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Abstract—In this paper, a new nonunitary transform called the
prediction-based lower triangular transform (PLT) is introduced
for signal compression. The new transform has the same decorre-
lation property as the Kahurnen–Loeve transform (KLT), but its
implementational cost is less than one half of KLT. Compared with
the KLT, the design cost of an PLT is much lower and
is only of the order of ( 2). Moreover, the PLT can be factor-
ized into simple building blocks. Using two different factorizations,
we introduce two minimum noise structures that have roughly the
same complexity as the direct implementation of PLT. These min-
imum noise structures have the following properties: 1) Its noise
gain is unity even though the transform is nonunitary; 2) perfect
reconstruction is structurally guaranteed; 3) it can be used for both
lossy/lossless compression. We will show that the coding gain of
PLT implemented using the minimum noise structure is the same
as that of KLT. Furthermore, universal transform coders using
PLT are derived. For AR(1) process, the PLT has a closed
form and needs only( 1) multiplications and additions.

Index Terms—Compression, Karhunen–Loeve transform
(KLT), subband coding, transform coding, wavelet coding.

I. INTRODUCTION

T RANSFORM coding has played an important role in
various areas of signal processing and communication

[1]–[3]. It has been widely applied to data compression. It
is well known that given the input statistics, the optimal
unitary transform that yields the maximum coding gain is the
Karhunen–Loeve transform (KLT) or Hotelling transform. The
KLT is a unitary matrix that consists of the eigenvectors of
input autocorrelation matrix. Due to its signal dependence and
computational cost, the KLT is often only used as a benchmark
for performance comparison. In many applications, suboptimal
but signal independent transforms like the discrete cosine
transform (DCT) are often used.

Recently, universal transform coding schemes using KLT
have been developed. In [4], the authors consider the problem of
universal transform coding based on estimating the KLT from
quantized data. No side information is needed because both
encoder and decoder can access the quantized data. Promising
experimental results are demonstrated. In [5], the authors intro-
duce a classification-based method using the KLT. The signal
space is divided into a number of classes, and a fixed transform
is designed for each class. In the proposed two-stage algorithm,
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the encoder uses a collection of transform/bit allocation pairs.
Very good coding performance is demonstrated.

The transform coders can be considered to be a subclass of or-
thonormal subband coders, which have the advantage of having
unity noise gain. The orthonormal subband coders have coding
gain for any input statistics. Recently, there has been great
interest in designing orthonormal subband coders that maxi-
mize the coding gain for given input statistics [6]–[10]. The
problem of ideal optimal orthonormal coder has recently been
solved. It is shown [6] that the optimal orthonormal filter bank is
closely related to the principle component filter bank [7], [10].
An ideal orthonormal coder is optimal if and only if it satisfies
the majorization and decorrelation properties [6]. The FIR case
is studied in [8] and [9].

In many applications, it is desired that a lossy coding system
becomes lossless when a sufficient bit rate is available. Sev-
eral lossy/lossless coding systems have been proposed recently.
In [11] and [12], the ladder structure is applied to high-fidelity
compression of medical images. In [13], the authors introduce a
new transform called the SP transform. It is demonstrated that
in the application of both lossy and lossless image coding, the
S P transform produces excellent compression results. In [14],
the optimal predictor with certain zero constraint is used, and
the filter is obtained through the optimization of Bernstein poly-
nomial. In [15], the authors propose an integer-to-integer trans-
form based on the ladder structure for lossless coding of im-
ages. Image coding using a two-dimensional (2-D) four-channel
ladder structure is studied in [16]. However, like most biorthog-
onal coders, none of these coders has the unity noise gain prop-
erty. Therefore, in the case of lossy compression, the coding
gain of these proposed coders is not guaranteed to be greater
than unity. In [17], we introduce a minimum noise structure
for two-channel ladder-based filter banks. The minimum noise
structure ensures that the noise gain is unity, even though the
filter bank is never orthonormal. The coding gain can never be
smaller than unity.

In this paper, a new transform called the prediction-based
lower triangular transform (PLT) is introduced. The PLT is a
signal-dependent nonunitary transform. It has the same decor-
relation property as the KLT, and its coding gain is the same as
the KLT. The elements of the PLT matrix are the coefficients
of prediction polynomials of different orders. In addition to its
coding performances, the PLT has many other merits.

