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Abstract

Huang, T. and M. Laurent, (s, r; u)-nets and alternating forms graphs, Discrete Mathematics 114
(1993) 237-252.

The equivalence between Bruck nets and mutually orthogonal latin squares is extended to (s,r; p)-
nets and mutually orthogonal quasi frequency squares. We investigate geometries arising from
classical forms such as bilinear forms, alternating bilinear forms, hermitian forms and symmetric
forms and show that (s, r; u)-nets provide the right building blocks for each of these geometries with
suitable values of . Toward the goal of geometric classification of distance-regular graphs, the local
structure of the case of alternating forms graphs is stressed.

1. Introduction

The structure of (s, 7; w)-nets includes Bruck nets as the special case of u=1 and their
duals are transversal designs TD,, [r, s] introduced by Hanani [6]. Indeed, (s,r; u)-nets
are equivalent to affine designs S,(1, sy, s*x) and to orthogonal arrays OA,(s,7), and in
this language they have been studied since around 1945. A survey on the geometric and
group-theoretic aspects of (s, r; u)-nets can be found in [11], where problems concerning
existence, completion and geometric configurations are emphasized.

In Section 2, we recall the notion of (s, r; y)-nets, the procedure of ‘inflation’ is used
for constructing (s,7; u)-nets from existing (s,r; 1)-nets. In Section 3, the notion of
quasi frequency squares is introduced and then we prove the equivalence between
(s,7; p)-nets and sets of mutually orthogonal quasi frequency squares, which includes
the well-known relationship between Bruck nets and sets of mutually orthogonal latin
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squares as a special case. After reviewing how nets (with u=1) provide the right
building blocks for the lower semilattice &, (V, W) [4] by using Sprague’s [ 14] result
on the characterization of d-dimensional nets, we study in Section 4 the geometries
associated with classical forms (alternating bilinear forms, symmetric forms, hermitian
forms and bilinear forms) and show how their local structures involve (s, r; u)-nets
(with p>2). We also emphasize the relationships between these geometries and the
association schemes of affine type carried by each family of the above classical forms.
In the final section, we further investigate the geometric properties of the association
schemes defined over alternating bilinear forms, hence covering the initial step toward
the problem of characterization of their graphs by their intersection arrays.

2. (s,r;p)-nets

In this section, first we xshall recall the notion of (s, r; u)-nets, and then a specified
class of (s, 7; u)-nets which can be obtained from given (s, r; 1)-nets by the procedure of
‘inflation” will be studied. The diagram

(11,

o

@]

is introduced for the class of duals of (s, r; u)-nets.

A finite incidence structure I = (2, 4, €) is called a (s, r; u)-net of multiplicity p if the
block set % can be partitioned into r (r = 3) block classes #,,%,, ..., %, such that

(N1) the blocks of each block class #; form a partition of 2,

(N2) any two blocks from distinct block classes meet at u points,

N3) one of the block classes consists of s blocks.

Since r =3, it follows that each block class #,, 4,, ..., %, consists of s blocks, each
block in # consists of su points, each point lies on exactly r blocks and, hence,
|P|=sp.

For an (s, r; p)-net, it is known that [11] r < (s?u — 1)/(s — 1), with equality holding if
and only if it is an affine 2-design. Indeed, if r=(s?>u—1)/(s — 1), then any two points
are on precisely A=(spu—1)/(s—1) blocks. The sets T(r,u) of integers s for which
(s,r; u)-nets exist were investigated by Hanani [6]; in particular, he showed that
seT (7, u) for every s>1 and every u=2. Recently, Ray-Chaudhuri and Singhi [13]
have shown that, for given r and s, there exists an (s, 7; u)-net whenever u is sufficiently
large. (s,r; 1)-nets are simply the well-studied classical Bruck nets; for example, the
existence of an (s, r; 1)-net is equivalent to the existence of each of the following structures:

(1) r—2 mutually orthogonal latin squares of order s,

(2) an orthogonal array OA(s, 1),

(3) an affine design S,(1,s,s?),

(4) a transversal design TD[r, s].

The intersections among blocks would shed light on the structures of (s, r; u)-nets, in
particular when p>2. Let II = (&, %, €) be a (s, r; p)-net; for any two blocks B and B’ of
I1, we write B//B’ if they are in the same class (so BAB’ =), and B# B’ otherwise (so



(s, r; u)-nets and alternating forms graphs 239

|BnB'|=p). For Be%;, and j#1i, let
&;(By={BnB'|B'eB,},
EB)= |J ¢&,B).

1<j<sr
J#Ei
Clearly, each &;(B), 1 <j<r and i#}, forms a partition of B. For 1<i, j<r, i#], let

&:;={BNB'|Be%,;, B'cB,;},
and

E= |J &

1 < i,j_s r
P#])

Then &;; forms a partition of 2, and elements of & =(%;) are called lines. For distinct
pairs (i, /) and (i, j'), where 1 <i,1',j,j <r, i#j, i’ #j', the two partitions £;; and &;.; of
the point set 2 do not necessarily coincide. An interesting special case is when all such
partitions coincide, i.e., §;;=&;; for all 1 <i,j,i',j'<r, with i#j, i’ #j'. This happens
exactly when the following condition (*) holds:

(%) For any two intersecting blocks B and B’ (say Be%#,, B'e#,),
there exist blocks B;e #;, 1 <i<r, such that BnB' =<, B;.

