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Abstract 

Huang, T. and M. Laurent, (s,r;n)-nets and alternating forms graphs, Discrete Mathematics 114 

(1993) 2377252. 

The equivalence between Bruck nets and mutually orthogonal latin squares is extended to (s, r; u)- 

nets and mutually orthogonal quasi frequency squares. We investigate geometries arising from 

classical forms such as bilinear forms, alternating bilinear forms, hermitian forms and symmetric 

forms and show that (s, r;p)-nets provide the right building blocks for each of these geometries with 

suitable values of p. Toward the goal of geometric classification of distance-regular graphs, the local 

structure of the case of alternating forms graphs is stressed. 

1. Introduction 

The structure of (s, r; &nets includes Bruck nets as the special case of ,u = 1 and their 

duals are transversal designs TD, [r, s] introduced by Hanani [6]. Indeed, (s, r; ,u)-nets 

are equivalent to affine designs S,( 1, sp, s*p) and to orthogonal arrays OA,(s, r), and in 

this language they have been studied since around 1945. A survey on the geometric and 

group-theoretic aspects of (s, r; p)-nets can be found in [ 111, where problems concerning 

existence, completion and geometric configurations are emphasized. 

In Section 2, we recall the notion of (s, r; CL)-nets, the procedure of ‘inflation’ is used 

for constructing (s, r;p)-nets from existing (s, r; I)-nets. In Section 3, the notion of 

quasi frequency squares is introduced and then we prove the equivalence between 

(s, r; n)-nets and sets of mutually orthogonal quasi frequency squares, which includes 

the well-known relationship between Bruck nets and sets of mutually orthogonal latin 
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squares as a special case. After reviewing how nets (with p= 1) provide the right 

building blocks for the lower semilattice 6p4( I’, W) [4] by using Sprague’s [14] result 

on the characterization of d-dimensional nets, we study in Section 4 the geometries 

associated with classical forms (alternating bilinear forms, symmetric forms, hermitian 

forms and bilinear forms) and show how their local structures involve (s, r; p)-nets 

(with ~22). We also emphasize the relationships between these geometries and the 

association schemes of affine type carried by each family of the above classical forms. 

In the final section, we further investigate the geometric properties of the association 

schemes defined over alternating bilinear forms, hence covering the initial step toward 

the problem of characterization of their graphs by their intersection arrays. 

2. (s, r;p)-nets 

In this section, first we xshall recall the notion of (s, r; p)-nets, and then a specified 

class of (s, r; p)-nets which can be obtained from given (s, r; 1)-nets by the procedure of 

‘inflation’ will be studied. The diagram 

[lip 
o-o 

is introduced for the class of duals of (s, r; y)-nets. 

A finite incidence structure Ii’= (9, iii?‘, E) is called a (s, r; p)-net ofmultiplicity p if the 

block set g can be partitioned into r (r2 3) block classes gl,aZ, . . ..g’. such that 

(Nl) the blocks of each block class %?i form a partition of 9, 

(N2) any two blocks from distinct block classes meet at p points, 

\J3) one of the block classes consists of s blocks. 

Since r b 3, it follows that each block class al, gZ, . . . , W, consists of s blocks, each 

block in 98 consists of sp points, each point lies on exactly r blocks and, hence, 

15??l=s2/l. 

For an (s, r; p)-net, it is known that [l l] r d (s2p- l)/(s - l), with equality holding if 

and only if it is an affine 2-design. Indeed, if r = (s2p - l)/(s - l), then any two points 

are on precisely i =(sp- l)/(s - 1) blocks. The sets T(r, p) of integers s for which 

(s,r;p)-nets exist were investigated by Hanani [6]; in particular, he showed that 

SE T(7, p) for every s > 1 and every p 2 2. Recently, Ray-Chaudhuri and Singhi [ 131 

have shown that, for given r and s, there exists an (s, r; p)-net whenever ~1 is sufficiently 

large. (s, r; 1)-nets are simply the well-studied classical Bruck nets; for example, the 

existence of an (s, r; 1)-net is equivalent to the existence of each of the following structures: 

(1) r - 2 mutually orthogonal latin squares of order s, 

(2) an orthogonal array OA(s, r), 

(3) an affine design S,(l, s, s*), 

(4) a transversal design TD[r, s]. 

The intersections among blocks would shed light on the structures of (s, r; p)-nets, in 

particular when p >/ 2. Let n = (9, B, E) be a (s, r; p)-net; for any two blocks B and B’ of 

17, we write B//B' if they are in the same class (so BnB' =8), and B# B' otherwise (so 
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I&M =p). For BES?~, and j # i, let 

bj(B)={BAB’IB’EBj}, 

6(B)= U &j(B). 

lsj<r 
j#i 

Clearly, each bj (B), 1 <j d r and i #j, forms a partition of B. For 1 < i, j < r, i #j, let 

&ij= {BnB’IBE9Yi, B’E~j}, 

and 

d= U eij. 

lai,j<r 
iij 

Then bij forms a partition of 9, and elements of &G(,;) are called lines. For distinct 

pairs (i, j) and (2, j’), where 1 <i, i’, j, j’ dr, i #j, i’ #j’, the two partitions bij and Bi,j, of 

the point set 9 do not necessarily coincide. An interesting special case is when all such 

partitions coincide, i.e., dij = di,j, for all 1 < i, j, i’, j’ <r, with i #j, i’ Zj’. This happens 

exactly when the following condition (*) holds: 

(*) For any two intersecting blocks B and B’ (say BEB~, B’E~~), 

there exist blocks Bi~~i, 1 <i<r, such that BnB’= nl<i,, Bi. 

