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Ultrashort pulsed sinc-Gaussian light beams
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A family of analytical solutions of the time-dependent wave equation, the ultrashort pulsed sinc-Gaussian light
beams (UPSGLB’s), are presented in the paraxial approximation. Each of them has the product form of the
monochromatic Gaussian light beam with the central frequency nc times the sinc function of the complex
temporal–spatial beam parameter Pn . The complex temporal–spatial beam parameter Pn , which corre-
sponds to the order n, is directly related to the temporal–spatial coupling properties of the nth-order UPSGLB.
The UPSGLB’s are used, for the first time to our knowledge, as an analytical expansion set for bandwidth-
limited ultrashort light pulses emitted from mode-locked lasers with stable resonators (ULPEMLLSR’s). Two
special examples of bandwidth-limited ULPEMLLSR’s, a single zeroth-order UPSGLB and a novel model of a
nearly temporal–spatial Gaussian beam, are analytically investigated and compared with experimental re-
sults. © 2000 Optical Society of America [S0740-3224(00)02806-X]
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1. INTRODUCTION
In the past several years the propagation and transforma-
tion of ultrashort light pulses have attracted much
attention1–24 because of the notable progress with the
femtosecond laser technique.25–28 Ziolkowski and
Judkins13 studied the temporal–spatial behaviors of the
pulsed Gaussian beam whose initial field distribution is
temporally spatially separable and revealed its temporal–
spatial distortion properties. Recently, Wang et al.14 in-
troduced a new kind of pulsed Gaussian beam by taking
into account the mode characteristics of mode-locked la-
ser resonators and studied its temporal–spatial propaga-
tion behaviors. Unfortunately, Wang et al.’s pulsed
Gaussian beam has the drawback that its transverse am-
plitude distribution grows boundlessly with the trans-
verse coordinate r as exp(r4) beyond a beamlike central
region.14,15 Based on Wang et al.’s work, Porras15 intro-
duced ultrashort pulsed Gaussian light beams by use of
the analytic signals method and investigated their
temporal–spatial propagation characteristics. On the
other hand, by using the Fourier transform method, Hey-
man and Felsen16 and Melamed and Felsen17 also inves-
tigated ultrashort pulsed Gaussian light beams (in these
two papers the ultrashort pulsed Gaussian light beams
were more reasonably named isodiffracting pulsed beams
because all the monochromatic Gaussian field compo-
nents of these kinds of light beams have the same diffrac-
tion property). Especially, they analytically studied the
example of analytic d function pulsed beams.16,17 More
recently, Porras18 and Cao19 independently studied the
0740-3224/2000/071304-09$15.00 ©
subset of pulsed negative-power-function light beams.
Feng and Winful20 investigated the temporal–spatial
transformation of isodiffracting pulsed beams by use of
nondispersive quadratic phase media.

As a complete description for the ultrashort light
pulses emitted from mode-locked lasers with stable
resonators (ULPEMLLSR’s), the fact that the real
ULPEMLLSR’s always have limited bandwidths should
be taken into account, because the laser gain media used
there, such as the Ti:sapphire media, always have limited
net gain bandwidths. However, until now, only Eq. (25)
of Ref. 15 has been concerned with the analytical solution
to the problem of bandwidth-limited ULPEMLLSR’s, and,
in particular, no analytical expansion set for bandwidth-
limited ULPEMLLSR’s has been presented.

In this paper we shall analytically present a family of
bandwidth-limited solutions of the time-dependent wave
equation in the paraxial approximation and use them
as an analytical expansion set for bandwidth-limited
ULPEMLLSR’s. The paper is organized as follows:
In Section 2 we review the theoretical background for
ULPEMLLSR’s, which is very helpful for understanding
the materials presented in this paper; in Section 3 we in-
troduce the ultrashort pulsed sinc-Gaussian light beams
(UPSGLB’s) and investigate their temporal–spatial
propagation characteristics; in Section 4 we develop a
simple method to expand ULPEMLLSR’s by UPSGLB’s,
give two special examples, and compare them with the
real ultrashort light pulses observed by experiments; and
in Section 5 we conclude this paper.
2000 Optical Society of America
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2. THEORETICAL BACKGROUND FOR
ULPEMLLSR’s
In free space a general polychromatic pulsed light beam is
represented by a real function V(x, y, t, z), which obeys
the time-dependent wave equation
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where c is the light speed in free space.
Usually, it is convenient to use the so-called analytic

signal f(x, y, t, z) to describe the temporal–spatial
propagation properties of a polychromatic pulsed light
beam.29 The analytic signal f(x, y, t, z) is defined as29

f~x, y, t, z ! 5 2E
0

`

w~x, y, n, z !exp~2i2pnt !dn, (2)

where w(x, y, n, z) is the Fourier transform of the real
optical-field distribution V(x, y, t, z) in time only;
namely,

w~x, y, n, z ! 5 E
2`

`

V~x, y, t, z !exp~i2pnt !dt. (3)

From Eq. (2) one can find that the analytic signal
f(x, y, t, z) has no negative frequency component at all.
This property is different from that of the corresponding
real optical-field distribution V(x, y, t, z). Similar to the
real optical-field distribution V(x, y, t, z), the analytic
signal f(x, y, t, z) also obeys the time-dependent wave
equation of Eq. (1). The relation between the real
optical-field distribution V(x, y, t, z) and its analytic sig-
nal f(x, y, t, z) is simply given by29

V~x, y, t, z ! 5 Re@f~x, y, t, z !#. (4)

The monochromatic field component w(x, y, n, z) corre-
sponding to the frequency n obeys the Helmholtz wave
equation