On the other hand, we may define a relation =~ on # in such a way that, for any x,
ye?, x~yifand only if x, ye BN B’ for some distinct blocks B, B'e 2. Under condition
(*), the relation =~ is clearly an equivalence relation on 2, with & as its family of
equivalent classes. The above observations are summarized in the following theorem.

Theorem 2.1. An (s,r;p)-net I1=(P,%B,¢€) satisfies condition () if and only if the
associated incidence structure I/~ =(&,%, <) is an (s, r; 1)-net.

The following procedure of inflation will provide us (s, r; )-nets satisfying condition
(*) from existing (s, r; 1)-nets. Let I =(2, %, €) be a given (s,r; 1)-net and u be a given
positive integer. Let

P={(x,i)]xe? and 1<i<pu},
B={(x,i)|xeB and 1<i<pu},
where BeZ#, and

#={B|BeA).
Then one says that the incidence structure IT=(%,4%,€) is obtained from
I =(#,4,¢c) by inflation. The following can be easily verified.

Theorem 2.2. (1) The incidence structure IT=(P, #,€) is a (s, r; p)-net satisfying condi-
tion (*).

(2) If I =(P, B,€) is a (s,r; p)-net satisfying (), then II=(P,RB,€) can be obtained
from the (s,r;1)-net I1/~=(&,%, <) by inflation.
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Certainly, (s, r; u)-nets IT1=(2, %, e) satisfying (x) possess tighter structures than
general (s,r; w-nets do. For instance, let I'; (x)={z|ze£ and x,z are in a common
block},

(1) If Be# and x is not in B, then I';(x)n B consists of r— 1 pairwise disjoint lines,
and | (x)nB|=u(r—1).

(2) If x, ye 2 are not collinear, then the blocks containing x or y can be indexed as
B; and Bj, where 1<, j<r such that B;# B, whenever i #j and B;//B}, 1<i<r.

For a prime power g, a specific class of (", g + 1; g)-nets satisfying (*) and related
to alternating bilinear forms defined over finite dimensional vector spaces over finite
field GF(g) will be studied in Section 5. In order to classify d-injection geometries, the
diagram

[d}
o

e}

was used by Deza and Laurent [5], for a class of rank-2 geometries, i.e., d-transversal
planes, where d > 1 is an integer. When d=1, any incidence geometry belonging to

1] (1,

o o (ie, 0 o)

is simply the dual of an (s, r; 1)-net, i.e., TD(r,s). Following this line, the class of the
duals of (s,r; u)-nets will be denoted by the diagram

1,

O O

in the rest of this paper. In Section 4, we shall show that geometries associated with
classical association schemes of affine type belong to diagram

1,
o) o) [oREEER o) I'e) @)

with suitable choices of y. The reader is referred to [1] for the details of association
schemes and to [2] for the details of diagram geometries.

3. (s,r; u)-nets and quasi frequency squares

In this section, relaxing the condition required for frequency squares [12], we shall
introduce the notion of quasi frequency squares, which includes latin squares and
frequency squares as special cases. Moreover, the well-known equivalence between
(s,r; 1)-nets and sets of mutually orthogonal latin squares can be generalized to
(s,r; u)-nets and sets of mutually orthogonal quasi frequency squares.

A frequency square F (n; [, iy, ... , i) of order n (FS for short) is an n x n array with
entries from the set [1,5]=1{1,2,...,s} with the property that each symbol ieS occurs
exactly y; times in each row and each column. Clearly, n=p, +p,+ ... + 4, and an
F(n;1,1,...,1) frequency square of order n is simply a latin square of order n. Two
frequency squares F (n; fiy, Ko, .., 4s,) and F(n;vy,v2,...,v,) are said to be orthogonal
if each ordered pair (i,j) of symbols occurs exactly p;v; times for all ie[1,s,] and
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je[1,s,] when the square F; is superimposed on the square F,. A set {F,, F,,...,F,} of
r =2 frequency squares is said to be mutually orthogonal if F; is orthogonal to F; when-
ever i#j. In what follows, we shall consider only frequency squares with u, =... =pu;=y;
a frequency square of this type is called a frequency square F (s, u) of frequency pu on s
symbols. Such frequency squares can easily be constructed from latin squares by the
following inflation procedure: Take a latin square L of order s, replace each point (x, y)e
[1,s]? by the u x u matrix whose entries are all equal to L(x, y); then what we obtain is
a ps x us matrix F which is obviously a FS of frequency u on s symbols.

