
WITH THE INCREASING COMPLEXITY of mod-

ern circuit designs, verification has become the

major bottleneck in the entire design process.1 To

cope with the exponential state-space growth,

researchers have proposed some techniques2,3 to

reduce this state space in functional verification

at the register transfer level (RTL). Because most

design errors are related to the design’s control

part, one possible solution is to separate the data

paths from the controllers and verify the control

part only. However, in the proposed techniques,

the capability of extracting controllers relies on

specific control-register labels, which users must

assign manually. In large designs, labeling the

hundreds of control registers is inconvenient.

More importantly, if the original designers are not

available—for example, when using vendor-pro-

vided intellectual property—assigning labels

becomes very difficult.

In modern designs, almost all controllers

consist of finite-state machines (FSMs).

Therefore, by locating the FSMs, we can find

the possible locations of controllers. Some ven-

dors claim their tools4 can automatically extract

FSMs in the original hardware description lan-

guage (HDL) code. However, most of these

tools depend on a specific coding style or user

intervention. The literature offers some

approaches for translating HDL code into FSMs

by compiler techniques.5,6 As we know, a com-

piler translates predefined language constructs

into other forms. Therefore, compiler-based

approaches must also limit users’ coding styles.

It can be difficult to deal with real designs from

various designers with varying coding styles.

To overcome the problems of existing

approaches, we propose a novel method for

extracting FSMs in HDL code written at the RTL

by recognizing the general patterns of FSMs in the

process-module (PM) graph. These general pat-

terns are derived from the relationship between

an FSM’s current states and its next states, not the

language constructs. Therefore, the writing style

of HDL code is almost entirely unrestricted. Hints

or comments in the source code aren’t needed

either. We already reported on the preliminary

stage of this work.7 The reported experimental

results on several real designs from different

designers with various coding styles have shown

the effectiveness and efficiency of our algorithm.

Because we use the general FSM patterns in

the recognition process, some special designs,

such as the program counters and the accu-

mulators used in arithmetic logic, may be iden-

tified as general FSMs. Although these have

general FSM structures, they are in fact only

An Automatic Controller
Extractor for HDL
Descriptions at the RTL

Automatic Controller Extractor

72

Extracting controlling finite-state machines can

significantly reduce state space and thereby

speed functional verification. The controller

extraction algorithm uses an approach that frees it

from restrictions on HDL code writing style.

Chien-Nan Jimmy Liu

Jing-Yang Jou
National Chiao Tung University, Taiwan

0740-7475/00/$10.00 © 2000 IEEE IEEE Design & Test of Computers

data operators and should not be included in

the controller part of the design. Therefore, we

propose another method to further reduce con-

troller size by filtering out any such FSMs. With

the proposed extraction techniques, we can

provide an initial selection of control registers

in a very short time. If users have some special

consideration about control register selection,

we can provide a simple interface that lets them

edit the control register list. Then control regis-

ter selection can be finished quickly and cor-

rectly with minimum user intervention.

Besides contributing to state-space reduction

in functional verification, the automatic FSM

extraction technique can be helpful in many

applications. Because FSMs and data paths have

significantly different properties, many CAD

applications tend to deal with them differently,

as revealed in power estimation research.8 If an

automatic FSM extractor is available, this work

can be fully automated. In addition, FSM opti-

mization techniques such as state minimization

and state assignment are widely available in syn-

thesis tools. If the FSMs in HDL code can be

extracted, optimization can be performed auto-

matically, giving users greater convenience and

better results. Furthermore, in the HDL debugging

tools, the automatic FSM extraction technique

can help convert HDL text into graphics so that

users can understand designs more quickly.

HDL modeling
To keep the hierarchies in an RTL descrip-

tion, we model the description with a hierar-

chical PM graph G, as shown in Figure 1. In

each hierarchy, a module m will have its own

PM graph, say Gm, which is a directed graph

Gm(V, E). Each node, v ∈ V, represents a

sequential process, a concurrent dataflow state-

ment, or a module instantiation in both VHDL

and Verilog. Each directed edge, e(i, j) ∈ E, i

and j ∈ V, indicates that node i is a fan-in of

node j. To simplify the explanation, in the fol-

lowing discussion we will treat the concurrent

dataflow statement as a process. Label(v), for

each v ∈ V, represents the attribute of each

node. This attribute plays an important role in

our algorithm and will be further explained in

the next section. The different names and

meanings of label(v) are listed below.

