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Abstract

W, J.-5. and R.-J. Chen, The towers of Hanol problem with cyclic paralisl moves, Information Pmessing Letters 46 (1993}

1-6.

This peper discusses a variamt of the towers of Hanoi problem with cyelic parallel moves. We propose an algorithm for this

prebiem and show that the algorithm is optimal.
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1, Imtroduction

The towers of Hanoi problem is extemsively
discussed in [1-5], among which Atkinson [1]
especially focuses on the variant of the towers of
Hanol problem with cyclic moves end Wu and
Chen [S] discuss the variamt of the towers of
Henoi problem with parallel moves. This peper
proposes & combined variant: the towers of Hanoi
problem with cyclic perallel moves, as presented
in the following.

Suppose there are three pegs (A, B, C), and »
disks of different slzes are placed in small-on-large
ordering on peg A. The object is to move all the
n disks from peg A4 (o elther peg B or peg € in
original order. The rules of disk moves are:

Rule 1. BEvery top disk can be simultanzously
moved from its original peg to the next peg n
clockwise direction 4 —+ B — £ = A, at a time.

Correspondence to; J-S. Wiy, Dépmmmm of Computer Sci-
snse and Information Enginesring, Natisnal Chizo-Tung Uai-
versity, Hsinchu 300, Takvan, ROC. )

Rule 2. No disk is ever placed upon a smaller -
one.

In other words, three types of move including
single move, consecutive move and circuiar move
can be made. These moves are presented inm Fig.
1.

2, The cptimal algorithnm

In this section we propose &n glgorithm for the
towers of Hanol problem with cyclic parallel
moves and prove its optimality. The notation to
be used consistently throughout this paper is de-
scribed as follows.

Nortation:

A, B, C: A is FROM peg, § and C are TO

pegs.

Aldy, dg,...): pegA with disks dy, d;,..., from
top to bottom; similarly for

Bdy, dy,...) end Cld,, ds,...).
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Fig. 1. Thres maoves: (a) single move, {b) consecutive move, (c) circular move.
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Fig. 2. Two transformation ¢legrams. (a) Transformation diagram from R(A(L,...,2), B{0), C(0)) into R(A0), B(L,...,n), SO
(b) Tronsformation disgram from R{A(L,..., s} 200, CIOY imto R{A(D), A CL,.... 2
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AWQx peg A with no disk; similarly for
B(0) and C(0).

R(A, B,C) state of pegs A, B znd C.

en): the minimal number of disk moves

required to trensfer » disks to the
next position clockwise (4 =5 —
C—A).

aln); - the minimal number of disk moves
required to transfer » disks to the
next position anticlockwise (A4 —
C - B = A)

An optimel algorithm is derived from the fol-
lowing lemmas and proved to be correct.

Llemmsa 1. For n 3 1, the minimal number of disk
moves for transforming R{A2,..., n), B(1), C{O)
tnto R(AQ), B(1,...,n), C{O)), is c{a)— 1.

Proof. For n» 1, c@ﬁsﬁd@r the optima! transfor-
mation of R(A(L,...,mn), B©O), C@O) into
R(AW), BQ,...,n), C(O). The first disk move is

R{A(L,...,n), B{0), C(O))
- R{A(2,...,18), B(1), C(0}).

Hence the minimal number of disk moves for
transforming  R(A(, ..., n) B(), CO) into
ROA), B(,....n), CON, s c(m)=1. O

Lemma 2. For n » 1, the minimal numbers of disk
moves are c{n) — 1, for the following irensforma-
fons,
(1) transforming R{A(1,
R(A(L), BQ,...,n). CO),
(2 transforming R(AQ,..
R(AWD, B4,...,n), CWOk
and a(n) = 1, for the following transformations,
(D transforming R(A(L,
R(A@), BQ), C2,...,n),
() transforming R(A,..
RUAW), BO), C(,....m).

.o oo 1), B(O), CO) into
. ), B, COD) inso

., 1), B(1), CLO)) into
Proof By Lemma 1, this lemma is obviously
shown. O

Lemma 3. For » 3 3, consider the opiimal trans-
formation of R(A(L,...,n), BQ), C@) ino
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R(A®), BU,...,n), COY; the dewils of disk
maoves are shown in Fig. 2(a).

Proof. For = » 3, the transformation of
R(A(L, ..., m), B(D), C) iato R{A(D),
B(,...,n), C(0)) can be divided into three steps:

Step 1 shows the transformation of
R(A(L, ..., n, B{O), C({0}) into the state prior to
‘disk n being moved from peg A to peg £,

Step 2 shows the move of disk # from peg A
to peg B,

Step 3 shows the transformation of the state
when disk n has been moved from peg A to peg
B into R{(AQ), B(,...,n), CO).

in the final state of Step I, only disk # is on
peg A, and disk 1 or disk 2 or none is on peg B
while the others are on peg C. And in the initial
state of Step 3, only disk # is on peg B, and disk
1 or disk 2 or none is on peg A while the others
are on peg C. Hence the (ransformation diagram
is shown in Fig. 2{s). O

Lemma 4. For n.» 3, consider the optimal trans-
formation of R(A(L....n), B(O), CQO)) inio
R(AQ), B@), C(l,...,n)); the details of disk
moves are shown in Fig. 2(b).

Proof. The transformation R{AQ1,..
CO) into R{AWQ), B(,...
vided into five steps:

Step 1 shows the transformation of
R(AQ,...,n), BO), CQ) into the state prior to
disk # being moved from peg A to peg B,

Step 2 shows the move of disk » from peg A
to peg B,

Step 3 shows the trensformation of the state
when disk » has been moved from peg A4 to peg

. 0, B(O),
,%), C(0)) can be di-

"~ B ineo the state prior to disk » being movcdl from

peg Biopeg C, -

Step 4 shows the move of disk = from peg B to
peg €,

Srep 5 shows the transformation of the state
when disk z has been moved from peg B to peg
C into R(ALD), B(®), CQ,....n)).

