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An Analysis for Measurement of Thermal Diffusivity Components
of Anisotropic Platelike Samples by AC Calorimetric Method
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This work examines the effects of anisotropy and transparency on measurements of thermal diffusivity components with
an ac calorimetric method associated with laser heating. Analytical results indicate that the region where the two-dimensional
effect occurs increases with the decrease of the ratio of cross-plane to in-plane thermal diffusivity. The region also increases
with the optical thickness of the sample. The linear relations, as indicated by a decay constant from which the cross-plane
thermal diffusivity is deduced, are not obtained for media of both optically moderate and thin thickness, while at sufficiently
large optical thickness, anisotropy and two-dimensional effects are found insignificant.
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addressed the effect of anisotropy. To further investigate the
effect of anisotropy and 2D ac temperature response, this
Hattaet al,»'? Gu and Hatt&) Katoet al.”) and Guet al®)  work considers a platelike sample of thicknesgor which
developed an ac calorimetric method for measuring the i part of the sample surface is irradiated by uniformly dis-
plane thermal diffusivity of a thin film. That research assumettibuted radiation heat while the remaining surface is shad-
that the ac temperature wave propagates one-dimensionaillyed by a mask. The anisotropy of the sample is considered
along the surface, thus allowing one to determine the thermia be orthorhombi® with two thermal diffusivity compo-
diffusivity by analyzing the decay curve of the ac temperatureents, parallel and perpendicular to the sample surface. The
waves. The decay constant of the phase or the logarithm of teffect of material transparency on the temperature response,
amplitude of ac temperature wave is givenkoy= /7 T/Dy, as may occur with dielectric thin films during laser heating, is
wheref is the frequency of the ac light aridl, is the thermal also included.
diffusivity of the material. With larger sample thickness, as-
suming a one-dimensional (1D) temperature distribution bé:  Th€ory
comes invalid. The two-dimensional (2D) effect on the ac Figure 1 presents the physical model and coordinate sys-
temperature must then be included and has been analyzediéms, and the governing equations for temperature response
Yamaneet al.® Hattaet al” and Takahashét al® The ac are given as
calorimetric methods for measuring the cross-plane thermal 92T 92T 9T
diffusivity of a film have also been proposed by Yaetcal.®) kx5 tky—— + 04X, y,t) = pC—, (1)
and Katoet al1 using a one-dimensional model. 0X 9y ot
The above investigations considered the isotropic medi#herexy andky are, respectively, the in-plane and cross-plane
For anisotropic materials, the thermal diffusivity componenttermal conductivity components. is the density and the

will influence the 2D ac temperature response. Halmefly ~ specific heat. The heat source teqox, y, t) can be described
as

1. Introduction

g, ¥, 1) = Qu(l— R) {& ¥ 4 Y[R 1 @Y 4 R “@NYE [H (x + a) — H(x)]é> ", 03

n=1

with the multiple reflections at boundaries includedis the
absorption coefficient an& denotes the boundary reflectiv- Energy Beam
ity. H represents the heaviside functio is the heat flux
per unit area of the incident bearnis equal toy/—1. f de-
notes the frequency of the incident beam anépresents the
spatial width of the incident beam.

The initial and boundary conditions for surfaces with con-
vection heat loss are

a
T y,t)=0 at t=0, 3) D E—
0.0 Mask
T(=o00,y,t) =T(co,y,t) =0, 4)
dT(x,0,t) h x
ay Ky |
AT (x,d,t h
T4 Nrdn =0, (6)
ay Ky w}y/
whereh is the convective heat transfer coefficient. By using Sample
the Fourier transform technique and introducing the following Fig. 1. Physical model and coordinate systems.
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nondimensional parameters, Dy hd

k=—, t=ad, B= , (7
X/ — L / L /I __ # DX KxTT
Cd/n’ y= d/m’ "~ 2Dy /d2’ the ac temperature is then derived as
TaolX. Y, 1) _ / ¥  tA-RE" -1 |(@+B/EVFF - (q-B/ke "V EE
Qd/2r3%ky, ) o iwl[t?/m2— (w2421 f'i)/k] (q+ B/k)2e%™ — (g — B/k)%e 97
(q—B/K)eVYFF —(q+ B/x)é™ Y EE N
@+ Bl —@- Bz T O)|e A ®)

where theD’s are the thermal diffusivity components.de- and can deduce the apparent thermal diffusivibésand D7,
notes the optical depth of the sample, déhdepresents the respectively. The nondimensional thermal diffusividy,/ Dy

Biot number. andDy/ Dy, along thex’ direction is determined 5y
q=+vw2+2r7fi)/k, 9) D;/Dx =nm/a;, and D;/Dy=m/al. (15)