We need some more notations to introduce the notion of quasi frequency squares.
A partition .« of [1,n]? is called a row partition if its classes are row-closed, i.e., for any
class Ae.oZ, (a,y)eA for all ye[1,n] whenever (a,b)€ A for some b. Obviously, a row
partition of [1,#]? is uniquely determined by a partition of [1,r]. Similarly, a column
partition is a partition % of [1,n]? whose classes are column-closed. For a given n=ps,
with u,s>1, let .#, denote the partition of [1,n] into s classes {[(k—1)u+1,ku]|
1 <k<s}, where [(k— 1)+ 1,ku] is the set of all integers between (k— 1) u+1 and ku
(included), and let .7, €, denote the row partition and the column partition, respective-
ly, of [1,n]? determined by .#,. Hence, both .2/, and %, consist of s classes, each class
consists of us points, and any two classes A€.o/,, Ce%, intersect in u? points.

A quasi frequency square of frequency y on s symbols (QFS for short) is an n x n array,
n=us, with the property that each symbol ie[1,s] occurs exactly u? times in each class
A of &/, and in each class C of %,. Clearly, any frequency square F(s,u) is a quasi
frequency square, and a QFS F(s, 1) is simply a latin square of order s. Orthogonality
between QFS can be defined similarly as before, i.e., each ordered pair (i,j) of symbols
occurs exactly u? times for i, je[1,s] when one QFS is superimposed over another.

Let {Fy,... ,F,} be r mutually orthogonal QFS of frequency ¢ on s symbols [1, s].
Let n=us; we set

P={1,n]?,

Bi={[i,a]ll<a<gs}, 1<i<r,
where

[i,“]:{(X,y)eylFi(x,J/):“},
and

#= ) 4.
Some easy observations are as follows:
(1) Each block in 4 consists of u?s points, and each family %, consists of s blocks
which form a partition of 2.
(2) Any two blocks from distinct families %;, 4, intersect in p® points (by the
orthogonality among {Fy, ..., F,}). Hence, the incidence structure

Hops= ([1, ) U 4, e>

1gigr

is a (s, r; u?)-net.
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(3) By the assumption that each F; is a QFS, one can extend the above QFS-net by
adding two more block classes o7, and %,, i.c.,

HO=<[11n]2’< U @i)U&{oU(go,E>
1gigr
is a (s,r+2; 1?)-net.

Equivalence indeed holds between sets of mutually orthogonal QFS and nets of
multiplicity u? as shown in the next theorem.

Theorem 3.1. The following assertions are equivalent:

(1) there exist v mutually orthogonal quasi frequency squares of frequency u on
s symbols,

(2) there exists a (s,r+2; u?)-net.

Proof. It remains to show that (2) implies (1). Let IT=(2, %,€) be a (s,r +2, u?)-net
and let &/, 4, #,,...,%, denote its r+ 2 block classes. Then the point set £ can be
partitioned into the s? sets ANC of size u?, where Ae.of and Ce®%. It is easy to see that
this enables us to represent 2 as [1,n]%, n=us, in such a way that .o/, € are the row
partition &7, and the column partition %, respectively. For 1 <j<r, let

@J:{B(lj), ...,ng)}.
We define an n x n matrix F;, with entries in {1,2,...,s}, by setting F;(x,y)=k if and
only if (x, y)eB!{”. Since IT is a (s,r+2; p)-net,

|BUnA|=|B{/)"C|=p?

forall Aest, Ce¥, B e #;, and | B{"nB{’| = u*> whenever i #j. It follows that each F;
is a QFS of frequency p and any two F;, F; are orthogonal. Hence, { F,, ..., F,} is a set
of r mutually orthogonal QFS of frequency u on s symbols. [

Corollary 3.2. If there exist r mutually orthogonal frequency squares of frequency u on
s symbols, then there exists a (s,r+2; u?)-net.

We now turn to the question of determining whether it is possibie to derive a set of
r mutually orthogonal FS from a (s,r +2; u?)-net. In fact, as shown in the following
example, this is not true in general.

Example 3.3. Let 2=[1,61% /o= {A,, A3, A5}, 6o={C,,C3,Cs} and #={B,, B,, B;},
where A;={(i,y), (+1,y)|1<y<6}, C;={(y, ), (y,i+1)|1<y<6} fori=1, 3,5 and

B, ={(1,1),(2.3),(2,5),(2,6), (3, 1), (4,3). (4,4),(4,6), (5,1), (5,2), (5,5), (6,3)},
B, ={(1.2), (1,5), (2,1), (2,4), (3,4), (3,6), (4,2), (4,5),(5,3),(5,6),(6,2),(6,4)},
By={(1,3), (1,4),(1,6),(2,2), (3,2), 3,3),(3,5), (4, 1), (5,4), (6,1), (6,5),(6,6) }



(s, r; w)-nets and alternating forms graphs 243

Then I[1=(2, o/ o€, B, <) forms a (3, 3;4)-net. Clearly, IT correspond to a QFS of
frequency 2 on 3 symbols, but it is certainly not a frequency square as shown in the
following diagram, where value k, 1 <k<3, appears at position (i, ), indicating that
(i,j)eBy.

2 3 3 2 3
231 211
1 33 2 3 2
3211 21
11 2 3 1 2
3212 33

Quite naturally, if we require that a (s,r+2;u?)-net satisfies (), mentioned in
Section 2, ie., be the inflation of some (s,#+2;1)-net, then there exists a set of
r mutually orthogonal FS which, in fact, are the inflation of some mutually orthogonal
latin squares.