1) The implementational cost is less than one half of the
KLT.

2) The design cost of an PLT is only in the order of
.

3) It has a structurally perfect reconstruction (PR) imple-
mentation. Furthermore, PR is preserved even when all
the multipliers are quantized.

1053–587X/00$10.00 © 2000 IEEE
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Fig. 1. Transform coder.

4) Its elements can be adapted as frequently as we like
without affecting the PR condition. A universal trans-
form coder without the need to send any side information
can be implemented using the proposed PLT structures.

5) The same structures of PLT can be used for both lossy and
lossless data compression.

6) For AR(1) input, PLT has a simple closed-form expres-
sion and can be found by inspection. Its implementation
needs only multiplications and additions. Thus,
its complexity is lower than the DCT, which has a com-
plexity of . Moreover, the PLT is optimal
for all AR(1) processes, unlike DCT, which is optimal
only when the correlation coefficient approaches 1.

Paper Outline: The paper is presented as follows. Section II
briefly reviews the theory of transform coding and linear pre-
diction coding (LPC). The PLT is derived in Section III. In Sec-
tion IV, two minimum noise structures are introduced, and we
will show how to implement universal tranform coders from the
proposed structures. The application of PLT to lossless coding
is discussed in Section V. In Section VI, generalization of PLT
is studied. In Section VII, we consider PLT for AR(1) inputs.
Some partial results and a different approach for the derivation
of PLT have been reported in [18], [19].

Notations: Vectors and matrices will, respectively, be de-
noted by boldfaced lowercase and uppercase letters. An
diagonal matrix with diagonal elementswill be expressed as

diag .

II. PRELIMINARIES AND REVIEWS

In this section, we will first state the noise model of this paper.
Then, we will briefly review various properties of the KLT and
LPC. Their connection will be mentioned without proofs. Most
of these results can be found in [1]–[3] and [20].

Signal and Quantizer Models:In this paper, we assume that
the input is a zero-mean real-valued wide-sense stationary
process and that itsth autocorrelation coefficients are denoted
as . The quantizers are scalar quantizers and can be mod-
eled as an additive noise source. We assume that for abit quan-
tizer, the variance of the quantization error satisfies

where is the variance of , which is the input to the quan-
tizer. The quantity is a constant that depends only on the sta-
tistics of .

Fig. 2. Filter bank representation of the transform coder shown in Fig. 1.

A. Transform Coders and the KLT

Consider the transform coding system in Fig. 1. Such a
coding system has been studied in detail [1]–[3]. In a transform
coder, the polyphase matrix is a constant matrix. Using the
polyphase representation, the transform coder can be redrawn
as the -channel filter bank structure as in Fig. 2. The analysis
filters and synthesis filters are, respectively,
related to the polyphase matrices as

...
...

(1)

Let
be the input vector. Then, its autocorrelation matrix is given by

...
...

...
...

where indicates the dimension of the autocorrelation matrix.
Many properties of autocorrelation matrix can be found in [2]
and [3]. In this paper, we will assume that is positive
definite. This is, in general, true, except for the rare cases of line
spectral processes. The autocorrelation matrix of the subband
vector is given by

(2)

To compare the performance of different transforms, one of the
commonly used measure is the coding gain. The coding gain of
a transform coder is defined as ratio of the mean square error
in pulse coded modulation (PCM) over that in the transform
coder. For unitary transforms, the coding gain under optimal bit
allocation is given by [1]
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where and are, respectively, the variances of and
. It is well known that the unitary matrix that maximizes

the coding gain is the KLT. The maximized coding gain is

(3)

where indicates the dimension of the transform. The KLT
is the unitary matrix that diagonalizes . The columns
of the KLT matrix consist of the eigenvectors of . It
can be shown that with equality if and only
if the autocorrelation matrix . Note that the
coding gain of KLT is a nondecreasing function of the dimen-
sion . Moreover if and only
if [1].

It was shown in [6] that under the assumption of high bit rate
noise model, it is not a loss of generality to assume that the
transform is a unitary transform. In other words, the coding gain
of any transform (including nonunitary and unitary transforms)
cannot be higher than that of the KLT.