The values ofa, and a, at each point are derived
from the partial dervatives of IT,(X, Yy, f)|/+/f’ and
o (X, y, t)// T with respect to’ for each point, i.e.,

and

)
P(y/) — efry//n + [RZI‘lefr(Zner//n) + R2nflefr(2nfy//r[)] o o
; 20 = 3{In [Tac(X', ¥, £)1//F13/0X, (16)

(10) ap = d{¢ (XY £/ T7)/0X. (17)

with . .
3. Results and Discussion

EE— T " E 1+ i RN g2 The trapezoid method is used to calculate the integral in
T K ~ eq. (8). In numerical computations, the limitp, of the

o integration is replaced by 10, which has been found suffi-
n B T Z R21-1g-2n7 (11) ciently large. With respect to the amplitude, a quantity of
Kk 7 In(Qd/2«y73) is substracted since only the relative values of

=1
In|Tae(X', Y, f/)] are necessary.

=}

and Figure 2(a) shows the effect of on the measured
(D%/Dx)(D}/Dy) alongx’ at the back surfacg’ = z for

FE (1 _ E) e+ 3 Ree f/ = 0.00001,B = 0.0001 andR = 0.0. The optical thick-

Tk — ness of the sample is taken to be= 1000, for which the

~ sample can be regarded as opaque, making the absorption of
_ (E + 3) Z R2N-1g-(@n-Dr (12) heating energy a surface phenomenon. For isotropic materials
K T (x = 1), Figure 2(a) shows that in the regigh> 6, the val-

The solutionTao(X', ', f') of eq. (8) is a complex value. “¢° of/(D3/Dx)(D5/Dy) are unity. This phenomenon im-

The amplitudg Tae(X, v, f)| and phaseb(x, y, f) of the ac plies that in this region the thermal system can be regarded as

temperature response are then obtained from 1D. In the study of Yamanet al.,%) 1D analysis for isotropic
materials ¢ = 1) is valid in the region wheng’ > 100. In an-

| TacX', Y, )| = \/TéE(x/, y, )+ T, y, f), (13) other study of Yamanet al,' a two-layer system was con-
sidered, on the basis of which the special case of a one-layer
and system was also discussed. However, their sttidpncludes
that 1D is valid in the region wherg’ > 10. Our results
oX,y, ) =arctaiTm (X, Y, )/ Tre(X', ¥, f))]. (14) for isotropic materialsx’ > 6, are consistent with those of
7 o .
The subscripts RE and IM respectively denote the real arlfdat tr:Z?/taTLte ('):Sl\jcﬁezrfa) aDIfol;evegLs I)hat wherlls Ile_ssl than
imaginary parts ofr. : _ J/(D2/D.)(Dy/Dy) equals 1 s larger
When heat loss can be neglected, the apparent thermal &N 6, while when is larger than 1 the value of when
fusivity of eitherD} or D3, respectively derived from the de- ,/(D3/Dx)(D5/Dx) is equal to 1 is smaller than 6. When
cay of the amplitude and the shift of the phase, can be used= 0.01, the region where 1D analysis is valid delays to
to accurately derive the thermal diffusivif)y.> To compare x’ > 80. Physicallyx represents the ratio of heat wave prop-
D; and Dy derived from 2D temperature responses with thagation speeds in directions perpendicular and parallel to the
1D results, bothD; and Dy are obtained as follows. The sample surface. A large value ofindicates thaDy is much
plots of In|Tae(X, Y, )|/ T and ¢(X', Yy, £))//T’ ver- larger thanD, and heat propagates slowly in tkedirection.
susx’ decay with a constant slope Qf under 1D anal- Consequently, heat waves are rapidly conducted to the bottom
ysis? and either plot would deduce the thermal diffusivityof the sample and the thickness effect rapidly diminishes. It
Dy. In 2D analysis, the plots of IT.(X’, ¥, f))|/+/f" and quickly approaches 1D analysis near the edge of the heated re-
o(X',y, t))// T versusx’' decay with slopes of; anda, gion. At smaller values of, the heat propagates faster in the