Theorem 3.4. If there exists a (s,r+2; u*)-net which satisfies condition (%), then there
exist r mutually orthogonal frequency squares of frequency u on s symbols.

Proof. Following the notation used in the proof of Theorem 3.1, it only remains to
verify that, for all 1 <j<rand Be#,, B contains exactly u elements in each row and in
each column. Fix Ae./, B=B!”e#,;. By condition (), we can find Ce% such that
AnB=ANBNC=AnC;this implies that F;(x, y)=k for all (x, y)e AnC and, hence, F;
is indeed the inflation of a latin square of order s. [

Of course, we would like to obtain a set of mutually orthogonal frequency squares
from a (s,r +2;u?)-net by using conditions milder than (+). One step towards this
direction is to observe that, for a given set of » mutually orthogonal FS, one can
sometimes derive a (s,7'; u?)-net with r'>=r+3, ie., one can define additional block
classes besides the families .«7y, €, #,, ..., %, constructed so far. This can be done if
one can define row or column partitions other than </, and %,. Recall that #,
denotes the initial partition of [ 1, n] which determines &7, €; suppose that .#, # .4,
is another partition of [1,n] into s subsets of equal size ¢ and «/,, ¥; denote its
associated row and column partitions. We can extend the (s, +2; u?)-net obtained
from Corollary 3.2 by adding the two additional block classes o7, €, if and only if
[AgNAy|=|ConC,|=u? for Ajees| and Cie¥,,i=0, 1, ie., |IonI,|=p/s for IoeF,
and I,€.# ; hence, s must be a divisor of u. Therefore, no additional row or column
partition of [1,n]? can be added to the list {.«/, %, %, ..., #,} to form a (s, r’; u)-net
with ' =r+3 whenever s is not a divisor of p and, in particular, if p<s.

We now assume that s is a divisor of u, u=A4s, with 2> 1. Based on the above
observations, two remarks are in order:

(1) Suppose p=3 and there exists a (s,p;A)-net I=([1,us], {Ji<i<, #i-€) on
[1,us] with block classes .#,,.9,,...,.#,; so, each #; is a partition of [1, us] into
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s equal parts. For ie[1,p], let &7, 4; denote the row and the column partition of
[1, us]?, respectively, determined by .#;. Then

HG=<[1,,us]2, <U Mi>u< U %),e)

is a (s, 2p; u?)-net on [1, us]? called the grid net determined by I1.
(2) The (s,7; u?)-net

HQFS=<[L”S]2> U '@i,e>

1gigr
determined by the set of r mutually orthogonal frequency squares is always extendible
by the grid net Ilg, ie.,

HQFs*ncz([l,#S]z, < U J?fi>u( U %)U( U gi>,€>
1<i<p 1<isp 1<isr

is a (s,7 + 2p; u?)-net. Therefore, the next theorem follows immediately.

Theorem 3.5. Let yi=4s and p =3 be the largest integer for which there exists a (s, p; A)-
net on [1,us). If there exists a set of r mutually orthogonal frequency squares of
frequency p on s symbols, then there exists a (s, r + 2p; u?)-net which is an extension of the
grid net associated with the given (s, p; A)-net.

Moreover, if there exists a (s, s+ 1; 1)-net, i.e.,, an affine plane of order s, and u=s,
then Theorem 3.5 can be strengthened as Theorem 3.6.

Theorem 3.6. If there exists a (s,s+1;1)-net, then the following assertions are
equivalent:

(1) There exists a set of r mutually orthogonal frequency squares of frequency s on
s symbols.

(2) There exists a (s,r+2(s+ 1); s*)-net which is an extension of the grid net asso-
ciated with the given (s,s+ 1; 1)-net.

Proof. It remains to show that (2) implies (1). Let #,,.#,,...,.#, denote the block
classes of the given (s, s+ 1; 1)-net defined on [1, s2]. By assumption, the block classes
of the (s, r+2(s+ 1); s?)-net IT can be denoted by o, 1, ..., 4,60, %1, ..., %, and
AB,,...,Binsuch a way that o7, o/, ...,/ are the row partitions and 4,,%;, ..., 4,
are the column partitions of [1,52]? determined by #4,.#1,...,.%s. Let F|,F»,..., F,
be the set of r mutually orthogonal quasi frequency squares obtained from %,, ..., %,
by Theorem 3.1. To show that each F; is indeed a frequency square is equivalent to
showing that each Be %, contains exactly s elements in each row and in each column.
Let Be#; and «; be the number of elements of B occurring in the ith row of [1,s2]?;
hence, o, + ... +a,:=s>. Next we claim that o; =5 for all 1 <i<s?
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Let Ioe#,,..., 1,69, be the s+ 1 blocks of the given (s,s+ 1; 1)-net which contain
element 1 of [1,s%]; then the sets {1}, Io—{1},...,I,— {1} form a partition of [1,s?].
Let A;e.o7; be the block of IT formed by the rows indexed by I; for 0<i<s. Since IT is
a (5,r+2(s+1);5%)-net, we have that |BnA4;|=5? ie., ¥, ;, o;=s> for 0<i<s. Sum-
ming the above s+ 1 equations, we obtain that (s+1)a; +3, ;52 o—04 =53(s+1),
and, since ., _ ;> ;=5 it follows that a; =s. The other cases o;=s, 2<i<s? can be
proved similarly. [J

4. (s,r; p)-nets and association schemes of affine type

In this section, we shall introduce some geometries related to classical forms and
then show that their local structures can be described as the dual of (s, r; p)-nets with
suitable parameters.