B. Linear Prediction Coding (LPC)

The LPC theory has been studied for decades, and excellent
introduction to LPC can be found in [2], [3], and [20]. In an LPC
problem, for a given WSS input , we want to find a filter
of the form such that
its output has a minimum variance. The filter is
called the th-order prediction error filter, and its output
is the prediction error. The optimal prediction filter can
be obtained by solving the following normal equation:

...
...

(4)

The above normal equation can be solved by the
Levinson–Durbin fast algorithm in . The predic-
tion error variance is

The index indicates the order of prediction error filter. The
prediction error is a nonincreasing function of[2]. Moreover,
the prediction error variance is related to as

(5)

Furthermore, it can be shown by using the orthogonality
principle [3], [20] that the corresponding prediction errors

satisfy the following property:

for for all (6)

In LPC, the prediction gain is a commonly used quantity to
describe the effectiveness of a predictor and it is defined as

(7)

In a closed-loop differential pulse code modulation (DPCM)
system, the coding gain is given by the prediction gain .

III. PREDICTION-BASED LOWER TRIANGULAR TRANSFORM

(PLT)

In this section, we will show how to construct the PLT from a
given autocorrelation matrix. Before the derivation of the PLT,
we will make some definition and state a matrix decomposition
lemma from the matrix theory.

Definition [21]: Given an matrix , its principle
submatrix of dimension (where ) is a by matrix

, with its elements for .
For example

Then, the principle submatrices of of dimension 1, 2, 3 are,
respectively

Lemma 1—LU Decomposition of Matrices [21]:Let be
an by nonsingular matrix. Suppose that all of its principle
submatrices are nonsingular. Then, can be written as

in which (respectively, ) is a lower (respectively, upper) tri-
angular matrix with all diagonal entries equal to 1, andis a di-
agonal matrix. Moreover, the matrices, , and are unique.
In particular, is determined by

A. PLT

Consider the transform coder shown in Fig. 1. At the encoder,
the autocorrelation matrices of the input vector and the
output vector are related as (2). Since is positive
definite, all of its principle submatrices are positive definite as
well and, therefore, nonsingular [21]. Thus, applying the LU
decomposition lemma, the matrix can be expressed as

(8)

with the matrices and defined in Lemma 1. Moreover,
since is symmetric, we can take the transpose of (8) and
obtain

(9)

The matrices and are, respectively, lower and upper tri-
angular. Therefore, (9) is also an LU decomposition of .
From Lemma 1, we know that the LU decomposition is unique.
Thus, we conclude that

(10)
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Substituting (10) into (8) and simplifying the results, we can
conclude that there exists a unique lower triangular matrix

such that

diag (11)

The diagonal matrix is uniquely determined by

Using the fact that ,
we get

The th entry of is the prediction error variance of anth-order
optimal predictor! Comparing the results in (2) and (11), the
input autocorrelation matrix can be diagonalized by
taking the transform as the unique lower triangular matrix.

Finding the Unique Lower Triangular Transform: Let the
lower triangular matrix be expressed as

...
...

...
. . .

...

(12)

Since , the inverse transform always exists
and is also lower triangular with unity diagonal elements. Let

denote the inverse transform

...
...

...
. ..

...

(13)
Using (1), (12) and (13), we can write the analysis and synthesis
filters in Fig. 2, respectively, as

(14)

(15)

From (14), can be viewed as ath-order prediction error
polynomial, and the output of theth analysis filter is
the corresponding prediction error delayed by
samples. If is optimal, then the output of will be

, and its variance is . Since the
decimator does not change the variance, we have .
Using the property in (6), we can see that

, for . In other
words, the autocorrelation matrix will be the diagonal
matrix diag . From Lemma 1,
we know that the lower triangular matrix with such a decorre-
lation property is unique. Therefore, we conclude that if

is the th-order optimal prediction error filter, then the corre-
sponding matrix in (12) is the unique lower triangular ma-
trix. We will refer to such a matrix as the PLT. The optimal

can be obtained by solving the normal equation in (4).
Using the Levinson–Durbin fast algorithm, the PLT matrix can
be computed in . Summarizing the results, we have the
following theorem.