On the other hand, we may define a relation N on 9’ in such a way that, for any x, 

y~9, x ‘Y y if and only if x, y~Z?nBl for some distinct blocks B, B’E~. Under condition 

(*), the relation ‘v is clearly an equivalence relation on 9, with & as its family of 

equivalent classes. The above observations are summarized in the following theorem. 

Theorem 2.1. An (s, r; p)-net Z7=(9, a,~) satisfies condition (*) $ and only ij’ the 

associated incidence structure Zl/- =(a,%?, G) is an (s, r; 1)-net. 

The following procedure of inflation will provide us (s, r; ,u)-nets satisfying condition 

(*) from existing (s, r; 1)-nets. Let 17 = (9, W, E) be a given (s, r; 1)-net and y be a given 

positive integer. Let 

@=1(x, i)lxeP and 1 <i,<p}, 

g={(x,i)(x~B and l<i<@>, 

where BEG, and 

&?={(B(B&}. 

Then one says that the incidence structure I? =(@, &,E) is obtained from 

I7 = (9, &I, E) by inflation. The following can be easily verified. 

Theorem 2.2. (1) The incidence structure fi = (.@‘, &“, E) is a (s, r; ,a)-net satisfying condi- 

tion (*). 

(2) Zf ZZ = (.9,93, E) is a (s, r; p)-net satisfying (*), then Zi’ = (9, a’, E) can be obtained 

from the (s, r; I)-net ZZ/- =(b,@, 5) by inflation. 
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Certainly, (s, r; p)-nets II = (9,93, E) satisfying (*) possess tighter structures than 

general (s, r; p)-nets do. For instance, let ri (x) = (z 1 ZEN’ and x, z are in a common 

block}, 

(1) If BEB and x is not in B, then T1(x)nB consists of r- 1 pairwise disjoint lines, 

and Ir,(x)nBI=p(r-1). 

(2) If x, YE? are not collinear, then the blocks containing x or y can be indexed as 

Bi and B;, where 1 <i, j<r such that Bi# B; whenever i #j and Bi//BI, 1 <i<r. 

For a prime power q, a specific class of (q”-I, q + 1; q)-nets satisfying (*) and related 

to alternating bilinear forms defined over finite dimensional vector spaces over finite 

field GF(q) will be studied in Section 5. In order to classify d-injection geometries, the 

diagram 

[dl 
o-o 

was used by Deza and Laurent [S], for a class of rank-2 geometries, i.e., d-transversal 

planes, where d 3 1 is an integer. When d = 1, any incidence geometry belonging to 

[ll (11, 
o-o (i.e., o- 0) 

is simply the dual of an (s, r; 1)-net, i.e., TD (r, s). Following this line, the class of the 

duals of (s,r;p)-nets will be denoted by the diagram 

in the rest of this paper. In Section 4, we shall show that geometries associated with 

classical association schemes of affine type belong to diagram 

Cl1 
o-_o-0 . . . . . o-_-o PO 

with suitable choices of p. The reader is referred to [l] for the details of association 

schemes and to [2] for the details of diagram geometries. 

3. (s, u; p)-nets and quasi frequency squares 

In this section, relaxing the condition required for frequency squares [12], we shall 

introduce the notion of quasi frequency squares, which includes latin squares and 

frequency squares as special cases. Moreover, the well-known equivalence between 

(s, r; 1)-nets and sets of mutually orthogonal latin squares can be generalized to 

(s,r;p)-nets and sets of mutually orthogonal quasi frequency squares. 

Afrequencysquare F(n;pl,p2,..., pL,) of order n (FS for short) is an n x n array with 

entriesfromtheset[l,s]={1,2,..., s} with the property that each symbol YES occurs 

exactly ,ui times in each row and each column. Clearly, n=pl +p2 + . . . +ps and an 

F(n; l,l, . . . . 1) frequency square of order n is simply a latin square of order n. Two 

frequency squares F (n; pl, pz, . . . , ps,) and F (n; vl, v2, . . . , v,,) are said to be orthogonal 

if each ordered pair (i, j) of symbols occurs exactly ~ivj times for all i~[l,si] and 
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j~[l,sJ when the square F2 is superimposed on the square F1. A set {F,, FZ, . . . . F,} of 

r > 2 frequency squares is said to be mutually orthogonal if Fi is orthogonal to Fj when- 

ever i #j. In what follows, we shall consider only frequency squares with ,u~ = . = ps = p; 

a frequency square of this type is called a frequency square F (s, p) of frequency p on s 

symbols. Such frequency squares can easily be constructed from latin squares by the 

following inflation procedure: Take a latin square L of order s, replace each point (x, y)~ 

[l, s]’ by the p x p matrix whose entries are all equal to L(x, y); then what we obtain is 

a ps x ,US matrix F which is obviously a FS of frequency ,D on s symbols. 

We need some more notations to introduce the notion of quasi frequency squares. 

