rule inRSq is to be encoded as a bit string. The ruler 0q1 is first
encoded as shown in Fig. 3.

Since featureOutlookin r 0q1 has three possible test values
{ Sunny, Cloudy, Rain} which mean “Outlook is Sunnyor
Cloudy or Rain”, the test ofOutlook is then encoded as
“111”. Similarly, Humidityis encoded as “11”.Temperature
has only one test value,Mild, and is then encoded as “010”.
Also, Wind is encoded as “01”. As a result, each intermedi-
ate rule inRSq is encoded into a chromosomes as shown in
Fig. 4.

After knowledge encoding, the genetic process chooses
bit-string rules for “mating”, gradually creating good
offspring rules. The offspring rules then undergo iterative
“evolution” until an optimal or a nearly optimal set of rules
is found.

4. Knowledge-integration phase

In the knowledge-integration phase, genetic operations
and credit assignment are applied at the rule level. All the
rule strings among various rule sets together form an initial
rule population for later integration. Good rules are then
selected for genetic operations to produce better offspring
rules. The genetic process runs generation after generation
until certain criteria (such as a given number of generations,
given processing time, or convergence of fitness values)
have been met. After evolution, all the rules in a population
are then combined to form a resulting rule set. Details are as
follows.

4.1. Initial population

The GA requires a population of individuals to be initi-
alized and updated during the evolution process. In our
approach, the initial set of bit strings for rules comes from
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Fig. 3. Bit-string representation ofr 0q1.

Fig. 4. Bit-string representation ofRSq.



multiple knowledge sources. Each individual within the
population is a rule, and is of fixed length. If all of rule
sets havek rules, then the initial population size isk.

4.2. Fitness and selection

In order to develop a “good” knowledge base from an
initial rule population, the GA selectsparent rules with
high fitness values for mating. An objective evaluation func-
tion and a set of test objects, including documentary
evidence, instances or historical records, are used to qualify
the rules. Three important factors including accuracy,
utility, and coverage of the resulting rules are considered
in the evaluation (Yuan & Zhuang, 1996). LetU be the set
of test objects. The accuracy of a ruleri is evaluated using
test objects as follows:

Accuracy�ri� �
uVU

ri
u

uVU
ri

u 1 u /VU
ri

u
;

whereVU
ri

is the set of test objects inU correctly predicted
by ri, /VU

ri
is the set of test objects inU wrongly predicted by

ri, anduVU
ri

u andu /VU
ri

u denote their cardinality. A test object
is wrongly predicted by a ruleri if it is matched byri and its
original class is not equal to the class determined byri.
Obviously, the higher the accuracy of a rule is, the better
this rule is.

Since an object may be simultaneously classified by
several rules, the utility for each rule is different and must
be measured. If an object is correctly predicted by only one
rule, this rule is then necessary to correctly classify the
object, and its utility value equals 1. If an object is correctly
classified bym rules, these rules then share the utility and
each rule’s utility value is only 1/m. The total utility of a rule
is then evaluated by the sum of its individual utility values
for the set of test objects. The utility of a rule (ri) is defined

as follows:

Utility �ri� �
X
e[U

F�r i ;e�X
r

F�r i ; e�
;

whereU is the set of test objects,e is a test object inU, r is a
rule in the current population, and

F�r ;e� �
1 if e is correctly classified by a ruler ;

0 otherwise:

(

Finally, the coverage of a derived rule (ri) is defined as
follows:

Coverage�r i� � uVU
ri

u 1 u /VU
ri

u:

The coverage of a ruleri is then the number of objects in
U matched by the rule condition. Obviously, the larger the
coverage, the more general the rule. The three quality func-
tions mentioned above are then considered to determine
the fitness values of the rules. Although high accuracy,
utility, and coverage are desired, these cannot usually
be satisfied at the same time. Trade-offs between them
must be made.