Theorem 2: Consider the transform coder in Fig. 1. Given
any wide sense stationary input , there exists a unique lower
triangular matrix of the form in (12) such that the trans-
form coefficients are uncorrelated. The unique lower tri-
angular transform can be obtained by choosing

as the th-order op-
timal prediction error filter. Moreover, the autocorrelation ma-
trix of the subband vector is

diag

where is the prediction error variance of .
Complexity of the PLT:The PLT and its inverse are

both lower triangular with unity diagonal elements, and the
complexity of the tranform (or its inverse) is therefore only

multiplications and additions. Compared
with the case of KLT, which needs multiplications and

additions, the complexity is less than one half of
the KLT. In the special case of AR(1), the complexity of the
PLT further reduces to multiplications and additions.

Variations of the PLT: In the previous discussion, we have
derived the PLT for the vector input

. That means that the polyphase components
are arranged in an ascending order. We can also per-

mute these polyphase components so that the new input vector
, where is a permutation matrix. In this case,

we can design PLT for the new autocorrelation matrix

(16)

In this case, the optimal transform (PLT) can be obtained by
using the orthogonality principle. As we will show in the next
section, the coding gains of the new PLT for all permutation ma-
trices are identical. Although their coding performance is the
same, some permutation matrices can result in PLT with lower
implementational cost. If the permutation matrix is chosen ju-
diciously, some of the coefficients can be made symmetric. To
explain this, take . If the input vector is taken as

, then the corresponding PLT will
have the form

for some and . To implement , we need only two multipli-
cations instead of three. Using the orthogonality principle, one
can verify that the transform coefficients are uncorrelated. That
is, diag .

B. Implementation of PLT Using Ladder Structures

The PLT has a structurally PR implementation using the
ladder structure. In such an implementation, the filter bank
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Fig. 3. Ladder-based implementation of the PLT coder.

continues to have PR even when all the multipliers in the
structure are quantized to a finite precision. In the following,
we will derive the ladder structure for PLT.

Note that any lower triangular matrix of the form (12) can
be decomposed as

where

(17)

The elementary matrix has only one nontrivial row formed
by coefficients of the th-order prediction error filter. The in-
verses of these elementary matrices are very simple and can
be found by inspection. To be more precise, the inverse can be
obtained by replacing the nontrivial elements in (17) with

. That is

(18)

From (17) and (18), we see that both the transformand inverse
transform can be factorized into ladder sections.
The implementation based on these factorized forms are shown
in Fig. 3 for . The ladder-based implementation has
the same complexity as direct implementation of. Both the
encoder and decoder have the same set of multipliers. Therefore,
even when these multipliers are implemented in finite precision,
PR is still preserved.

IV. M INIMUM NOISE STRUCTURES FORPLT

Recall that the PLT is a nonunitary matrix, and so is its in-
verse. Hence, the PLT coder does not have the energy preser-
vation property. In general, the quantization noise generated in
the subbands will be amplified at the decoder. To study how the
noise is amplified, we assume that the quantization noise
in different subband is uncorrelated. That is, we assume that

diag . Under
this assumption, we can show that the average output noise vari-
ance is given by

where is the two norm of the synthesis filter in
(15), and it is given by . Therefore,
the noise gain is always greater than one, unless the matrix
is the identity matrix. We will call the structure in Fig. 3 the

nonminimum noise structure for the PLT. To understand why the
noise gain is larger than one, let us consider Fig. 3. The inputs
to the multipliers at the encoder are the unquantized data,
whereas the inputs to the multipliers at the decoder are the
quantized data. This means that the predictors at the encoder use
unquantized data as their observations, whereas the predictors
at the decoder use the quantized data. It is this mismatch that
causes the noise amplification.

Coding Gain for Non Minimum Noise Structure:Using the
noise model defined in Section II and applying the optimal bit
allocation, one can show that the coding gain of the PLT is

Since all , we conclude that
with equality if and only if . Due

to the noise amplification, the quantity is not
guaranteed to be greater than unity. In the rest of this section,
we will derive two minimum noise structures that have the unity
noise gain property.