A partition .d of [ 1, n]’ is called a row partition if its classes are row-closed, i.e., for any 

class AE,~, (a,~)~,4 for all ye[l,n] whenever (a,b)~A for some b. Obviously, a row 

partition of [l, n12 is uniquely determined by a partition of [I, n]. Similarly, a column 

partition is a partition %? of [ 1, n]’ whose classes are column-closed. For a given n = ps, 

with ,u,s~ 1, let X, denote the partition of [l, n] into s classes {[(k- l)p+ l,kp] 1 

1 dkbs}, where [(k- l)p+ l,kp] is the set of all integers between (k- l)p+ 1 and k,u 

(included), and let J.@‘,,, VYO denote the row partition and the column partition, respective- 

ly, of [l, n12 determined by 3,. Hence, both JZI~ and %‘0 consist of s classes, each class 

consists of ~1’s points, and any two classes AEG!~, CM?, intersect in p2 points. 

A quasifrequency square of frequency p on s symbols (QFS for short) is an n x n array, 

n = ,us, with the property that each symbol ie [ 1, s] occurs exactly ,M’ times in each class 

A of J310 and in each class C of VO. Clearly, any frequency square F(s,p) is a quasi 

frequency square, and a QFS F(s, 1) is simply a latin square of order s. Orthogonality 

between QFS can be defined similarly as before, i.e., each ordered pair (i,j) of symbols 

occurs exactly pL2 times for i, j~[ 1, s] when one QFS is superimposed over another. 

Let {F,, . . . , F,} be r mutually orthogonal QFS of frequency ,U on s symbols [l, s]. 

Let n=ps; we set 

P=[l,n12, 

.%?~={[i,a]Il<a<s}, l,<i<r: 

where 

Ci,xl={(X,Y)E~lFF,(x,y)=a}, 
and 

B= u Bi. 
i,<iQr 

Some easy observations are as follows: 

(1) Each block in 93 consists of ,u2s points, and each family gi consists of s blocks 

which form a partition of 9. 

(2) Any two blocks from distinct families Bi, &Ij intersect in p2 points (by the 

orthogonality among (F, , . , . , F,}). Hence, the incidence structure 

is a (s, r; p2)-net. 
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(3) By the assumption that each FL is a QFS, one can extend the above QFS-net by 

adding two more block classes do and wO, i.e., 

is a (s, r + 2; p2)-net. 

Equivalence indeed holds between sets of mutually orthogonal QFS and nets of 

multiplicity ,LL’ as shown in the next theorem. 

Theorem 3.1. The following assertions are equivalent: 
(1) there exist r mutually orthogonal quasi frequency squares of frequency p on 

s symbols, 
(2) there exists a (s, r + 2; p2)-net. 

Proof. It remains to show that (2) implies (1). Let Xl = (9, 99, E) be a (s, r + 2, p2)-net 

and let d, +Z, 2 1, . . . ,93,. denote its r + 2 block classes. Then the point set 9 can be 

partitioned into the s2 sets AnC of size p2, where AE& and CM. It is easy to see that 

this enables us to represent 9’ as [l, n]‘, n=ps, in such a way that d, ‘$? are the row 

partition &‘, and the column partition wO, respectively. For 1 <j<r, let 

We define an n x n matrix Fj, with entries in (1,2, . . ..s}. by setting Fj(X, y)= k if and 

only if (x, y)~Bp). Since 17 is a (s, r + 2; p)-net, 

for all AE~, CE%‘,B:~)EB~, and jB:“nBp’I =p’ whenever i#j. It follows that each Fj 
is a QFS of frequency /J and any two Fi, Fj are orthogonal. Hence, { F1, . . . , F,.} is a set 

of r mutually orthogonal QFS of frequency p on s symbols. 0 

Corollary 3.2. If there exist r mutually orthogonal frequency squares of frequency p on 
s symbols, then there exists a (s, r + 2; p2)-net. 

We now turn to the question of determining whether it is possible to derive a set of 

r mutually orthogonal FS from a (s, r + 2; p2)-net. In fact, as shown in the following 

example, this is not true in general. 

Example33. Let~=[1,6]2,LQZo={A1,A3,A5},~~={C1,C3,C5}and~==(B,,Bz,B,}, 

where Ai={(i,y), (i+l,y)ll<y<6}, Ci={(y,i),(y,i+l)lldy~6) for i=l, 3, 5 and 

Bi = ((1,1X (29 3)> (2,5), (2,6), (3, l), (4,3), (4,4), (43% (5,1X (5,2), (5,5), (63))) 

J-b = {U > 3 (1,5), (2, l), (2,4), (3,4), (3,6), (492) (4,5), (5,3), (5,6), (6% (6,4)}, 

B3 = {CL 3), (1>4), (126) (2>2), (3>2), (3,3), (3,5), (4, l), (5,4), (6, l), (6,5), (66)). 



(s, r; p)-nets and alternating ,forms graphs 243 

Then Zl= (9, dou%?,-,u~, E) forms a (3,3; 4)-net. Clearly, 17 correspond to a QFS of 

frequency 2 on 3 symbols, but it is certainly not a frequency square as shown in the 

following diagram, where value k, 1 d k < 3, appears at position (i, j), indicating that 

(i,j)c&. 

123323 

231211 

133232 

321121 

112312 

321233 

Quite naturally, if we require that a (s, r+2;$)-net satisfies (*), mentioned in 

Section 2, i.e., be the inflation of some (s, r+2; 1)-net, then there exists a set of 

r mutually orthogonal FS which, in fact, are the inflation of some mutually orthogonal 

latin squares. 