Our purpose is to obtain a concise set of rules with high
accuracy. Thus, we first sort the rules in descending order of
their products of accuracy and utility. The rule with the
largest product is first considered to calculate its coverage,
and all the test objects covered by this rule are removed
from the object set. The fitness of this rule is evaluated
according to its accuracy, utility, and coverage values.
The same procedure is repeated to calculate the coverage
and the fitness value of the next rule based on the remaining
object set until the rules in the population are all evaluated.
The simultaneous cooperation and competition of individual
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Table 1
A set of test objects

Case Outlook Temperature Humidity Wind Sports

Sunny Cloud Rain Hot Mild Cool Humid Normal Windy Not-windy Volleyball Swimming W-lifting

1 1 0 0 1 0 0 1 0 0 1 0 1 0
2 1 0 0 1 0 0 0 1 0 1 1 0 0
3 0 1 0 1 0 0 0 1 0 1 0 1 0
4 0 1 0 0 1 0 0 1 0 1 1 0 0
5 0 0 1 1 0 0 0 1 1 0 0 0 1
6 0 1 0 0 0 1 1 0 0 1 0 0 1
7 0 0 1 0 0 1 0 1 0 1 0 0 1
8 0 1 0 0 0 1 0 1 0 1 1 0 0
9 1 0 0 1 0 0 1 0 1 0 0 1 0

10 1 0 0 0 0 1 0 1 1 0 0 0 1
11 1 0 0 1 0 0 1 0 0 1 0 1 0
12 0 1 0 0 1 0 0 1 0 1 1 0 0
13 1 0 0 0 1 0 0 1 1 0 0 0 1
14 0 1 0 0 1 0 0 1 1 0 0 0 1
15 0 0 1 0 0 1 1 0 1 0 0 0 1
16 1 0 0 0 1 0 0 1 0 1 1 0 0



rules within the population can thus be considered. The
evaluation procedure is described as follows:

Step 1. Let the set of test objects beU.
Step 2. For each ruleri in the population, calculateAccur-
acy(ri) andUtility (ri).
Step 3. Sort the rules in descending order of products of
accuracy and utility values.
Step 4. Calculate the coverage value (for the object setU)
of the first rule in the sorted list, and set the fitness value
of the rule as the product of the accuracy, the utility and
the coverage.
Step 5. Remove the objects covered by the first rule, say
rj, in the sorted rule list from the current object setU, i.e.
U � U 2 VU

rj
2 /VU

rj
:

Step 6. Remove the first rule from the sorted list.
Step 7. Go to Step 4 until the sorted list is empty.

Below, an example is given to illustrate this fitness
evaluation process. Continuing the above example, assume
a set of test objects is shown in Table 1 (Yuan & Shaw,
1995).

Also assume the following thirteen initial rules have been
obtained from different knowledge sources:

r1: IF (Temperatureis Mild) and (Windis Not-windy) then
Volleyball;
r2: IF (Temperatureis Hot) and (Outlookis Cloudy) then

Swimming;
r3: IF (Temperatureis Hot) and (Outlook is Sunny) then
Swimming;
r4: IF (Temperatureis Hot) and (Outlook is Rain) then
Weight-lifting;
r5: IF (Temperatureis Cool) thenWeight-lifting;
r6: IF (Temperatureis Mild) and (Wind is Windy) then
Weight-lifting;
r7: IF (Temperatureis Hot) and (Outlookis Cloudy) then
Swimming;
r8: IF (Temperatureis Hot) and (Outlook is Sunny) then
Swimming;
r9: IF (Temperatureis Mild) and (Windis Not-windy) then
Volleyball;
r10: IF (Outlook is Rain) thenWeight-lifting;
r11: IF (Temperatureis Cool) thenWeight-lifting;
r12: IF (Wind is Windy) then Weight-lifting;
r13: IF (Temperatureis Cool) thenVolleyball;

Redundancy, subsumption and contradiction exist among
these rules and are listed in Table 2.

The accuracy and the utility of each rule in the population
are first calculated. The results are shown in the columns
“accuracy” and “utility” of Table 3.