� SEQ_P: The process has an edge-triggered

clock signal.

� COM_P: The process has no edge-triggered

clock signal.

� FSM_P: The process has been recognized as

part of an FSM.

� SEQ_M: The module contains a sequential

process (SEQ_P).

� COM_M: The module contains no sequential

process.

� FSM_M: The module has been recognized as

part of an FSM.

FSM recognition
HDL’s rich constructs afford many different

ways to describe the same design. To simplify

the problem, and to ensure that our algorithm

will retain generality, we make some reason-

able preliminary assumptions based on our

observation of many examples.

� In RTL descriptions, all the state registers of

one FSM must be associated with only one

variable.

� The FSM is a synchronous design with edge-

triggered flip-flops.

� There are no FSMs embedded in other FSMs.

� All statements in a process must belong to

the same FSM if the process is recognized as

part of the FSM.

Finding FSMs
Because FSMs’ next states always function-

ally depend on their current states, the signals

emanating from the state registers will return to

them after going through some combinational

paths, regardless of whether the FSMs are Mealy

73July–September 2000

P

P

M

P

M

P P

M
P P

P
Concurrent process

Module

Figure 1. An illustration of HDL modeling.

or Moore type. In other words, we can find the

FSMs in the HDL code by finding these identify-

ing loops. Thus, we can derive the most com-

mon FSM patterns appearing in HDL code, as

shown in Figures 2a-2c. By detecting these loops

in the PM graph, we find the possible locations

of FSMs. However, not all loops belong to FSMs.

According to our preliminary assumptions,

those shown in Figures 2d and 2e cannot be

considered indicative of FSMs. Neither can the

so-called scan flip-flop shown in Figure 2f.

Even if we find a valid loop pattern topologi-

cally, we cannot be sure that it belongs to an

FSM. Given a node in the PM graph with multi-

ple inputs and outputs, some outputs may not

depend on all inputs. Therefore, except for a flat-

tened gate-level design, in which the output of

each gate depends functionally on every input

of the gate, functional dependency checking is

needed after topological loop searching to

ensure that every reported loop is valid. So the

first step in FSM recognition is to find the loops

that start from a sequential node and go through

only combinational paths in the PM graph. If

those found are functionally dependent, they are

considered the main frames of FSMs.

Boundary decision
Using the technique just described, we can

easily find the processes that describe the next-

state logic of an FSM. However, if the output

logic is described in another process, we can-

not find that process. Because HDL is a highly

modularized language, we can reasonably

assume that users will follow the modular writ-

ing style, meaning that the output logic will be

located in the same module with the next-state

logic and the state registers. On the basis of this

assumption, we propose a maximum-possible-

set-within-module strategy. For each FSM, all

combinational nodes in the same module hav-

ing a relationship with the state registers are

recognized as the FSM’s output logic.

However, nodes having a relationship with two

or more FSMs are excluded because they are

not likely to belong to any particular FSM (on

the basis of our fourth preliminary assump-

tion). They are the communication hardware

of these FSMs.

Hierarchy traversal
Our algorithm handles hierarchical descrip-

tions through a strategy called “bottom-up with

lumped information.” We first traverse the hier-

archies to the lowest level and apply the tech-

niques described in the two preceding sections

to handle the processes at this level. If the mod-

ule contains a sequential process (SEQ_P), we

label the module SEQ_M; otherwise, we label

it COM_M. All information concerning this

module is lumped into this label to reduce

complexity. Consequently, when we go up one

level, the loop detection algorithm can operate

in the same way without repeatedly traversing

the lower hierarchies.

FSM recognition algorithm
The overall recognition flow, shown below,

and the pseudocode for the FSM recognition

algorithm, shown in Figure 3, summarize the

techniques.

Recognition flow:

1. Read the RTL HDL description and build

the hierarchical PM graph G.