Theorem 3.4. If there exists a (s, r + 2; p2)-net which satisfies condition (*), then there 

exist r mutually orthogonal frequency squares of frequency p on s symbols. 

Proof. Following the notation used in the proof of Theorem 3.1, it only remains to 

verify that, for all 1 <j < r and BESTS, B contains exactly /A elements in each row and in 

each column. Fix AES, B= B~‘E~j. By condition (*), we can find CM such that 

AnB= AnBnC= AnC; this implies that Fj(X, y)=k for all (x, y)~Anc and, hence, Fj 

is indeed the inflation of a latin square of order s. 0 

Of course, we would like to obtain a set of mutually orthogonal frequency squares 

from a (s, r +2; p2)-net by using conditions milder than (*). One step towards this 

direction is to observe that, for a given set of r mutually orthogonal FS, one can 

sometimes derive a (s, r’;,u2)-net with r’>r+ 3, i.e., one can define additional block 

classes besides the families JzZ~, go, 9if1, . . . , 9i?r constructed so far. This can be done if 

one can define row or column partitions other than JX?,, and +ZO. Recall that 3, 

denotes the initial partition of [l, n] which determines do, %?,,; suppose that Y1 #JJ,, 

is another partition of [l,n] into s subsets of equal size p and ZZ’,, 59, denote its 

associated row and column partitions. We can extend the (s, r + 2; p2)-net obtained 

from Corollary 3.2 by adding the two additional block classes JzZ,, VI if and only if 

~AOnAl~=~COnCl~=p2 for AiG&r and Ci&‘I, i=O, 1, i.e., IZOnZ,I=p/s for Z,E~~ 

and l,~4,; hence, s must be a divisor of ,D. Therefore, no additional row or column 

partition of [ 1, n]* can be added to the list { dO, %YO, gI, . . . , B, > to form a (s, r’; p)-net 

with r’3 r + 3 whenever s is not a divisor of p and, in particular, if ,LL < s. 

We now assume that s is a divisor of p, ,u=/Is, with 3.3 1. Based on the above 

observations, two remarks are in order: 

(1) Suppose ~33 and there exists a (s,p;;l)-net Z7=([l,ps], U14i4pYi,~) on 

[l,,~s] with block classes LJ~, Y2, . . . , 4,; so, each 9; is a partition of [l, ps] into 
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s equal parts. For i~[l,p], let pi, %‘i denote the row and the column partition of 

[l,ps12, respectively, determined by <ft. Then 

no=([l>ps]2, (,;<,+J(l;<P+) 

is a (s,2p;p2)-net on [1,ps12, called the grid net determined by Zl. 

(2) The (s, r; p2)-net 

&FS = 
( 

Cl, w12, u gi>E) 

laisr 

determined by the set of I mutually orthogonal frequency squares is always extendible 

by the grid net Ilo, i.e., 

is a (s, r + 2p; p2)-net. Therefore, 

(l~~~i)u(l~~~i)U(l~~ldi)~E) 
the next theorem follows immediately. 

Theorem 3.5. Let ,tt = Es and p > 3 be the largest integer for which there exists a (s, p; A)- 
net on [l, ps]. If there exists a set of r mutually orthogonal frequency squares of 
frequency p on s symbols, then there exists a (s, r + 2p; p2)-net which is an extension of the 
grid net associated with the given (s, p; A)-net. 

Moreover, if there exists a (s, s + 1; 1)-net, i.e., an affine plane of order s, and p = s, 

then Theorem 3.5 can be strengthened as Theorem 3.6. 

Theorem 3.6. Zf there exists a (s, s+ 1; 1)-net, then the following assertions are 
equivalent: 

(1) There exists a set of r mutually orthogonal frequency squares of frequency s on 

s symbols. 
(2) There exists a (s, r + 2 (s + 1); s’)-net which is an extension of the grid net asso- 

ciated with the given (s, s + 1; 1)-net. 

Proof. It remains to show that (2) implies (1). Let Y,,,Y1, . . ..Ya. denote the block 

classes of the given (s, s + 1; 1)-net defined on [l, s’]. By assumption, the block classes 

of the (s, r + 2(s + 1); s2)-net n can be denoted by do, dl, . . . , ds, Vo, VI, . . . , ‘GfTs, and 

98 1 ,..., SYSinsuchawaythat&O,dl ,..., JG!, are the row partitions and 9Z0, %?I) . . . , gs 

are the column partitions of [l,s212 determined by X0,9,, . ...9,. Let F,,F2, . . ..P. 

be the set of r mutually orthogonal quasi frequency squares obtained from 9S1, . . . ,93, 
by Theorem 3.1. To show that each Fj is indeed a frequency square is equivalent to 

showing that each BETSY contains exactly s elements in each row and in each column. 

Let BE&?i and C(i be the number of elements of B occurring in the ith row of [l,s212; 

hence, ~xi + . . . +aS2=s3. Next we claim that Q=S for all 1 $i<s2. 
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Let Z0~90, . . . . I,E.~~ be the s + 1 blocks of the given (s, s + 1; 1)-net which contain 

element 1 of [ 1, s2]; then the sets {l}, I0 - (11, . . . , I, - {l} form a partition of [ 1, s2]. 