4.1. The lower semilattice & (U, V).

First, we shall concentrate on the lower semilattice £, (U, V') of bilinear forms
(u=1). Let U, V be vector spaces of dimensions d and n, respectively, (d<n) over
a finite field GF(q), and U + V be the direct sum of U and V. Let

#i={A|AcU+V is an i-subspace and ANV is trivial},

where 0<i<d. Note that the condition 4nV={0} is equivalent to that of
dim (7, (A))=dim(A4), where n,(A4) is the projection of A onto the first summand U.
Furthermore, if Ae.#,, then dim (n,(4))=dim (U) and, hence, there exists a linear
transformation f: U — V such that 4= {(x, f(x))| xe U }. It follows that, with respect to
fixed bases of U and V, the set ¥, of roofs of the geometry

$=($Oagl9"'agd)

can be identified with the set M,, ,(GF(q)) of all d x n matrices over GF (g). Similarly,
each other level #; can be identified with [Y]x M, ,(GF(q)), 1<i<d, where [Y]
denotes the family of all i-dimensional subspaces of U. In other words,
Z={(f Y)|Ye[Y] and f: Y-V is linear}. For (f,Y) and (g,2)e| Ji=o Z:, we
define (f, Y)<(g, Z) if and only if Y= Z and the restriction g|y of g on Y is identical
with f; (f, Y) and (g, Z)e Uoéig,, &, are called comparable if either (f, Y)<(g, Z) or
(9. Z2)<(f, Y). Clearly, | Jo<ics #; is the lower semilattice .#,(U, V') introduced by
Delsarte [4]. Any flag # of type {0,1,2,...,d—2} in the geometry
L =(%o,ZL1,..., ¢, contains a unique (fy_,, Us_)e Ly ,, where U;_,e[,Y,]
and f:U,;_,—V i1s a linear transformation. The residue Res(#) of # in the
geometry ¥ =(Fo, %, ..., L, is defined to be PuB, where 2={(f, A)| Ae[,Y],
SfiA-V is linear, (f3_,,U4-2)<(f,4)}, and #B={(g,U}|g:U—>V is linear,
(fi-2,Us-2)<(g,U)}. Elements in 2 and & are called points and blocks, respectively.
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Theorem 4.1 (Sprague [14]). (1) The incidence structure IT1=(P,%,€) associated
with the residue Res(F) of a flag F of type {0,1,2,...,d—2} in the geometry £ =
(Lo, L1,..., &L belongs to the diagram

[1]
O

O.

More specifically, the dual of Res(F ) is a (q",q+1; 1)-net.
(2) The geometry & =(%L o, &L 1,...,L,) belongs to the diagram

11
o0———0——0.,.. 0—0

o.

Any incidence structure IT isomorphic to the semilinear incidence structure
(Ly, La-1,2) is called an (n, q;d)-attenuated space [14], or a d-attenuated space in
short. These are examples of the following specific class of incidence structure with
(s,7; 1)-nets as their planes. A d-dimensional net is a connected semilinear incidence
structure I7 such that the following conditions hold:

(D1) every plane is a (s, r; 1)-net,

(D2) the intersection of two subspaces is connected,

(D3) if two planes in a 3-space of IT have a point in common, then they have
a second point in common, and

(D4) the minimum number of points which generate IT is d+ 1.

Sprague [14] proved that every finite d-dimensional net (d=3) is an (n,q;d) at-
tenuated space for some finite field GF(q). Sprague also characterized d-dimensional
nets as the duals of those incidence structures belonging to the diagram in Theorem 4.1.

As mentioned before, the set £, of roofs of the geometry £ =(%y, £, ..., L4) can
be identified with the set M,, ,(GF(g)) of all d x n matrices over GF(g). Furthermore,
it is worth mentioning here that it also carries the structure of (P&Q)-association
schemes and, hence, distance-regular graphs. Set

LR;={(A4, B)| 4, BeM,., (GF(g)), rank (4—B)=i}, 0<i<d.
Then
(i) LR, is the diagonal of (M, ,(GF(g)))?, and {LR;|0<i<d} forms a partition of
(M4, (GF(g)))*,

(i) the transpose LR of LR, is identical with LR;, 0<i<d.

(iii) if (A4, B)eLR,, then |{C|CeM,.,(GF(q)), (4,C)eLR; and (C,B)eLR;}| is
a constant p}; which is independent of the choice of A and B.

In other words, (M, ,(GF(q)),{LR;|0<i<d}) forms a symmetric association
scheme of d classes. The reader is referred to [1] for more details about association
schemes. Furthermore, (M4, ,(GF(q)), LR;) turns out to be a distance-regular graph
with LR as its edge set, denoted by H,(d, n), and, indeed, a distance-transitive graph
of diameter d.