2. Set the initial label(v) for each node v in G.

3. Call FSM_recognition(GM) to recognize

FSMs, where M is the top module (see

Figure 3).

Automatic Controller Extractor

74 IEEE Design & Test of Computers

C

S

C

S

S

C C

C C

S

S

(a)

(d)

S

C C

C

(b)

(e)

(c)

(f)

M
ux

CS SEQ_P or SEQ_M COM_P or COM_M

Figure 2. Common loop patterns in HDL code: (a) two process, (b)

one process, (c) multiloop, (d) pipeline, (e) combinational, (f) direct

feedback.

4. Report each FSM found by listing its con-

stituent processes.

In phase 1, the algorithm calls itself recur-

sively to traverse the hierarchies in a depth-first

search (DFS) fashion. It starts to recognize the

two-process patterns in phase 2. The operations

in phase 2 are similar to those in a DFS.

Therefore, the complexity is the same as when

performing a DFS, that is, O(V + E), where V

and E are the numbers of nodes and edges in

the PM graph, respectively. In phase 3, the algo-

rithm searches the sequential processes left

after phase 2 for the one-process patterns, that

is, the self-loop pattern. The complexity of this

step is only O(S), where S is the number of

sequential nodes in the PM graph. After all pat-

tern recognition is finished, phase 4 determines

the output logic. The operations in this step

resemble those in a breadth-first search (BFS).

Therefore, the complexity is the same as when

performing a BFS, that is, O(V + E). The com-

putational complexity of all steps in our algo-

rithm is only linear, so the incurred overhead

can be very small.

Controlling FSM selection
Since almost all controllers consist of small-

er FSMs and their communication hardware,

the proposed FSM-finding technique can find

the possible locations of controllers. However,

not all FSMs are part of a controller. The use of

general FSM patterns in the recognition process

means that some special designs may be rec-

ognized as general FSMs even though they are

only data operators. For example, the program

counter is a typical FSM often used in the

processor-based design to indicate the next

instruction’s memory address, but it is often not

included in the controllers. If the program

counter is included in the controllers, the con-

trol part’s state space will become extremely

large. Therefore, we propose a way to select

only the FSMs needed for controllers so that the

controlling behavior can be captured and the

control part’s state space can be reduced.

Definition 1: An FSM f is called a controlling

FSM if and only if it is part of the controllers of a

given design; otherwise, it is called a noncon-

trolling FSM.

Definition 2: A control statement corre-

sponds to a branch point in the dataflow graph.

In other words, a control statement is an if state-

ment, an elseif statement, a case statement, or

the condition list of a conditional assignment.

If designers don’t provide hints, it’s hard to

determine which FSMs they intended as con-

trollers. However, we can still make some rea-

sonable guesses by analyzing each FSM’s usage

75July–September 2000

FSM_recognition (process_module_graph G) {
// phase 1 : traverse the hierarchy by DFS

for each node a with label SEQ_M in G
FSM_list ← FSM_recognition(Ga);

// phase 2 : find 2-process patterns
Loop_list ← find_topological_loops_with_one_sequential_node(G);

/* self loops are not included */
for each loop x in Loop_list {

Ans ← check_functional_loop(x);
if (Ans == TRUE) { /* find valid loop */

if (the state variables of x has belonged to some FSM i)
/* multi-loop FSM */

Add_FSM_list(FSM_list, i, x);
else /* new FSM */

Add_new_FSM_list(FSM_list, x);
change_node_label_as_FSM(x);

}
}

// phase 3 : find 1-process patterns
for each node p with label SEQ_P in G {

Ans ← check_self_loop(p);
if (Ans == TRUE) { /* find 1-process pattern */

Add_new_FSM_list(FSM_list, p);
label(p) ← FSM_P;

}
}

// phase 4 : find output logics
for each FSM f in G {

node_list ← copy_list(FSM_list, f);
for each node n in node_list

color(n) ← f; /* give nodes in each FSM a different color */
for each node m in node_list {

for each node n ∈ fanout(m) {
if (label(n) == COM_P or COM_M) {

if (color(n) == NULL) color(n) ← color(m);
else color(n) ← DEAD_COLOR; /* touched twice */
Add_list(node_list, n); /* propagate the color out */