A. MINLAB(I) Structure for PLT

Note that the inverse transformin (13) is also lower trian-
gular. Thus, we can factorize as

where

(19)

Using the above equation, the transformcan be factorized as

(20)

where can be obtained by simply replacing the multipliers
in (19) by . From (19) and (20), we can obtain a

ladder-based implementation that is different from Fig. 3. Such
a ladder structure will also be structurally PR, but both the en-
coder and decoder have the same set of mulitpliers. Pro-
vided that are quantized to the same value at the encoder
and decoder, we continue to have the PR property.

Using (20), the minimum noise structure for the transform can
be implemented as Fig. 4. Since has the identity matrix
on its top-left corner, the output vector of the encoder in Fig. 4
contains only quantized values. To see why the minimum noise
structure has the unity noise gain property, we take . The
minimum noise structure for PLT is shown in Fig. 5. From
the figure, it is not difficult to verify that

for . The noise gain for the PLT is unity even
though the transform is nonunitary. Note that we do not make
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Fig. 4. MINLAB(I) structure forM �M PLT coder.

Fig. 5. Minimum noise structure MINLAB(I) for4� 4 PLT coder.

any assumptions on the quantization noise . This unity
noise gain property holds even when noises are correlated
and colored. In general, one can show that the minimum noise
structure in Fig. 4 for PLT has the same unity noise gain
property. In the rest of this paper, we will refer to Fig. 4 as the
MINLAB(I) structure for PLT.

B. MINLAB(II) for PLT

We can also modify the ladder implementation based on fac-
torization of in (17) to obtain a different minimum noise struc-
ture. To avoid the mismatch of observations in the ladder-based
structure in Fig. 3, one can modify the structure so that the in-
puts to the multipliers at the encoder are quantized data
instead of the original unquantized values. The encoder of the
modified structure for case is shown in Fig. 6, and the
decoder is the same as Fig. 3. From the figure, one can verify
that the structure has the unity noise gain property. For the same
reasoning as in MINLAB(I) case, this property holds even for
correlated and colored quantization noise. The implementation
in Fig. 6 will be refered to as MINLAB(II) structure for PLT.

C. Complexity of the MINLAB Structures

For MINLAB(I) in Fig. 4, the structure has the same number
of multiplications and additions as the nonminimum noise struc-
ture in Fig. 3. However, since all the multipliers are (not

), we need to invert the lower triangular matrixto obtain
these parameters. If Gaussian elimination method is used, we
need multiplications and additions to
invert an lower triangular matrix. On the other hand,
the MINLAB(II) structure requires an extra adders
compare to the nonminimum noise structure. The multipliers in
MINLAB(II) are , and thus, no matrix inversion is needed.
Although the two MINLAB structures have the same coding
gain, their complexities are not the same. For an input of length

, the MINLAB(I) structure has an overhead of
multiplications and additions, whereas the MINLAB(II)

structure has an extra additions. Therefore, when
, MINLAB(I) is preferred; otherwise, MINLAB(II) is

preferred.

Fig. 6. Encoder for PLT MINLAB(II) structure. The decoder is the same as
Fig. 3.

D. Coding Gain of PLT Using MINLAB Implementations

The two MINLAB structures have the unity noise gain prop-
erty. Therefore, for a fixed average bit rate ,
the average output variance can be expressed as

where we have used the fact that theth subband signal vari-
ance is . Applying the arithmetic mean geometric mean
inequality to the above equation, we get

with equality if and only if the bits are allocated as

From the above derivation, we see that the average output noise
variance is minimized if all quantizers have the same noise vari-
ance. Therefore, the equal stepsize rule is also optimal, and en-
tropy coding can be used to encode the outputs of.

Compared with the error variance in a PCM system, the
coding gain of PLT is given by

where the subscript indicates that the coding gain
is for the minimum noise structures of PLT. Using (3) and (5),
we conclude that the coding gain of PLT is

(21)
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Therefore, the PLT coders with minimum noise structures have
the same coding gain as KLT. Using (5) and (7), one can express
the coding gain of PLT in terms of the prediction gain

(22)
Remark: As we have mentioned at the end of Sec-

tion III-A, we can also derive PLT for the input vector
. In this case, the

autocorrelation matrix for is related to
as (16). Since

, we conclude from (21) that for all permutation
matrices , the coding gain is the same.

