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This work examines the effects of anisotropy and transparency on measurements of thermal diffusivity components with
an ac calorimetric method associated with laser heating. Analytical results indicate that the region where the two-dimensional
effect occurs increases with the decrease of the ratio of cross-plane to in-plane thermal diffusivity. The region also increases
with the optical thickness of the sample. The linear relations, as indicated by a decay constant from which the cross-plane
thermal diffusivity is deduced, are not obtained for media of both optically moderate and thin thickness, while at sufficiently
large optical thickness, anisotropy and two-dimensional effects are found insignificant.
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1. Introduction

Hattaet al.,1,2) Gu and Hatta,3) Katoet al.4) and Guet al.5)

developed an ac calorimetric method for measuring the in-
plane thermal diffusivity of a thin film. That research assumed
that the ac temperature wave propagates one-dimensionally
along the surface, thus allowing one to determine the thermal
diffusivity by analyzing the decay curve of the ac temperature
waves. The decay constant of the phase or the logarithm of the
amplitude of ac temperature wave is given byk = √π f/Dx,
where f is the frequency of the ac light andDx is the thermal
diffusivity of the material. With larger sample thickness, as-
suming a one-dimensional (1D) temperature distribution be-
comes invalid. The two-dimensional (2D) effect on the ac
temperature must then be included and has been analyzed by
Yamaneet al.,6) Hattaet al.7) and Takahashiet al.8) The ac
calorimetric methods for measuring the cross-plane thermal
diffusivity of a film have also been proposed by Yanget al.9)

and Katoet al.10) using a one-dimensional model.
The above investigations considered the isotropic media.

For anisotropic materials, the thermal diffusivity components
will influence the 2D ac temperature response. Hatta7) briefly

addressed the effect of anisotropy. To further investigate the
effect of anisotropy and 2D ac temperature response, this
work considers a platelike sample of thicknessd, for which
a part of the sample surface is irradiated by uniformly dis-
tributed radiation heat while the remaining surface is shad-
owed by a mask. The anisotropy of the sample is considered
to be orthorhombic11) with two thermal diffusivity compo-
nents, parallel and perpendicular to the sample surface. The
effect of material transparency on the temperature response,
as may occur with dielectric thin films during laser heating, is
also included.

2. Theory

Figure 1 presents the physical model and coordinate sys-
tems, and the governing equations for temperature response
are given as

κx
∂2T

∂x2
+ κy

∂2T

∂y2
+ q(x, y, t) = ρc

∂T

∂t
, (1)

whereκx andκy are, respectively, the in-plane and cross-plane
thermal conductivity components.ρ is the density andc the
specific heat. The heat source termq(x, y, t) can be described
as

q(x, y, t) = Qα(1− R)

{
e−αy +

∞∑
n=1

[R2n−1e−α(2nd−y) + R2ne−α(2nd+y)]
}
[H(x + a)− H(x)]ei 2π f t , (2)

with the multiple reflections at boundaries included.α is the
absorption coefficient andR denotes the boundary reflectiv-
ity. H represents the heaviside function.Q is the heat flux
per unit area of the incident beam.i is equal to

√−1. f de-
notes the frequency of the incident beam anda represents the
spatial width of the incident beam.

The initial and boundary conditions for surfaces with con-
vection heat loss are

T(x, y, t) = 0 at t = 0, (3)

T(−∞, y, t) = T(∞, y, t) = 0, (4)

∂T(x, 0, t)

∂y
− h

κy
T(x, 0, t) = 0, (5)

∂T(x, d, t)

∂y
+ h

κy
T(x, d, t) = 0, (6)

whereh is the convective heat transfer coefficient. By using
the Fourier transform technique and introducing the following Fig. 1. Physical model and coordinate systems.



nondimensional parameters,

x′ = x

d/π
, y′ = y

d/π
, f ′ = f

π2Dx/d2
,

κ = Dy

Dx
, τ = αd, B = hd

κxπ
, (7)

the ac temperature is then derived as
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Tac(x′, y′, f ′)
Qd/2π3κy

=
∫ ∞
−∞

τ (1− R)(e−iwa′ − 1)

iw[τ 2/π2− (w2+ 2π f ′i )/κ]

[
(q + B/κ)eqy′F F − (q − B/κ)e−q(π−y′)E E

(q + B/κ)2eqπ − (q − B/κ)2e−qπ

× (q − B/κ)e−qy′F F − (q + B/κ)eq(π−y′)E E

(q + B/κ)2eqπ − (q − B/κ)2e−qπ
+ P(y′)

]
e−iwx′dw, (8)

where theD’s are the thermal diffusivity components.τ de-
notes the optical depth of the sample, andB represents the
Biot number.

q =
√
(w2+ 2π f i )/κ, (9)

and

P(y′) = e−τy′/π +
∞∑

n=1

[R2ne−τ(2n+y′/π) + R2n−1e−τ(2n−y′/π)]
(10)

with

E E =
(
τ

π
+ B

κ

)[
1+

∞∑
n=1

R2ne−2nτ

]