The d-shadow a,(g, A) of (g, A)e%, is defined to be {(f, U)|(f,U)e¥, and
(9. A<(f,U)}. Tt is easy to see that gy(g,A) is a {0,1,...,d—r}-clique in the
graph H,(d,n), ie., rank(4 —B)<d—r for A, Beo,(g, A). Indeed, Huang [9] proved
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that each maximum {0, 1,...,d—r}-clique of H,(d,n) is of the above form as d-
shadow of some (g, A)e.¥, whenever n>d+1 and (n,q)#(d+1,2). In particular,
{o4(g, AY|(g, A)eZ -1} = L4 can be identified with the set of all maximum cliques
of H,{d,n).

Toward the program of classifying distance-regular graphs, Huang [8] proved that
the above-mentioned distance-regular graph H,(d, n) defined on ¥, = M, ,(GF(q)) is
uniquely determined by its intersection array, subject to some extra conditions by
using Sprague’s characterization of d-dimensional nets. These extra conditions were
modified by Cuypers [3] recently. Following similar approaches, Yokoyama [16]

proved similar results in the context of distance-transitive graphs which includes even

the square case d=n.

4.2. Geometries for classical forms

In the second half of this section, we concentrate on square matrices as well as some
examples of (s, r; u)-nets with g > 2. Let V be a vector space of dimension n over a finite
field GF(qg), where g=p™ is a prime power, U<V be a subspace of dimension i. Let
Bil(U), Alt(U), Her(U) and Sym(U) be, respectively, the set of all bilinear forms,
alternating bilinear forms, hermitian forms and symmetric forms defined on U. We
assume that p#2 in the case of alternating forms and m=2r is even in the case of
hermitian forms. Then Bil(U), Alt(U), Sym(U) are vector spaces of dimensions i?,
i(i—1)/2,i(i+ 1)/2, respectively, over GF(g), and Her(U) is a vector space of dimension
i2 over GF (p"). Bil(U), Alt(U), Sym(U) and Her(U) will be denoted by Bil(i, g), Alt(i, q),
Sym(i, q) and Her(i, q), respectively when there is no confusion. Let

o/ i={(f, U)|Uel¥] and feAl(U)},
#i={(/, U)|Ue[%] and feHer(U)},

Si={(f, U)|Ue[}] and feSym(U)},
and
= {(f, U)|Ue[ ] and feBil(U)},

where 0 <i<n. Let o7 denote the geometry (<7, .74, ...,.o7,) and the other geometries
&, # and # are defined similarly.

As mentioned for the geometry ¥ =(%y, %, ..., Z,), the notions of comparability,
flags and residues can be similarly defined for geometries ./, &, # and . For
example, for the geometry o =(.o/q, o1, 5, ..., ,), (f,U)<(g, W) if and only if
U< W and the restriction gfy of g on U is identical with f whenever (f,U)e.s;,
(g. W)es;. Any (£, U), (g, W)esf uaf; are comparable if either (f, U)<(g, W) or
(g. W)<(f, U). The residue of a flag % of type {1,2,...,n—2} is uniquely determined
by some (f,-,,U,_,)e</,_,, where U,_,=V is a subspace of dimension n—2
and f,_,eAlt(U,_,); more specifically, the residue Res(# ) of the flag & is defined
to be 22U, where Z2={(f,U)|Ue[,X,], feAlt(U), (fo-2U,-2)<(f,U)} and
B=1{(g9, V)| geAlt(V), (fu-2,U,-2)<(g,V)}. Elements in 2 and # are called points
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and blocks, respectively. With respect to the induced incidence relation, we shall show
that the incidence structure IT =(2, 4, €) associated with the residue Res(# ) of a flag
& of type {0, ,...,n—2} in the geometries <7, #, & and & belongs to the diagram

(1,

with a suitable choice of u for each case.

Theorem 4.2. (1) The residue Res(¥) of a flag F of type {0,1,2,...,n—2} of the
geometries of, #H, S and B belongs to the diagram

[1]g:

O @]

3

where i=1,2,3 and 4, respectively. More specifically, the dual of the residue Res(#) in
the geometry </ is a (q"~ 2, q+ 1; q)-net satisfying (*).
(2) The geometries of, #, & and A belong to the diagram

[1]qi
QO O 0.0 O

Q

where i=1,2,3 and 4, respectively.

Proof. Only the proof for the geometry & =( g, &1, ..., &,) is given. Similar argu-
ments work for the other geometries #, & and #. Consider the partition

(S U feAlt(U) and fly, ,=fu-2} er[n_Vl], with U,_,c U}

of the point set of Res(# ). Obviously, any block (£, V') is incident with exactly one
point of each of the above classes.