}
}

}
}
for each node c with label COM_P or COM_M in G {

if (color(c) != DEAD_COLOR) { /* belong to only one FSM */
Add_FSM_list(FSM_list, color(c), c);
change_node_label_as_FSM(c);

}
}

return FSM_list;
}

Figure 3. The FSM recognition algorithm.

at the RTL. The HDL provides several condition-

al constructs that enable users to easily describe

the design’s control flow. Typically, we can often

find the outputs of a controlling FSM used in the

control statements. If an FSM doesn’t control the

circuit’s behavior, its outputs are often used as

the operands of another statement, as shown in

Figure 4a, or as the input of another register, as

shown in Figure 4b. Using this observation, we

can define a controlling score for each FSM

according to its usage and thereby classify FSMs

as controlling or noncontrolling.

Definition 3: If a variable v is functionally

dependent on the output out of an FSM f through

some combinational statements, we say v

depends on fout. We define the controlling score

of an FSM f as the sum of the output bits on which

some variables in the control statements depend.

By definition 3, the controlling scores of the

FSMs in Figure 4 are zero. Thus, they are non-

controlling FSMs. Only FSMs with a nonzero con-

trolling score can be controlling FSMs. Therefore,

after the FSMs are extracted, a simple DFS-like

search analyzes their usage and calculates their

controlling scores according to definition 3. With

the controlling scores, we can easily extract a

design’s controllers from the controlling FSMs.

These operations have only linear complexity, so

the incurred overhead is also very small.

Experimental results
Our algorithm has been implemented in C++.

Table 1 shows experimental results on five real

designs and provides information about those

designs. We obtained the running results shown

in the table on a 300-MHz UltraSparc II. PCPU is

a simple 32-bit DLX CPU. MEP is a block-match-

ing motion estimation processor used in the

MPEG-II system. PTME is a processor for 3D

graphics perspective texture mapping. MPC is a

programmable MPEG-II system controller. The

last circuit, DCT, is a 2D discrete cosine trans-

form/inverse discrete cosine transform design.

Typical designs often include many registers;

however, only a few registers belong to the con-

trollers. The experimental results show that we

can find this small portion of registers quickly by

using our approach. The number of selected

control registers is relatively small in every case,

and the state register reduction

ratio (the number of registers in the

design divided by the number of

registers included in controlling

FSMs) is very significant. Because

of the exponential relationship

between the state registers and the

number of states, the state space

can be dramatically reduced. In

other words, the time and memory

space required to verify the designs

are also greatly reduced. In addi-

tion, the five designs in the table

were obtained from different

designers, reflecting five different

writing styles. This demonstrates the

algorithm’s generality.

To assess the correctness of our

Automatic Controller Extractor

76 IEEE Design & Test of Computers

MemBus = InstMem[address];PC
Address

Read next instruction from memory

Always @ (posedge CLK)
Data = Addout

Store result in register file

AddoutAddin +

Reg.

(a)

(b)

Figure 4. Common usage of noncontrolling FSMs: (a) program

counter, (b) accumulator.

Table 1. Experimental results of the controller extraction algorithm.

Designs PCPU MEP PTME MPC DCT

Lines in HDL code 913 2,062 3,980 4,183 5,629

Nodes in PM graph 101 2,585 3,590 336 7,370

Edges in PM graph 136 3,749 3,577 595 3,092

Registers in the design 1,380 10,494 1,387 67,377 1,071

FSMs found in PM graph 3 24 12 19 20

Nodes included in FSMs 21 126 119 89 1,042

Registers included in FSMs 67 1,063 92 151 242

Controlling FSMs (CFSMs) 1 5 10 12 10

Nodes included in CFSMs 5 59 38 60 286

Registers included in CFSMs 3 130 51 117 62

State register reduction ratio 460 80.7 27.2 575.9 17.3

User satisfaction 100% 100% 100% 100% 100%

Extraction time (seconds) 0.52 13.74 6.10 3.31 5.73

algorithm, we asked the designers to review the

lists of control registers our tools generated and

report the matching percentage in the user sat-

isfaction row of Table 1. According to the

reported data, we found all the intended con-

trol registers in the five designs. Moreover, the

operations can be completed within a few sec-

onds even for the largest design, making com-

putation overhead very small.