+
(

B

κ
− τ

π

) ∞∑
n=1

R2n−1e−2nτ (11)

and

F F =
(
τ

π
− B

κ

)[
e−τ +

∞∑
n=1

R2ne−(2n−1)τ

]

−
(

B

κ
+ τ

π

) ∞∑
n=1

R2n−1e−(2n−1)τ . (12)

The solutionTac(x′, y′, f ′) of eq. (8) is a complex value.
The amplitude|Tac(x, y, f )| and phaseφ(x, y, f ) of the ac
temperature response are then obtained from

|Tac(x
′, y′, f ′)| =

√
T2

RE(x
′, y′, f ′)+ T2

IM (x
′, y′, f ′), (13)

and

φ(x′, y′, f ′) = arctan[TIM (x
′, y′, f ′)/TRE(x

′, y′, f ′)]. (14)

The subscripts RE and IM respectively denote the real and
imaginary parts ofTac.

When heat loss can be neglected, the apparent thermal dif-
fusivity of eitherD∗a or D∗p, respectively derived from the de-
cay of the amplitude and the shift of the phase, can be used
to accurately derive the thermal diffusivityDx.5) To compare
D∗a and D∗p derived from 2D temperature responses with the
1D results, bothD∗a and D∗p are obtained as follows. The
plots of ln|Tac(x′, y′, f ′)|/√ f ′ and φ(x′, y′, f ′)/

√
f ′ ver-

sus x′ decay with a constant slope of
√
π under 1D anal-

ysis,1) and either plot would deduce the thermal diffusivity
Dx. In 2D analysis, the plots of ln|Tac(x′, y′, f ′)|/√ f ′ and
φ(x′, y′, f ′)/

√
f ′ versusx′ decay with slopes ofaa andap

3. Results and Discussion

The trapezoid method is used to calculate the integral in
eq. (8). In numerical computations, the limit,∞, of the
integration is replaced by 10, which has been found suffi-
ciently large. With respect to the amplitude, a quantity of
ln(Qd/2κyπ

3) is substracted since only the relative values of
ln |Tac(x′, y′, f ′)| are necessary.

Figure 2(a) shows the effect ofκ on the measured√
(D∗a/Dx)(D∗p/Dx) alongx′ at the back surfacey′ = π for

f ′ = 0.00001,B = 0.0001 andR = 0.0. The optical thick-
ness of the sample is taken to beτ = 1000, for which the
sample can be regarded as opaque, making the absorption of
heating energy a surface phenomenon. For isotropic materials
(κ = 1), Figure 2(a) shows that in the regionx′ > 6, the val-
ues of

√
(D∗a/Dx)(D∗p/Dx) are unity. This phenomenon im-

plies that in this region the thermal system can be regarded as
1D. In the study of Yamaneet al.,6) 1D analysis for isotropic
materials (κ = 1) is valid in the region wherex′ > 100. In an-
other study of Yamaneet al.,11) a two-layer system was con-
sidered, on the basis of which the special case of a one-layer
system was also discussed. However, their study11) concludes
that 1D is valid in the region wherex′ > 10. Our results
for isotropic materials,x′ > 6, are consistent with those of
Hattaet al.7) Figure 2(a) also reveals that whenκ is less than
1, the value ofx′ when

√
(D∗a/Dx)(D∗p/Dx) equals 1 is larger

than 6, while whenκ is larger than 1 the value ofx′ when√
(D∗a/Dx)(D∗p/Dx) is equal to 1 is smaller than 6. When

κ = 0.01, the region where 1D analysis is valid delays to
x′ > 80. Physically,κ represents the ratio of heat wave prop-
agation speeds in directions perpendicular and parallel to the
sample surface. A large value ofκ indicates thatDy is much
larger thanDx and heat propagates slowly in thex-direction.
Consequently, heat waves are rapidly conducted to the bottom
of the sample and the thickness effect rapidly diminishes. It
quickly approaches 1D analysis near the edge of the heated re-
gion. At smaller values ofκ, the heat propagates faster in the

and can deduce the apparent thermal diffusivitiesD∗a andD∗p,
respectively. The nondimensional thermal diffusivity,D∗a/Dx

andD∗p/Dx, along thex′ direction is determined by6)

D∗a/Dx = π/a2
a, and D∗p/Dx = π/a2

p. (15)

The values of aa and ap at each point are derived
from the partial dervatives of ln|Tac(x′, y′, f ′)|/√ f ′ and
φ(x′, y′, f ′)/

√
f ′ with respect tox′ for each point, i.e.,

aa = ∂{ln |Tac(x
′, y′, f ′)|/√ f ′}/∂x′, (16)

ap = ∂{φ(x′, y′, f ′)/
√

f ′}/∂x′. (17)
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x-direction than in they-direction. In these cases, the effects
of sample thickness become more significant and 2D distri-
bution occurs. Experimentally, this behavior leads to a situa-
tion where the detection points should be located far from the
heated region in order to obtain the true thermal diffusivity.
However, the signal could be weak in such a situation, result-
ing in difficulty in the precise measurement of thermophysical
parameters.