The rules are thus sorted in descending order of products
of their accuracy and utility values. The list of sorted rules is
thus {12,1,5,11,9,3,8,6,10,2,7,4,13}. Since rule 12 has the
largest product of accuracy and utility (i.e. 0:83p 1:916�
1:59�; its coverage and its fitness are first calculated as
u{5,9,10,13,14,15}u(� 6) and 0:83p 1:916p 6�� 7:915�:
The objects 5,9,10,13,14, and 15 covered by rule 12 are
then removed from the object set, and the remaining object
set becomes {1,2,3,4,6,7,8,11,12,16}. Also, rule 12 is
removed from the sorted list after its fitness evaluation is
finished.

The same procedure is repeated to select the rule with the
largest product of accuracy and utility values from the new
rule list {1,9,5,11,3,8,6,10,2,7,4,13}, and to calculate its
coverage and the fitness value based on the remaining object
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Table 2
Redundancy, subsumption and contradiction in the above example

Rule No. Rule No. Relationship

1 9 Redundancy
2 7 Redundancy
3 8 Redundancy
4 10 Subsumption
5 11 Redundancy
6 12 Subsumption
5 13 Contradiction

11 13 Contradiction

Table 3
The evaluation process for the above example

Rules Accuracy (%) Utility Accuracyp utility Coverage Fitness V ri /Vri U � U 2 Vri
2 /Vri

12 83 1.916 1.59 6 7.915 {5,10,13,14,15} {9} {1,2,3,4,6,7,8,11,12,16}
1 100 1.5 1.5 3 4.5 {4,12,16} – {1,2,3,6,7,8,11}
9 100 1.5 1.5 0 0 – – {1,2,3,6,7,8,11}
5 80 1.416 1.13 3 3.39 {6,7} {8} {1,2,3,11}

11 80 1.416 1.13 0 0 – – {1,2,3,11}
3 75 1.5 1.125 3 3.375 {1,11} {2} {3}
8 75 1.5 1.125 0 0 – – {3}
6 100 1 1.0 0 0 – – {3}

10 100 0.916 0.916 0 0 – – {3}
2 100 0.5 0.5 1 0.5 {3} – –
7 100 0.5 0.5 0 0 – – –
4 100 0.333 0.333 0 0 – – –

13 20 1.0 0.2 0 0 – – –



set {1,2,3,4,6,7,8,11,12,16}. The process will continue until
the rules in the population are all evaluated. The evaluation
process is shown in Table 3.

After the evaluation process is performed, rules with low
fitness values are eliminated. For example, rules
4,6,7,8,9,10,11, and 13 with fitness values 0 are eliminated.
After these rules are deleted, all the redundancy, subsump-
tion, and contradiction listed in Table 2 disappear. The
fitness evaluation process can thus generate a concise set
of accurate rules from the population.

4.3. Genetic operators

Crossoverandmutationoperators are applied to rules for
knowledge integration. The crossover operation is the same
as that in the simple genetic algorithm (SGA) proposed by
Holland (Holland, 1975). An example of a crossover opera-
tion is given below.

Continuing the above example, assumer1 and r7 are
chosen as the parents for crossover. Assume the crossover
point is set at the third gene. The crossover operation is
shown as in Fig. 5.

The two newly generated offspring rules are then:

Child 1: IF (Outlook is Cloudy) and (Temperatureis
Mild) and (Wind is Not-windy) thenVolleyball.
Child 2: IF (Temperatureis Hot) thenSwimming.

The mutation operator is the same as that in the SGA
proposed by Holland. It randomly changes some elements
in a selected rule and leads to additional genetic diversity to
help the process escape from local-optimum “traps”. An
example of a mutation operation is given below.

Continuing the above example, assumer1 is chosen for
mutation. Assume the mutation point is set at the third gene.
The mutation operation is shown as in Fig. 6.

5. Experimental results

The brain tumor diagnostic problem (Wang, Tseng &
Hong, 1995) was used to test the performance of the
proposed approach. The 504 cases used in these experiments
were obtained from Veterans General Hospital (VGH) in
Taipei, Taiwan (Wang et al., 1995). The goal was to identify
one of six possible classes of brain tumors, includingPitui-
tary Adenoma, Meningioma, Medulloblastoma, Glioblas-
toma, Astrocytoma, and Anaplastic Protoplasmic
Astrocytoma, which are frequently found in Taiwan. The
numbers of possible feature values and class patterns are
shown in Table 4.