Let A,~~r9i be the block of n formed by the rows indexed by Zi for 0 < i<s. Since Zl is 

a (s, r + 2(s + 1); s2)-net, we have that 1 BnA,I = s2, i.e., Cjsli cCj= s2 for 0 <ids. Sum- 

ming the above s+ 1 equations, we obtain that (s+ l)cr, +C14j,<s2 Mj-cC, =s’(s+ l), 

and, since x1 ~ jGs2 Qj =s3, it follows that a1 = s The other cases Cli = s, 2 < i < s2, can be 

proved similarly. 0 

4. (s,r;,u)-nets and association schemes of affine type 

In this section, we shall introduce some geometries related to classical forms and 

then show that their local structures can be described as the dual of (s, r; p)-nets with 

suitable parameters. 

4.1. The lower semilattice -ri”,(U, V). 

First, we shall concentrate on the lower semilattice $P4(U, V) of bilinear forms 

(p= 1). Let U, V be vector spaces of dimensions d and IZ, respectively, (d<n) over 

a finite field GF(q), and U + V be the direct sum of U and V. Let 

Pi = {A 1 A c U + V is an i-subspace and An V is trivial}, 

where O< idd. Note that the condition An V= (0) is equivalent to that of 

dim (rci(A))=dim(A), where x1(A) is the projection of A onto the first summand U. 

Furthermore, if AE_!?~, then dim (xi(A)) = dim (U) and, hence, there exists a linear 

transformationf: U -+ V such that A = {(x, f(x))) XE U >. It follows that, with respect to 

fixed bases of U and V, the set yd of roofs of the geometry 

can be identified with the set Md x ,,(GF(q)) of all d x it matrices over GF(q). Similarly, 

each other level pi can be identified with [y] x Mi,,(GF(q)), 1 <i<d, where [y] 

denotes the family of all i-dimensional subspaces of U. In other words, 

d;pi={(.L y)l YECYl and f: Y-+V is linear}. For (fT Y) and (g,Z)~uf,~ P’i, we 

define (f; Y) <(g, Z) if and only if YcZ and the restriction gly of g on Y is identical 

withf; (f; Y) and (gTZ)EUo<i<d Pi are called comparable if either (f; Y)<(g, Z) or 

(%Z)d(J Y). Clearly, IJObiCd c5?i is the lower semilattice LZ,(U, V) introduced by 

Delsarte [4]. Any flag F of type (0, 1,2, . . . . d -2) in the geometry 

TP=(_!%?~,~?~, . . ..P’J contains a unique (fdm2, Ud_2)~9d_2, where U,_,E[,!,] 

and f: Ud_2-+ V is a linear transformation. The residue Res(9) of 9 in the 

geometry _P=(04p0,dp1, . . . . 9J is defined to be Pug!, where g={(f; A)IAE[~!‘~], 

f:A-+V is linear, (fd-2,Ud-2)<(f;A)), and S?={(g,U)Ig:U-+V is linear, 

U-2, Ud-2)G(g, U,}. El ements in 9’ and B are called points and blocks, respectively. 
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Theorem 4.1 (Sprague [14]). (1) The incidence structure Il =(P’, !B, E) associated 
with the residue Res (9) of a jag 9 of type (0, 1,2, . . . , d- 2) in the geometry 9 = 

(~po,~l, . . . . ~3’~) belongs to the diagram 

[II 
o-o. 

More spec$cally, the dual of Res (F) is a (q”, q + 1; l)-net. 
(2) The geometry d;p = (ZO, $P1, . . . , ~3’~) belongs to the diagram 

111 
0 n . . . o-o-o. 

Any incidence structure Zl isomorphic to the semilinear iocidence structure 
(dpd, Yipd_ 1, 2) is called an (n, q; d)-attenuated space [14], or a d-attenuated space in 
short. These are examples of the following specific class of incidence structure with 
(s,r; 1)-nets as their planes. A d-dimensional net is a connected semilinear incidence 
structure Il such that the following conditions hold: 

(Dl) every plane is a (s,r; 1)-net, 
(D2) the intersection of two subspaces is connected, 
(D3) if two planes in a 3-space of Il have a point in common, then they have 

a second point in common, and 
(D4) the minimum number of points which generate Il is d+ 1. 
Sprague [14] proved that every finite d-dimensional net (d B 3) is an (n, q; d) at- 

tenuated space for some finite field GF(q). Sprague also characterized d-dimensional 
nets as the duals of those incidence structures belonging to the diagram in Theorem 4.1. 

As mentioned before, the set 6pd of roofs of the geometry Y = (YO, Y1, . . . , Yd) can 
. . 

be identified with the set Md x ,, (GF(q)) of all d x n matrices over GF(q). Furthermore, 
it is worth mentioning here that it also carries the structure of (P&Q)-association 
schemes and, hence, distance-regular graphs. Set 

LRi={(A,B)IA,BEMd..(GF(q)), rank(A-B)=i}, Odi<d. 

Then 
(i) LRO is the diagonal of (Md x ,, (GF(q)))2, and {LRi IO < i < d} forms a partition of 

(Mdxn(GF(q)))2, 
(ii) the transpose LRT of LRi is identical with LRi, 06 i <d. 
(iii) if (A,B)ELR~, then ({CICEM~~~ (GF(q)), (A, C)ELRi and (C,B)ELRj}I is 

a constant Pz which is independent of the choice of A and B. 
In other words, (Mdx n (GF(q)), (LRi ( 0 < i < d}) forms a symmetric association 

scheme of d classes. The reader is referred to [l] for more details about association 
schemes. Furthermore, (Mdxn(GF(q)), LR1) turns out to be a distance-regular graph 
with LR1 as its edge set, denoted by H,(d, n), and, indeed, a distance-transitive graph 
of diameter d. 