n=1
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14 ; | ; | ; | ; the sample medium and is directly absorbed within it, i.e., the
medium is more uniformly heated across its depth within the
irradiated region and thus the 1D heat propagation holds from
\ T T X =001 a position close to the edge of the heated region for samples
\ with a smaller optical thickness. Based on the analytical re-
L ’-\ K=0.1 _ sults for the two-dimensional temperature wave propagation,
L e _ Takahashet al®) proposed the maximum thickness required
K=10 . to determine thermal diffusivity for a material heated at the
g K =10 surface, provided that the error of the slope of the phase or
\ 1 amplitude distributions is within 1% at = 0.57/kd. Ac-
. . cording to our results, the ac calorimetric method can be ap-
\ N\ plied to semitransparent samples with thicknesses larger than
B N 1 those of samples calculated by Takahasthal® within the
poh_> 1 R I same error. For example, Takahasthal. found the maximum
) 20 40 60 80 thickness of a diamond sample to be 6.3mmfat 1 Hz.
’ The absorption coefficient of diamond is 0.11 cm' under a
X heating light with a wavelength of 0.43%8n.12 By consid-
ering the transparency, this study derives the maximum thick-
(a) ness of a diamond sample to be 13.8 mm within the same error
as Takahashet al Readers may refer to ref. 12 for the ab-
1.04 — — T T T T sorption coefficients of various materials. For isotropic semi-
transparent samples, the ac calorimetric method for measur-
T=0.01 ing thermal diffusivity can also avoid the photo-heating prob-
v TTTT =01 ] lems that occurred in the flash metA8decause the thermo-
: - couple is located outside the heating beam. The effects of
t T=1.0 boundary reflectivity,R, are also tested, indicating that this
i — - does not significantly influence the region of 2D temperature
\ wave propagation. HoweveR will influence the magnitudes
'  1=100.0 of the temperature waves since it affects energy absorption.
Regarding the measurementD§, Yanget al? and Kato
3 \ 1 et al®) have proposed ac calorimetric methods for measuring
(NN the cross-plane thermal diffusivity. In a 1D model by Yang
Lo etal,” the thermal diffusivity perpendicular to the sample
T U I U surface is determined from the constant slope of the phase vs
4 8 12 16 20 the square root of the frequency in the high-frequency region.
xr The present study has noted that the ac light heating method
is not suitable for determining they of semitransparent sam-
ples if the thermocouples are placed under the light beam. In
(b) such conditions, photo-heating problems occur with the ther-
Fig. 2. Normalized thermal diffusivity estimated using eq. (15)xv$or ~mocouples. For media with sufficiently large optical thick-
f’ = 0.00001,B = 0.0001 andR = 0.0 (a) at various values of and  nesses, this study assumes optical thickmess1000, and the
© = 1000. (b) at various values of optical thicknesand = 1.0. heating is then within a very small depth near the front surface
and the above-mentioned linear relation may apply for param-

eter estimation. However, the slopes of these linear relation-

x-direction than in they/-direction. In these cases, the effeCt%hips depend on the value of Figure 3 shows the slopes,
of sample thickness become more significant and 2D distfiz e partial derivatives @f(—a’/2, , f'), with respect to

bution occurs. Experimentally, this behavior leads to a situw as a function ok. Figure 3 also displays the values of
tion where the detection points should be located far from thge partial derivatives af (—a'/4, 7, f'), ¢(0, 7, f') with re-

heated region !n order to obtain thg true thermal Qiﬁusivityspect to,/T7. Notably, the constant slope of the phase vs the

_Hov_vev_er_, the s_|gnal coulc_j be weak in such a situation, re_sugquare root of the frequency does not vary witiasx’ is un-

ing in difficulty in the precise measurement of thermophysicgg, the heating beam. Thus, the value @fan be determined

parameters. from Fig. 3. With derivedc, Dy can readily be obtained by
Figure 2(b) shows the measur{y/tﬂD;/ Dx)(D}/Dyx) along  mutiplying Dy with «. The relations between the slope and

x’ at the back surfacg = = for f’ = 0.00001,B = 0.0001, as shown in Fig. 3, can be mathematically described as

x = 1.0 andR = 0.0 for semitransparent samples with vari- I~

ous optical thicknesses, Clearly, the region where the two- 3 = 5.568/ Vi = vr/k, (18)

dimensional temperature response occurs decreases with @hereay is the constant slope of the phase vs the square root

creasing optical thickness. The 1D propagation of the heat the frequency. The result af, for isotropic material{ =

wave forms closer to the edge of the heated region than in th in this study is consistent witk/z3 derived by Yanget

opaque samples. This phenomenon occurs because for seah? Equation (18) indicates that the anisotropic effect results

transparent materials, the heating energy can penetrate iima multiplying factor of ¥./k onag. In a real experiment,
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Fig. 3. Partial derivative op(x’, =, ') with respect to,/T’ as a function

of k.
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of thermal diffusivity components¢ = 7d?/DxaZ. This

step then leads to the cross-plane thermal diffusiity, =
nd?/aZ. This result is consistent with the results of Yaetg

al.9 for isotropic materials. The above analysis shows that
anisotropic and 2D effects on the measurement of cross-plane
thermal diffusivity are insignificant as long as the detector is
located under the heating beam.
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