Flrst, in the final state of Step 1, only disk 2 is
on peg A, znd disk 1 or disk 2 or none is on peg
B while others are on peg C. Later, in the initial
state of Step 3, only disk » is on peg B, and disk

3
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1 or disk 2 or none is on peg A while others are
on peg C; and in the final state of Step 3, oaly
disk = is on peg B, and disk 1 or disk 2 or none is
on peg C while cthers are on peg A. Finally, in
the initial state of Step S, only disk # is on peg €,
and disk 1 or disk 2 or none is on peg B while
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others are on peg A. Hence the transformation
diagram is shown in Fig. 2(b). O

Lemmea §. For n » 2, the minimal numbers of disk
moves for transforming R(AC, 3,...,n), B(2),
CWO) into R(AWQ), BQ,...,n) CO) end
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1 1
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Fig. 3. Two optimsl transformation dlegrams. (@) Optimal transformation of R(A(L,...,n) B{0) COY) imto
RLAWO), B(L,.... 50 CO). (b) Optimal transformarion of R{AC, ..., B(0), CO inte R(AW}, B0}, CL,.... =)



Yolume 46, Number 1

RCA), BWO), C(L,...,nY), are c{n) -3 and aln)
— 3, respeciively.

Proof. We want to prove this lemma by induction.
It is clearly true for m = 2. We assume this lemma
is true for # — 1. This assumption imgplies

{1} the minimal numbers of disk moves for
transforming R(A(, 3,...,a-1), B@), CO)
into R(AD), B(L,...,n=1), CO) and R{A(),
B, c(,...,n— 1)), are ¢c{n — 1) — 3 and a(n —
i) = 3, respectively; :

(2) the minimel numbers of disk moves for
transforming R{A(L,...,n — 1), B(0), C{0)) into
R(AZ), B{, 3,....mn—1), CON and R(AQD)
B(2), C(l, 3,....,5=1), ate clmn—1)=3 and
alm — 1)~ 3, respectively.

By Lemmas 1 and 2 and the above two results,
we obtain

(3) the minimal numbers of disk moves for
transforming R(AGZ,....n - 1), B(1), C(O) intoc
R(A(2), B(, 3,...,n—1, CO) and R(AQ,
3....,n—1), B2, C(O) into R(AC), BZ,....,n
- 1), C(O)), are both c(n — 1) — 4.

Because the minimal numbers of disk moves
for transforming R(A(L,...,m -1}, B(@), COD
into R(A(L, 3,...,8 = 1), B(Z), C(0)) and R(A(2],
B(1, 3,...,a—1), COY) into R(AD), B{,...,n
= 1), C{0}), are both 3, it is cbvicus that

(4) the minimal number of disk moves for
transforming R(A(L, 3,...,m-1), B(2), COP
into R(A(), B, 3,...,n—1), C(O)) is at least
elm~1)~6.

By Lemma 3 and 4 and the above four results,
we obtain Fig. 3. In Fig. 3{a), there is the optimal
transformation of R(A(L,...,n), BO), CO) into
R{A(C), B(L,...,n), WO

R{A(1,...,n), B(B), C(0))
- R{A(#), B(1), C(2,...,n - 1))
= R{A(2), B(n), C{L, 3000008 ~1))
- R( A(0), B(1,...,m), C(0)).

Because the minimal numbers of disk moves for
transforming R{A(L,...,n), BO), €O into
R(ACL, 3,...,2), B(2), CO)) and R{A(L, XY )8
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B(2), C0) into R{A(n), B(1), C...,0=1))
are 3 and e(n ~ 1} =~ 4, respectively, the optimal
rcrmsformati@n can be modified as:

R(A(1,...,n), B(D), C(0))
< R(A(1,3,...,5), B(2), C(0))
- R{A(n), B(1), C(2,...,a =13} =
— R{ A(0), B(1,...,5), C(0)).

Hence we have proven that the minimal number
of disk moves for transforming R(A(L, 3,...,74),
B@), C(O)) into R(AW), B(,...,n), CON is clx)
— 3. By the same method, we 2lso prove that the
minimal number of disk moves for transforming
&AL, 3,...,n), B(2), CO) into R(A0), B(D),
CQ,...,7Nis a(n)~3 in Fig. 3(b). D

Theteem 6. Fornz 3, c(n)=2-aln-1)-3 and
a(m)sz-a(n—ll)-ﬁ-c{n—l)—é,

Proof. By Lemma 5 and Fig. 3, we obtain ¢{n)=
laln—1D-1U+1+[en~-1)=3]=2 -aln-1)
-3 and g{n) =[ala — 1) = 1]+ 1 + [c{n — 1) - 4]
+1+[eln-D=3=2-2eln-D+cln-1)-6,
formzs3. 0O '

" Finglly, applying the two recurrence relations
in Theorem 6, we obtzin c(n)} and a(a) as fol-
lows.

Theorem 7. For n 3 3,

1+v3)" "+ - ﬁ)”’l]
5 L+ 3,

i} [(1+ﬁ)“+(1-ﬁ)"}]
4

c(n)=

a(m) +3.

Proof. It is trivial that c{1), a(1), c(2) and (2) are
1, 2, 4, and §, respectively. By rscurrence rela-
tions in Theorem 1, c{n)=2-aln—1)=3 and
a(m)=2-alm— 1) =c(n — 1) - 6, we have c(n) =
[(L+3Y- '+ -3 ""/2+3 and aln)=
(L+3)V+1 -3 4+3,formp3 O
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