The d-shadow ad(g,A) of (g,A)EY, is defined to be {(f, U)l(f, U)EZ~ and 
(g, A)b(f, U)}. It is easy to see that ad(g, A) is a (0, 1, . . ..d-r}-clique in the 
graph H,(d, n), i.e., rank(A -B)dd -r for A, BEcI(g, A). Indeed, Huang [9] proved 
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that each maximum (0, 1, . . . . d-r}-clique of H&d, n) is of the above form as d- 

shadow of some (g, A)E~?~ whenever II >d + 1 and (n, q) #(d + 1,2). In particular, 

rad(Y,A)/(g,A)EYd-l}~~ d can be identified with the set of all maximum cliques 

of H,(d, n). 

Toward the program of classifying distance-regular graphs, Huang [8] proved that 

the above-mentioned distance-regular graph H,(d, n) defined on _JZd = Md X ,(GF(q)) is 

uniquely determined by its intersection array, subject to some extra conditions by 

using Sprague’s characterization of d-dimensional nets. These extra conditions were 

modified by Cuypers [3] recently. Following similar approaches, Yokoyama [16] 

proved similar results in the context of distance-transitive graphs which includes even 

the square case d =n. 

4.2. Geometries for classical ,forms 

In the second half of this section, we concentrate on square matrices as well as some 

examples of (s, r; p)-nets with ,u > 2. Let V be a vector space of dimension n over a finite 

field GF(q), where q=p” is a prime power, Us V be a subspace of dimension i. Let 

Bil( U), Alt(U), Her(U) and Sym(U) be, respectively, the set of all bilinear forms, 

alternating bilinear forms, hermitian forms and symmetric forms defined on U. We 

assume that p #2 in the case of alternating forms and m=2r is even in the case of 

hermitian forms. Then Bil(U), Alt(U), Sym(U) are vector spaces of dimensions i2, 

i(i - 1)/2, i(i + 1)/2, respectively, over GF(q), and Her(U) is a vector space of dimension 

i2 over GF(p’). Bil(U), Alt(U), Sym(U) and Her(U) will be denoted by Bil(i, q), Alt(i, q), 

Sym(i, q) and Her(i, q), respectively when there is no confusion. Let 

&i={(,fi U)l UE[~] andfEAlt(U)}, 

Xi={(f; U)l UE[~] and fEHer(U)), 

ypi={(L U)l UECYI andfESym(U)}, 
and 

si={(f; U)/UE[~] andfGBil(U)}, 

where 0 d i 6 n. Let .r4 denote the geometry (JzZ~, dl, . , d,) and the other geometries 

Y, W and X are defined similarly. 

As mentioned for the geometry 9=(_90,-44, . . . . 9,) the notions of comparability, 

flags and residues can be similarly defined for geometries &‘, 9, &? and Z’. For 

example, for the geometry d=(&o,.r4,,&2, . . . . xZ,,), (L U)<(g, W) if and only if 

U c W and the restriction gla of g on U is identical with f whenever (f; U)E~~, 
(g, W)E&j. Any (,f; U), (g, W)E~iU~dj are comparable if either (fT U)<(g, W) or 

(g, W)<(,f; U). The residue of a flag 9 of type { 1,2, . . . . n-2) is uniquely determined 

by some (.fn-2, Un-2)~d”-Z, where U,_ 2 E V is a subspace of dimension n - 2 
and fn_ ,~Alt (U,_ 2); more specifically, the residue Res(P) of the flag 9 is defined 

to be 9’u%?, where P={(J U)l UE[,!,], fEAlt(U), (fne2, U,_,)<(,J U)} and 

g = {(g, V) I gEAlt( V), ( fn _ 2, U, _ 2) < (g, V)}. Elements in P and 98 are called points 
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and blocks, respectively. With respect to the induced incidence relation, we shall show 

that the incidence structure I7 = (P’,B’, E) associated with the residue Res(S) of a flag 

9 of type (0, l,..., n-2$ in the geometries &‘, J?, 9 and 99 belongs to the diagram 

VI@ 
o-o 

with a suitable choice of p for each case. 

Theorem 4.2. (1) The residue Res(9) of a fiag F of type (0, 1,2, . . . , n-2) of the 

geometries d, H”, Y and 99 belongs to the diagram 

[114' 
o--o, 

where i = 1,2,3 and 4, respectively. More specifically, the dual of the residue Res(9) in 
the geometry & is a (q”-‘, q + 1; q)-net satisfying (*). 

(2) The geometries d, A?“, Y and .&I belong to the diagram 

[llqf 
o-o-o ... o-o-o 

where i= 1,2,3 and 4, respectively. 

Proof. Only the proof for the geometry d =(dO, -Qz,, . . . , d,,) is given. Similar argu- 

ments work for the other geometries X, Y and a’. Consider the partition 

{{(_A U)lf~AW) and flun_2=fn-2j I UE 
[ 1 

.yl , with U,_,EU) 

of the point set of Res(9). Obviously, any block (J; V) is incident with exactly one 

point of each of the above classes. 