For two distinct points (f, U),(f’, U’) from distinct classes, UnU’'=U,_, and
flu _2=f| v _,=f-2 Fixa base {vy,...,v,} of ¥ such that {vs,...,v,} is a base of
U,,_nz, vieU"— U,.,and v,eU’'—U,_,; those blocks (h, V) which go through (f, U)
and (f’,U’) can be uniquely represented by matrices of the form

0 o oy e O]
—0 0 o - o
—0 —O% )

Jn-2
— Oy —aln

where a;, o}, 3<j<n, are uniquely determined by f, -, fand f’, respectively. Since
there are g choices for a= h(vy, v;), it follows that there are g blocks which go through
both (f, U) and (f', U’), as required. []

Remark. The proof of the second part of (1) can be found in [10].
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With respect to a fixed base of V, each member in the sets of roofs B(n, q), A(n, g),
H(n, g), S(n, q) of the geometries 4, o/, # and ¥, respectively, can be expressed as an
n x n matrix, n x n antisymmetric matrix with zero diagonal, n x n hermitian matrix
and an nxn symmetric matrix, respectively. Furthermore, each set of roofs also
carries the structure of (P&Q)-association scheme, as we mentioned before for
LU, W). Let

AR;={(4, B)| A, BeAlt(n, q) and rank(4 — B)=2i},

SR;={(4, B)| A, BeSym(n, q) and rank(A4 — B)=2i—1, 2i},
where 0<i<[n/2](=d), and

BR;={(4, B)| A, BeBil(n,q) and rank (4— B)=i},

HR;={(A4, B)| A, BeHer(n, q) and rank (4 —B)=i},

where 0<i<n. Both (Bil(n,q), {BR;|0<i<n}) and (Her(n,q), {HR,;|0<i<n}) are
(P&Q)-polynomial association schemes of n-classes and, indeed, BI'=(Bil(#, ), BR,)
and HI'=(Her(n,q), HR) turn out to be distance-regular graphs of diameter n,
respectively. Similarly, (Alt(n, q), {R;|0<i<d}) and (Sym(n, g), {R;|0<i<d}) are also
(P&Q)-polynomial association schemes of d-classes; moreover, AI'=(Alt(n, q), AR,)
and SI'=(Sym(n, g), SR} turn out to be distance-regular graphs of diameter d and,
surprisingly, they share the same intersection array, i.e.,

bi=g*(q—1)(q" > =1 (q" " —q}/(¢> =D (¢*—q), 0<i<d-1
and
a=q*"2g*-D/(g*—1), 1<i<d

Recall that, for a distance-regular graph I' of diameter d, b;=|I;,,(x)nI"{(y)| for
0<i<d—1 and ¢;=|I';_{(x)nI{(y)] for 1<i<d, where x, yeV(I') are at distance
iand [i{x)={z|ze V(') and d(x,2)=i}.

The above observations show that the distance-regular graphs defined over Alt(n, g)
and Sym{n, q), respectively, are not characterized by their intersection arays, nor by
the diagram geometries they belong to.

5. Alternating-forms graphs

Toward the goal of a geometric classification of the family of distance-regular
graphs Alt(n, g), in this section, we shall provide more detailed analysis of the local
structure of Alt(n, g). The notion of pseudo-alternating incidence structures is intro-
duced in the hope that, in addition to its diagram, the geometry o =(o/¢, o4, ..., )
and its adjacency graph Alt(n, q) could be characterized in terms of it.

Let us start from the maximal cliques of the graph Alt(n,q). Since it is dis-
tance-transitive, we are concerned only about those maximal cliques which contain
the zero form.
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Theorem 5.1 (Hemmeter [7]). If € is a maximal clique in Alt(n,q) which contains the
zero form, then either | ) s , Rad( f) is contained in a hyperplane of V or (\ses Rad( f)
is an (n— 3)-dimensional subspace of V.

Hence, up to isomorphism, there are two types of maximal cliques in Alt(n, g);
cliques of the first type are of size g" ', and the others are of size ¢° If
(fr-1,Up-1)ed 1, ie, U,_y<V is a subspace of dimension n—1 and
Ju—1€AI(U, ), without loss of generality, we may assume that f, _; is the zero form.
The nth shadow ¢, (f,-1, Un-1) of (fu-1, Up—1) is defined to be {( f, V)| feAlt(n, q)
and flu_ =fu-1 }. An immediate consequence is the following corollary.

Corollary 5.2. For each(f,-1, U, )esl,_y, its shadow o,( f,—1, U,-1)SAlt(n,q) is
a maximum clique of Alt(n, q) of size g"~ !, and vice versa.

Remark. A similar result holds for #,(U, V) and the distance-regular graphs H,(d, n),
as mentioned in Section 4.