The 504 cases were first divided into two groups, a train-
ing set and a test set. The training set was used to evaluate
the fitness values of rule sets during the integration process;
the test set acted as input events to test the resulting rule set,
and the percentage of correct predictions was recorded. In
each run, 70% of the brain tumor cases were selected at
random for training, and the remaining 30% of the cases
were used for testing. Ten initial rule sets were obtained
from different groups of experts at VGH (Wang et al.,
1995; Wang et al., 1996), or derived via machine-learning
approaches such as PRISM (Cendrowska, 1987), CN2
(Clark & Niblett, 1989) and ID3 (Quinlan, 1986). Each
rule, consisting of twelve feature tests and a class pattern,
was encoded into a bit string of 105 bits long. The accuracy
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Fig. 5. Crossover operation for the above example.

Fig. 6. Mutation operation for the above example.

Table 4
Numbers of feature values and class patterns in the brain tumor diagnosis

Feature Number
of values

Feature Number
of values

Sex 2 Enhancement degree 4
Location 44 Enhancement appearance 9
Precontrast 6 General appearance 9
Calcification 4 Bone change 6
Edema 4 Mass effect 3
Shape edema 5 Hydrocephalus 3
Number of classes: 6

Table 5
The accuracy of the ten initial rule sets

Rule sets Accuracy (%) No. of rules Rule sets Accuracy (%) No. of rules

Rule set 1 60.03 52 Rule set 6 77.89 56
Rule set 2 79.81 56 Rule set 7 68.53 52
Rule set 3 73.24 56 Rule set 8 72.83 53
Rule set 4 64.74 53 Rule set 9 76.24 56
Rule set 5 58.67 52 Rule set 10 70.19 53



of the ten initial rule sets was measured using the test
instances. The results are shown in Table 5.

Although the ten initial rule sets were not accurate
enough, however, they could still act as a set of locally
optimal solutions that indicate useful information in the
search space. Beginning with these rule sets, the proposed
genetic knowledge-integration approach could then reach
the nearly optimal global solution more rapidly than it
could have with nothing to refer to.

In the experiments,crossoverand mutation ratios were
set to 0.9 and 0.04, respectively. Fig. 7 shows the relation-
ship between fitness values of the best rule and number of
generations.

It is easily seen from Fig. 7 that as the number of genera-
tions increased, the resulting fitness value also increased,
finally converging to 5.03 approximately. Fig. 8 shows the
relationship between average accuracy of the resulting
rule sets and number of generations in the knowledge
integration.

The knowledge-integration process obtained an accuracy
rate of 92.8% after 1000 generations (5533.2 s). The rule
number and the complexity of the resulting rule set, aver-
aged over 50 runs, were, respectively, 37 and 0.686.

6. Conclusions and future work

In this paper, we have shown how the knowledge-integra-
tion task can be effectively represented and addressed by the
proposed coverage-based genetic strategy. Our approach
differs from some other previous knowledge-integration
approaches mainly in that it needs no human experts’ inter-
vention in the integration process. The time spent by our
approach thus depends on computer execution speed, but
not on human experts. Much time can thus be saved since
experts may be geographically dispersed and experts’
discussions are usually time-consuming (Hamilton, 1996;
LaSalle & Medsker, 1991). Our approach is also objective,
since human experts are not involved in the integration
process. Besides, our approach is a scalable integration
method that can be applied as well when the number of
rule sets to be integrated increases. The CPU time increased
is small when compared to human-intervening knowledge-
integration approaches.

Although the work presented here shows good results, it
is only a beginning. Some future investigations are still
needed. For example, the vocabulary problem in the field
of knowledge integration remains a troublesome impedi-
ment. Our approach assumes that all rule sets use the
same vocabulary set. Integrating rule sets having different
vocabularies is still full of challenge. Also, several issues in
the field of knowledge verification remain unresolved. Our
approach addresses three commonly seen issues, redun-
dancy, subsumption, and contradiction. Dealing with other
knowledge verification issues in the integration is an inter-
esting topic.
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