For two distinct points (f, U),(f’, U’) f rom distinct classes, UnU’= Un_2 and 

fIun_Z=fl U”_, =fn_ 2. Fix a base {vr , . . . , v,> of V such that ( vj, . . . , v,} is a base of 

Un_2, v~EU-U~-~ and v~EU’--U~_~; those blocks (h, V) which go through (L U) 

and (f’, U’) can be uniquely represented by matrices of the form 

- 0 CI ct3 ... a,- 

--cI 0 a; ..’ a:, 

-a3 -IX; > 

L-2 

-cI, -cc; 

where bj, c$, 3 <j< n, are uniquely determined by fnm2, f and f ', respectively. Since 

there are q choices for LX= h(vI, v2), it follows that there are q blocks which go through 

both (J; U) and (f', U’), as required. 0 

Remark. The proof of the second part of (1) can be found in [lo]. 
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With respect to a fixed base of V, each member in the sets of roofs B(n, q), A(n, q), 

H(n, q), S(n, q) of the geometries 8, JJ, X and Y, respectively, can be expressed as an 

n x n matrix, n x n antisymmetric matrix with zero diagonal, n x n hermitian matrix 

and an n x n symmetric matrix, respectively. Furthermore, each set of roofs also 

carries the structure of (P&Q)-association scheme, as we mentioned before for 

-Y,(U, W). Let 

ARi=((A,B)IA,B~Alt(n,q) and rank(A-B)=2i}, 

SRi=((A,B)IA,BESym(n,q) and rank(A-B)=2i-1, 2i}, 

where 0 d i < [n/2] ( = d), and 

BRi=((A,B)IA,B~Bil(n,q) and rank (A-B)=i}, 

HRi=~(A,B))A,BEHer(n,q) and rank (A-B)=i}, 

where O<i<n. Both (Bil(n,q), {BRilOdidn}) and (Her(n,q),(HR,(O<i<n)) are 

(P&Q)-polynomial association schemes of n-classes and, indeed, BT = (Bil(n, q), BR,) 

and HT=(Her(n, q), HR1) turn out to be distance-regular graphs of diameter n, 

respectively. Similarly, (Alt (n, q), { Rt 10 < i < dj ) and (Sym(n, q), { Ri I 0 < i < d)) are also 

(P&Q)-polynomial association schemes of d-classes; moreover, AT = (Alt (n, q), AR,) 

and ST=(Sym(n, q), SRI) turn out to be distance-regular graphs of diameter d and, 

surprisingly, they share the same intersection array, i.e., 

bi=q4i(q-l)(q”-2i-l)(q”-2i-q)/(q2-l)(q2-q), O<i<d-1 

and 

Ci = q 2i-2(q2i- l)/(q’- l), 1 <i<cl. 

Recall that, for a distance-regular graph r of diameter d, bi = ) Ti+ 1 (x)nT, (y)l for 

Obidd-1 and ci=Iri_r(x)nT,(y)l for l<i<d, where x, y~V(r) are at distance 

i and Ti(x)={zlZEV(Z) and d(x,z)=iJ. 

The above observations show that the distance-regular graphs defined over Alt(n, q) 

and Sym(n,q), respectively, are not characterized by their intersection arays, nor by 

the diagram geometries they belong to. 

5. Alternating-forms graphs 

Toward the goal of a geometric classification of the family of distance-regular 

graphs Alt(n, q), in this section, we shall provide more detailed analysis of the local 

structure of Alt(n, q). The notion of pseudo-alternating incidence structures is intro- 

duced in the hope that, in addition to its diagram, the geometry d =(,al,, &r, . . , ~2,) 

and its adjacency graph Alt(n,q) could be characterized in terms of it. 

Let us start from the maximal cliques of the graph Alt(n,q). Since it is dis- 

tance-transitive, we are concerned only about those maximal cliques which contain 

the zero form. 
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Theorem 5.1 (Hemmeter [7]). If%? is a maximal clique in Alt (n, q) which contains the 
zero form, then either ufE K Rad( f) is contained in a hyperplane of V or &,, Rad( f) 

is an (n - 3)-dimensional subspace of V. 

Hence, up to isomorphism, there are two types of maximal cliques in Alt(n,q); 

cliques of the first type are of size q”-I, and the others are of size q3. If 

(fn-r, Un-l)E.dm-l, i.e., U,_ 1 s V is a subspace of dimension n- 1 and 

fn_ 1 EAlt(U,_ r), without loss of generality, we may assume thatf,_ 1 is the zero form. 

The nth shadow a,(f,_,, U,_,) of (fn_t, U,_,) is defined to be ((fT V)(feAlt(n,q) 

and f 1 un_, =fn _ 1 }. An immediate consequence is the following corollary. 

Corollary 5.2. For each (fnml, Un_l)~~n_l, its shadow ~,,(f,_~, U,_,)~Alt(n,q) is 
a maximum clique of Alt(n, q) of size q”- ‘, and vice versa. 

Remark. A similar result holds for _!Pq( U, V) and the distance-regular graphs H, (d, n), 
as mentioned in Section 4. 