Comparison with DPCM:The DPCM is also a prediction-
based coding system. For a closed loop DPCM with a prediction
filter of order , the coding gain is given by the prediction
gain . Since the prediction gain is an increasing func-
tion of the filter order (except for AR processes where the gain
saturates), we can conclude from (22) that

. Even though the coding gain of a PLT is less
than that of a DPCM, it has other advantages.

1) Unlike DPCM, the PLT involves only FIR filtering in the
reconstruction process. Therefore, any error occuring in
the transmission or storage will not be propagated.

2) In PLT, the relationship of in different channels can
be exploited for further compression, e.g., zerotree algo-
rithm [22].

3) The computational complexity: The PLT requires
multiplications and additions per input

sample, whereas the DPCM encoder (or decoder) of the
same order needs multiplications and additions
per input sample.

Effect of Quantization on the Prediction Gain:At very low
bit rate coding, the quantized data can
be very different from . If the SNR decreases, the accuracy
of the estimate by using these quantized data will decrease. The
prediction gain will decrease. Therefore, like other prediction-
based coding methods, the coding gain of PLT will decrease
when the SNR decreases.

Universal Transform Coder:Since the MINLAB structures
are structurally PR, we can adapt the multipliers as frequently
without affecting the PR property. The statistics of the input can
be adaptively estimated from the quantized data, and this infor-
mation can be used to update the prediction error polynomials.
Since the estimation is based on the quantized data, there is no
need to send any side information to the decoder. Given any
input signal, we can initialize the PLT as . After each
input vector is encoded with , the statistics can be up-
dated, and the transform can be computed in
using the Levinson–Durbin fast algorithm. After a few itera-
tions, if the statistics of the input do not vary too fast, the rate
of adaptation can be reduced. In addition, the transform can be
updated only after a number of input vectors are encoded. For
the implementation of universal coder, MINLAB(II) structure
is preferred because MINLAB(I) structure needs to invert
for each .

Fig. 7. Lossy/lossless PLT coder.

One can also use adaptive algorithms such as the least mean
square (LMS) method to update the different predictors.
In this case, there is no need to estimate the statistics, and the
complexity will be .

V. PLT FOR LOSSLESSDATA COMPRESSION

In many applications, it is desired that a lossy coding system
becomes lossless when a sufficient bit rate is available. Since
the multipliers of KLT are real numbers, in practice, they have
to be quantized. In general, the KLT with quantized multipliers
will not have the PR property. Therefore, the KLT, in general,
cannot be used for lossless coding.

On the other hand, the two MINLAB structures introduced in
previous section can be implemented for both lossy and lossless
coding after some minor modifications. To see this, assume that
the input values are integers. Take the MINLAB(I) struc-
ture in Fig. 5 as an example. If a quantizer is cascaded after
all of the predictors as shown in Fig. 7 and its stepsize is set as

, then the PR property continues to hold. The quantizer
in Fig. 7 can be roundoff, truncation, or ceiling quantizer.

Recall that the PLT coder is optimal when the equal stepsize
rule is applied. Therefore , we can set the stepsizeof quan-
tizer to the same value, and entropy coding can be used to
encode the quantized subband signals. If all , then
we have a lossy PLT coder. If all , then the PLT coder
becomes lossless. Therefore, we can implement both lossy and
lossless coding with the same PLT coder by simply adjusting
the stepsizes . Similarly, one can modify the MINLAB(II)
structure in Fig. 6 to obtain a lossy/lossless coder.

VI. GENERALIZED PLT

The transform coder has a constant polyphase matrix. It is
a special class of subband coding, where the polyphase matrix is
a polynomial matrix. Since the polyphase matrix is constant, the
PLT discussed in an earlier section can only exploit the correla-
tion of data within each input vector. Therefore, its performance
is limited by its transform size . In order to exploit the corre-
lation among input vectors, one can replace the entrieswith
the more general FIR filters

(23)

For this generalized PLT, the ladder-based structure in Fig. 3
continues to be structurally PR. Moreover, the two MINLAB
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structures continue to enjoy the unity noise gain property. There-
fore, the average output noise variance after optimal bit alloca-
tion is

where is the variance of theth subband signal . To
maximize the coding gain, should be chosen such that
the energy of the subband signals is minimized. This is the
well-known linear estimation problem, and the solution can be
obtained using the orthogonality principle. As the estimation
error decreases when more samples are used in the estimation,
the coding gain increases when the length of increases. If
all are causal, the system delay is still . There-
fore, we would have a coder with better performance without
increasing the system delay.