Figure 2(b) shows the measured
√
(D∗a/Dx)(D∗p/Dx) along

x′ at the back surfacey′ = π for f ′ = 0.00001,B = 0.0001,
κ = 1.0 andR = 0.0 for semitransparent samples with vari-
ous optical thicknesses,τ . Clearly, the region where the two-
dimensional temperature response occurs decreases with de-
creasing optical thickness. The 1D propagation of the heat
wave forms closer to the edge of the heated region than in the
opaque samples. This phenomenon occurs because for semi-
transparent materials, the heating energy can penetrate into

Fig. 2. Normalized thermal diffusivity estimated using eq. (15) vsx′ for
f ′ = 0.00001,B = 0.0001 andR = 0.0 (a) at various values ofκ and
τ = 1000. (b) at various values of optical thicknessτ andκ = 1.0.

the sample medium and is directly absorbed within it, i.e., the
medium is more uniformly heated across its depth within the
irradiated region and thus the 1D heat propagation holds from
a position close to the edge of the heated region for samples
with a smaller optical thickness. Based on the analytical re-
sults for the two-dimensional temperature wave propagation,
Takahashiet al.8) proposed the maximum thickness required

in a multiplying factor of 1/
√
κ on asl. In a real experiment,

to determine thermal diffusivity for a material heated at the
surface, provided that the error of the slope of the phase or
amplitude distributions is within 1% atx′ = 0.5π/kd. Ac-
cording to our results, the ac calorimetric method can be ap-
plied to semitransparent samples with thicknesses larger than
those of samples calculated by Takahashiet al.8) within the
same error. For example, Takahashiet al. found the maximum
thickness of a diamond sample to be 6.3 mm atf = 1 Hz.
The absorption coefficientα of diamond is 0.11 cm−1 under a
heating light with a wavelength of 0.4358µm.12) By consid-
ering the transparency, this study derives the maximum thick-
ness of a diamond sample to be 13.8 mm within the same error
as Takahashiet al. Readers may refer to ref. 12 for the ab-
sorption coefficients of various materials. For isotropic semi-
transparent samples, the ac calorimetric method for measur-
ing thermal diffusivity can also avoid the photo-heating prob-
lems that occurred in the flash method13) because the thermo-
couple is located outside the heating beam. The effects of
boundary reflectivity,R, are also tested, indicating that this
does not significantly influence the region of 2D temperature
wave propagation. However,R will influence the magnitudes
of the temperature waves since it affects energy absorption.

Regarding the measurement ofDy, Yanget al.9) and Kato
et al.10) have proposed ac calorimetric methods for measuring
the cross-plane thermal diffusivity. In a 1D model by Yang
et al.,9) the thermal diffusivity perpendicular to the sample
surface is determined from the constant slope of the phase vs
the square root of the frequency in the high-frequency region.
The present study has noted that the ac light heating method
is not suitable for determining theDy of semitransparent sam-
ples if the thermocouples are placed under the light beam. In
such conditions, photo-heating problems occur with the ther-
mocouples. For media with sufficiently large optical thick-
nesses, this study assumes optical thicknessτ as 1000, and the
heating is then within a very small depth near the front surface
and the above-mentioned linear relation may apply for param-
eter estimation. However, the slopes of these linear relation-
ships depend on the value ofκ. Figure 3 shows the slopes,
i.e., the partial derivatives ofφ(−a′/2, π, f ′), with respect to√

f ′ as a function ofκ. Figure 3 also displays the values of
the partial derivatives ofφ(−a′/4, π, f ′), φ(0, π, f ′)with re-
spect to

√
f ′. Notably, the constant slope of the phase vs the

square root of the frequency does not vary withx′ asx′ is un-
der the heating beam. Thus, the value ofκ can be determined
from Fig. 3. With derivedκ, Dy can readily be obtained by
mutiplying Dx with κ. The relations between the slope andκ,
as shown in Fig. 3, can be mathematically described as

asl = 5.568/
√
κ =

√
π3/κ, (18)

whereasl is the constant slope of the phase vs the square root
of the frequency. The result ofasl for isotropic material (κ =
1) in this study is consistent with

√
π3 derived by Yanget

al.9) Equation (18) indicates that the anisotropic effect results
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the plot of theφ(−a/2, π, f ) phase is derived as a function
of the square root of the dimensional frequencyf and the
slope of the plot in a high-frequency region, for example,a′sl.
Incorporating eqs. (18) and (7) produces the result of the ratio

Fig. 3. Partial derivative ofφ(x′, π, f ′) with respect to
√

f ′ as a function
of κ.

of thermal diffusivity components,κ = πd2/Dxa′2sl . This
step then leads to the cross-plane thermal diffusivity,Dy =
πd2/a′2sl . This result is consistent with the results of Yanget
al.9) for isotropic materials. The above analysis shows that
anisotropic and 2D effects on the measurement of cross-plane
thermal diffusivity are insignificant as long as the detector is
located under the heating beam.
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