ALL FSMS DETECTED by our method represent

typical styles with one latching edge. There are

other, extended FSMs such as pipelined FSMs

or double-latching FSMs. Future work may

include extending the algorithm to handle

those cases. In addition, there remains the inter-

esting problem, after FSMs have been identi-

fied, of generating their state transition graphs

from the HDL code without any limitation on

writing styles. A practical solution to this prob-

lem is another of our goals. �

Acknowledgments
This work was supported in part by Novas

Software Inc. and the R.O.C. National Science

Council under grant NSC89-2215-E-009-009. We

also thank the SI2 group in the Department of

Electronics Engineering at the National Chiao

Tung University for kindly providing their designs

for our experiments.

References
1. A. Evans et al., “Functional Verification of Large

ASICs,” Proc. 35th ACM/IEEE Design Automation

Conf., ACM, New York, June 1998, pp. 650-655.

2. R.C. Ho and M.A. Horowitz, “Validation Coverage

Analysis for Complex Digital Designs,” Proc.

IEEE/ACM Int’l Conf. Computer-Aided Design,

IEEE Computer Soc. Press, Los Alamitos, Calif.,

Nov. 1996, pp. 146-151.

3. D. Moundanos, J.A. Abraham, and Y.V. Hoskote,

“Abstraction Techniques for Validation Coverage

Analysis and Test Generation,” IEEE Trans. Com-

puters, Vol. 47, No. 1, Jan. 1998, pp. 2-14.

4. T.-H. Wang and T. Edsall, “Practical FSM Analy-

sis for Verilog,” Proc. IEEE Int’l Verilog HDL Conf.

and VHDL Users Forum, IEEE Computer Soc.

Press, Los Alamitos, Calif., Mar. 1998, pp. 52-58.

5. S.-T. Cheng et al., “Compiling Verilog into Timed

Finite State Machines,” Proc. IEEE Int’l Verilog

HDL Conf., IEEE Computer Soc. Press, Los

Alamitos, Calif., Mar. 1995, pp. 32-39.

6. Y.V. Hoskote et al., “Automatic Verification of

Implementations of Large Circuits Against HDL

Specifications,” IEEE Trans. Computer-Aided

Design, Vol. 16, No. 3, Mar. 1997, pp. 217-228.

7. C.-N. Liu and J.-Y. Jou, “A FSM Extractor for HDL

Description at RTL Level,” Proc. Fifth Asia-Pacific

Conf. Hardware Description Languages, Society

of CAD and VLSI Design Research, IEEK, Seoul,

Korea, July 1998, pp. 33-38.

8. D.I. Cheng et al., “New Hybrid Methodology for

Power Estimation,” Proc. 33rd ACM/IEEE Design

Automation Conf., ACM, New York, June 1996,

pp. 439-444.

Chien-Nan Jimmy Liu is
a PhD candidate in the
Department of Electronics
Engineering at the National
Chiao Tung University, Tai-
wan. His primary research

interest is functional verification of designs writ-
ten in HDL at the register transfer level. He holds
a BS in electronics engineering from the Nation-
al Chiao Tung University.

Jing-Yang Jou is a profes-
sor in the Department of
Electronics Engineering at
the National Chiao Tung
University, Taiwan. His
research interests include

behavioral and logic synthesis, VLSI designs
and CAD for low power, design verification, syn-
thesis and design for testability, and hard-
ware/software co-design. Jou received a BS in
electrical engineering from the National Taiwan
University and an MS and a PhD in computer sci-
ence from the University of Illinois at Urbana-
Champaign. He is a member of Tau Beta Pi.

Direct comments and questions about this
article to Jing-Yang Jou, Department of
Electronics Engineering, National Chiao Tung
University, 1001 Ta-Hsueh Rd., 300 HsinChu,
Taiwan, R.O.C.; jyjou@bestmap.ee.nctu.edu.tw.

77July–September 2000