A. Generalized PLT with Interpolation

If the in (23) is taken as a noncausal polynomial, that
is, , then interpolation (instead of
extrapolation) value is used as the estimate. In a generalized
PLT, the input is partitioned into nonoverlapped polyphase
components for . We are estimating

from for . Therefore, noncausal
estimation can be implemented. In this case, the estimation error
is smaller, and the resulting coding gain is higher than the PLT.

One special case of such a noncausal PLT is the hierarchical
interpolation (HINT) coder. The HINT coder has the advantage
that its complexity is very low. The HINT coder has been applied
to lossless compression [11], [12]. However, since the encoder
uses unquantized data for its estimation while the decoder uses
quantized data for its estimation, the structure used in [11] and
[12] does not have the unity noise gain property. Therefore, in
general, the HINT coder does not give a satisfactory result when
applied to lossy compression. To explain how we can get a HINT
coder with MINLAB structures, let the number of channel

. In an eight-channel HINT coder, the input is partitioned into
four groups:

integer

integer

integer

integer

These groups are shown in Fig. 8. In a MINLAB HINT coder,
the samples in Group are quantized directly. The samples in
Group are first estimated from the two nearestquantizedsam-
ples in Group , and then the estimation error is quantized.
Similarly samples in other groups are estimated from the two
nearest samples inpreviously quantizedgroups and the estima-
tion error is coded. The complexity of MINLAB HINT is very
low. Each estimation takes only one multiplication because of
symmetry. To implement the above eight-channel system, the
encoder needs only seven multiplications for encoding eight
input samples. In general, for an -channel MINLAB HINT
coder, the encoder (or decoder) needs only multi-
plications per input sample.

Fig. 8. Eight-channel hint coder partitions the input into four groups�, ?, �,
and�.

Fig. 9. Comparison of eight-channel MINLAB HINT, PLT, and DCT coders
for AR(1) with correlation�.

VII. PLT FOR AR(1) INPUTS

If the input is an AR(1) process with correlation, then all the
prediction error polynomials in (14) will have the same
form . The PLT in this case has the following closed
form:

...
...

. . .
. . .

...

(24)

Once is known, we can find by inspection; no computa-
tion is needed. Therefore, the universal optimal PLT coder in-
troduced in Section V becomes very simple, and we need to
estimate only one parameter. The coding gain in this case be-
comes

As is large, the above gain approaches the prediction gain of
a DPCM coder.

In addition, note that the transform in (24) is almost in-
dependent of the input signal. An PLT for AR(1)
process needs only (M-1) multiplications and additions. Thus,
its complexity is lower than the DCT, which has a complexity
of . Moreover, the PLT in (24) is optimal for all
AR(1) processes, unlike the DCT, which is optimal only when

approaches 1.
Comparison of DCT, PLT, and Generalized PLT Coders:To

compare the performances of these three coders, we use AR(1)
signal as an input. As MINLAB HINT coder has a low com-
plexity, we choose this special case to demonstrate the perfor-
mance of generalized PLT with interpolation. One can show that
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the coding gain of an -channel MINLAB HINT coder is given
by

For and , the coding gains
of these coders are plotted in Fig. 9. One can see that as
approaches 1, the HINT coder is much better than the PLT,
whereas the PLT is much better than the DCT.

VIII. C ONCLUDING REMARKS

In this paper, we have introduced a new nonunitary transform
that has the same coding performance as the KLT. The proposed
PLT coder has a lower design and implementational cost. In
addition, the PLT can be applied to implement universal coders
and lossy/lossless coders. Moreover, the PLT can be generalized
to the overlapped transform case. The generalized PLT includes
HINT coder as a special case. For AR(1) process, both PLT and
HINT coders have much higher coding gain than the DCT. All
these features and merits make the PLT an invaluable tool for
signal compression.
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