Before studying incidence structures related to Alt(n,q), it will be convenient to 

recall some notions about incidence structures (9,93,~) with the property that 

IBnB’(=O or p for distinct B,B’EGI. Let ~={B~B’IB,B’E~I are distinct and 

BnB’ #o}, then 9’ S(Z) and elements of 9 will be called lines. A subset S 5 9’ is called 

block-closed if 1 SnBl >p+ 1 for block BEG implies that BG S. Similarly, a subset 

S c 9 is called line-closed if 1 SnLl 2 2 for line LEE implies that L G S. A subset S s 9’ 

is called connected if any two points x, y of S are in a common block. A subset S c 9 is 

called a 2-subspace of ll if S is a smallest connected block-closed subset of 9 which 

contains two intersecting blocks. For any point y, I-r(y) is defined to be (z ( ZEP and y, 

z are in a common block}. For YGP, the set of common neighbors of Y is defined to 

be nueurl(Y). 
Let I7 = (Alt(n, q), 69, E), where 9I is the set of all maximum cliques of the alternating 

forms graph Alt (n, q), i.e., 

~={~,(fn-l,Un-l)l(fn-l, Un-l)-fn-lIC Ay;q) ( > 
If 9 is a flag of type {O,l,..., n-2} in the geometry d=(dcP,,dI ,..., &J and 

(fn_2, U,_2)E&c4n_zng, then the dual of Res(5) is a (q”-*,q+ l;q)-net satisfying (*), 

as mentioned in Section 4. Furthermore, any two intersecting blocks of 93 uniquely 

determine some ( fnp2, U,-,)~d,- 2; it follows that [lo] the smallest connected 

block-closed subsets of Alt(n,q) which contain these two intersecting blocks is 

Res(F)), i.e., its dual is a (qn-*, q + 1; q)-net satisfying (*), where 8 is a flag of type 

{0,1,...,n-2},with(f,_~,U,-~)~BnA,_,.Morespecifically,ifB,B’aretwoblocks 

meeting at a line A, then there exist Biggi (0~ i<q), B= Bj, B’= Bk for some 

O<j,k<q such that noGiG, Bi = A. Let y be a point in B0 but not in A; then rI (y)nBi 
consists of q pairwise disjoint lines and Ir, (y)nBi( = q2. Furthermore, 
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CIJ lQi<q r,(Y)nBi)U(r,(z)nBo)) f orms a second-type maximal clique of size q3 in 

Alt(n, q), where z is a point in Tl(y)nB1. Therefore, some features of the incidence 

structure Ii’=(Alt(n, q), a, E) can be summarized as follows: 

(1) each line consists of q”- ’ points and each point lies on (q”- l)/(q- 1) blocks, 

(2) for any two distinct blocks B, B’E~?, IBnB’j =0 or q, 

(3) any 2-subspace is a (qnm2, q + 1; q)-net satisfying (*), 

(4) if B, B’E~? are two blocks meeting at a line A, and x is a point in B’ but not in A, 

then the common neighbors of elements of Au jx} form a clique of q3 points in 

Alt(n,q) (i.e., an analog of the dual of the Pasch axiom holds). 

The conditions for the following class of incidence structures are abstracted from 

the above observations; (Alt(n, q), 99, E) provides such an example with s = q”-’ and 

p = q. An incidence structure Il = (9”,9#, E) is called pseudo-alternating if the following 

conditions are satisfied: 

(PAl) Each point lies on exactly (s,u~ - l)/(,~ - 1) blocks. 

(PA2) For any two distinct blocks B and B’ in %?, (BnW =0 or ,u. 

(PA3) If x,yEB,,nB1, then there exist Bi, 2<i<p, such that x, y~n,,~~~ 

Bi, Ino,iG,BiI=~ and Uo<iqp Bi- (x, y} consists of all common neighbors of 

x and y. 

(PA4) Any 2-subspace of Il is a (s, p + 1; p)-net satisfying (*) such that, for any two 

intersecting blocks B, B’ meeting at a line AE_Y and XEB’--A, the common neighbors 

of Au(x) form a clique. 

Some consequences of the existence of such incidence structures are: 

(1) /J - 1 must be a divisor of s.r- 1. 

(2) Each block consists of sp points, and each block can be partitioned into s lines. 

(3) Each line is contained in ,M+ 1 blocks of 99, and the intersection of those p+ 1 

blocks is the line itself. 

It seems worthwhile to state other properties of pseudo-alternating incidence 

structures as a formal proposition. 

Proposition 5.3. (1) For each incident point-block pair (x, B), B- {x} can be partitioned 

into (su - l)/(c( - 1) subsets such that the union of(x) with each such subset is a line in 2’ 
(2) For each block B, the induced incidence structure II78 = (B, Y(B), E) is linear, where 

_Y(B)={B~B’IB’E.@ and BnB’#@}. 

Proof. By (PA3), for each line A with XEA and A E B, in addition to B, there are 

exactly another p blocks which contain A. Hence, (1) follows from (PAl), and (2) 

follows from (PA2) and (1). 0 

The next proposition treats the possible structures over 2-subspaces of pseudo- 

alternating incidence structures. 

Proposition 5.4. Zf I72 =(X, B, E) is a 2-subspace of Il=(P, 9, E), then n is a prime 

power, II,/ z is a 2-attenuated space and .s=,tT1 for some integer n. 
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Proof. Since IZ,/ N is a (s, r; 1)-net which satisfies the dual Pasch axiom, the proposi- 

tion follows immediately from [15]. q 

We conclude this paper by mentioning the following result without proof: If p 2 5, 

B~93 is a block and Ti(x)nB is either empty or line-closed in Z778=(B, _‘?((B),E) for 

xc.9 not in B, then ~1 is a prime power and Z778=(B, 2((B), E) is isomorphic to the affine 

space AG(n - 1, q) for some integer n. 
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