Before studying incidence structures related to Alt(n, g), it will be convenient to
recall some notions about incidence structures (#,4,e€) with the property that
|BNB'|=0 or u for distinct B,B'e®. Let ¥={BnB'|B,B'e# are distinct and
BnB'#0}, then ¥ <(7)and elements of & will be called lines. A subset S < 2 is called
block-closed if [SnB|=pu+ 1 for block Be# implies that B<S. Similarly, a subset
Sc 2 is called line-closed if |[SNL| =2 for line Le.¥ implies that L= S. A subset S 2
is called connected if any two points x, y of S are in a common block. A subset S& 2 is
called a 2-subspace of T if S is a smallest connected block-closed subset of # which
contains two intersecting blocks. For any point y, I',(y) is defined to be {z|ze£ and y,
z are in a common block}. For YS 2, the set of common neighbors of Y is defined to
be (VyexTi(y)

Let IT=(Alt(n, q), B, €), where 4 is the set of all maximum cliques of the alternating
forms graph Alt(n,q), ic.,

Alt(n, q))

g:{an(f;l—l’Un—l)|(ﬂ‘19UH—I)EMH—I}E( qn—1

If # is a flag of type {0,1,...,n—2} in the geometry o =(o, . ,...,of,) and
(foe 2, Up_2)esd,_,nF , then the dual of Res(F ) is a (¢" 2, ¢ + 1; g)-net satisfying (),
as mentioned in Section 4. Furthermore, any two intersecting blocks of # uniquely
determine some ( f,—,,U,-,)e/,_,; it follows that [10] the smallest connected
block-closed subsets of Alt(n,q) which contain these two intersecting blocks is
Res(F), ie., its dual is a (¢"~ 2, g+ 1; q)-net satisfying (), where # is a flag of type
{0,1,...,n—2}, with ( f,_,, U, -2)eF nA,_,. More specifically, if B, B’ are two blocks
meeting at a line A, then there exist B;e®; (0<i<q), B=B;, B'=B, for some
0<j, k<qsuch that ﬂogigq B;=A. Let y be a point in B, but not in A4; then I' (y)n B;
consists of ¢ pairwise disjoint lines and |I';(y)nB;|=q¢> Furthermore,
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(U 1<icq T1{(y)NB:)U(I'1(2)"By)) forms a second-type maximal clique of size ¢* in
Alt(n, q), where z is a point in I';(y)nB;. Therefore, some features of the incidence
structure IT=(Alt(n, q), #,€) can be summarized as follows:

(1) each line consists of ¢"~! points and each point lies on (¢"— 1)/(g— 1) blocks,

(2) for any two distinct blocks B, B'e#, | BhnB’|=0 or g,

(3) any 2-subspace is a ("~ 2, g+ 1; g)-net satisfying (%),

(4) if B, B'e % are two blocks meeting at a line A, and x is a point in B" but not in A4,
then the common neighbors of elements of Au{x} form a clique of ¢* points in
Alt(n, g) (i.e., an analog of the dual of the Pasch axiom holds).

The conditions for the following class of incidence structures are abstracted from
the above observations; (Alt(n, q), %, €) provides such an example with s=¢"~? and
1 =q. An incidence structure I1=(2, %, €) is called pseudo-alternating if the following
conditions are satisfied:

(PA1) Each point lies on exactly (su®—1)/(1— 1) blocks.

(PA2) For any two distinct blocks B and B’ in 4, |BnB’|=0 or pu.

(PA3) If x,yeBynB,, then there exist B;, 2<i<u, such that x, yeﬂoggu
Bi, |(Vo<ic, Bil=p and {Jo,., Bi—{x,y} consists of all common neighbors of
x and y.

(PA4) Any 2-subspace of I1 is a (s, p + 1; p)-net satisfying (x) such that, for any two
intersecting blocks B, B’ meeting at a line 4€.¥ and xe B’ — A, the common neighbors
of Au{x} form a clique.

Some consequences of the existence of such incidence structures are:

(1) g—1 must be a divisor of suy— 1.

(2) Each block consists of sy points, and each block can be partitioned into s lines.

(3) Each line is contained in u+ 1 blocks of #, and the intersection of those p+ 1
blocks is the line itseif.

It seems worthwhile to state other properties of pseudo-alternating incidence
structures as a formal proposition.

Proposition 5.3. (1) For each incident point-block pair (x, B), B—{x} can be partitioned
into (su—1)/(u— 1) subsets such that the union of {x} with each such subset is a line in &

(2) For each block B, the induced incidence structure I13=(B, ¥ (B), €) is linear, where
#(By={BnB'|B'e# and BNnB'#0}.

Proof. By (PA3), for each line A with xe4 and A<B, in addition to B, there are
exactly another u blocks which contain A. Hence, (1) follows from (PA1), and (2)
follows from (PA2) and (1). O

The next proposition treats the possible structures over 2-subspaces of pseudo-
alternating incidence structures.

Proposition 54. If I1,=(%,%,€) is a 2-subspace of I1=(P,RB,€), then u is a prime
power, I,/ ~ is a 2-attenuated space and s=u"~ ' for some integer n.
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Proof. Since IT,/~ is a (s,r; 1)-net which satisfies the dual Pasch axiom, the proposi-
tion follows immediately from [15]. O

We conclude this paper by mentioning the following result without proof: If u>35,
Be# is a block and I';j(x)n B is either empty or line-closed in I1;=(B, £ (B),¢€) for
xe# not in B, then u is a prime power and I1z=(B, £ (B), €) is isomorphic to the affine
space AG(n—1,q) for some integer n.

Both authors thank Professors M. Deza, Koh-Wei Lih and the Institute of Mathe-
matics, Academia Sinica, Taipei, for providing a multitude of stimulating contacts
during the preparation of this paper.
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