¹2w 1 k2w 5 0, (5)

where k 5 2pn/c is the corresponding wave number in
free space. In the paraxial approximation, the slowly
varying part U(x, y, n, z) of the monochromatic field com-
ponent w(x, y, n, z) 5 U(x, y, n, z)exp(ikz) obeys the fol-
lowing paraxial wave equation:
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]y2DU 5 0. (6)

Let us now consider a general ULPEMLLSR. From la-
ser beam and resonator theory,30,31 we know that a
spherical resonator (in Fig. 1, for simplicity, we consider
only two-element resonators) is stable when 0 , g1g2

Fig. 1. Stable spherical resonator.
, 1 [see Eq. (8) of Ref. 30], where g1 5 1 2 L/R1 , g2
5 1 2 L/R2 , L is the resonator length, and R1 ,R2 are
the curvature radii of the two spherical mirrors. For a
stable spherical resonator, there exist many longitudinal
eigen frequencies and transverse eigenmodes. In the
paraxial approximation the transverse fundamental
modes corresponding to different eigenfrequencies are al-
ways Gaussian beams, while the longitudinal eigenfre-
quencies nm corresponding to the transverse fundamental
modes are given by nm /n0 5 m 1 1 1 p21 arccos(Ag1g2)
[see Eq. (56) of Ref. 30], where m is the order of the eigen-
frequency and n0 5 c/2L is the eigenfrequency interval.
According to resonator theory,30 all the fundamental
mode Gaussian fields U(x, y, nm , z) of a stable spherical
resonator that correspond to different eigenfrequencies
nm have the same beam waist plane [its location is explic-
itly given by Eq. (55) of Ref. 30] and satisfy the simple re-
lation that p2W0

2(nm)nm 5 const [see Eq. (54) of Ref. 30],
where W0(nm) is the waist width of the Gaussian field
with the eigenfrequency nm . We shall for convenience
choose the common waist plane as the z 5 0 plane and
use b to express the constant p2W0

2(n)n. According to
Eq. (54) of Ref. 30, the parameter b can be determined to
be

b 5 pcFL~R1 2 L !~R2 2 L !~R1 1 R2 2 L !

~R1 1 R2 2 2L !2 G1/2

. (7)

On the other hand, from mode-locked laser theory we
know that, in an appropriate transverse-mode-selection
arrangement, the total temporal–spatial optical field
f(x, y, t, z) of an ULPEMLLSR can be regarded as a lin-
ear superposition of the fundamental mode Gaussian
fields with different eigenfrequencies nm and that the
slowly varying parts U(x, y, nm , 0) of the monochromatic
optical-field components w(x, y, nm , 0) at the z 5 0 plane
can be expressed as14,15,30,31

U~x, y, nm , 0 ! 5 gm

p

b
expS 2

p2r2nm

b D , (8)

where gm expresses the weighting factor of the monochro-
matic Gaussian field with the eigenfrequency nm . From
Eq. (8), the propagation law of paraxial Gaussian beams
and the relation w(x, y, nm , z) 5 U(x, y, nm , z)exp(ikz),
one can obtain30,31

w~x, y, nm , z ! 5 gm

p

b 1 ipzc
expS i2p

z

c
nmD

3 expS 2
p2r2nm

b 1 ipzc D . (9)

In practical mode-locked lasers, the output light pulses
always have limited bandwidths because the net gain
bandwidths of the laser devices always have limited dis-
tributions. As an important consequence, the orders m of
the longitudinal eigenfrequencies should have a low limit
m1 and a high limit m2 . By taking these properties into
account, the total temporal–spatial optical-field distribu-
tion f(x, y, t, z) of an ULPEMLLSR can be expressed as
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f~x, y, t, z ! 5 2 (
m5m1

m2

w~x, y, nm , z !exp~2i2pnmt !,

(10)

where w(x, y, nm , z) is given by Eq. (9). As a good ap-
proximation, the discrete eigenfrequencies nm can
be dealt with as a continuous variable n, because, for an
ULPEMLLSR, the eigenfrequency interval n0 is far
smaller than the bandwidth Dn. For example, for a typi-
cal ultrashort light pulse emitted from a mode-locked Ti:
sapphire laser, the eigenfrequency interval n0 is approxi-
mately of the order of 75 MHz (the corresponding resona-
tor length L is 2 m), the bandwidth Dn is approximately of
the order of 100 THz (the corresponding wavelength
range is 0.7–0.9 mm), and the ratio n0 /Dn
' 7.5 3 1027. In the above-mentioned approximation,
the sum sign (m5m1

m2 in Eq. (10) can be replaced by the in-

tegral sign *nl

nh dn; namely, Eq. (10) can be approximately
reexpressed as

f~x, y, t, z ! 5 2E
nl

nh

w~x, y, n, z !exp~2i2pnt !dn, (11)

w~x, y, n, z ! 5 g~n!
p

b 1 ipzc
expS i2p

z

c
n D

3 expS 2
p2r2n

b 1 ipzc D , (12)

where the discrete distribution function gm (with the
eigenfrequencies nm) has been replaced by its continuous
envelope distribution g(n). In Eq. (11) the values of the
low-limit frequency n l and the high-limit frequency nh are
given by n l 5 m1n0 and nh 5 m2n0 , respectively. Equa-
tions (10) and (11) are both the solutions of the time-
dependent wave equation of Eq. (1) in the paraxial ap-
proximation because the slowly varying parts of Eqs. (9)
and (12) both satisfy the monochromatic paraxial wave
equation of Eq. (6). The difference between Eq. (10) and
Eq. (11) is that the former describes a train of ultrashort
light pulses but the latter describes only one of them.31

In the train of ultrashort light pulses, the pulses are sepa-
rated from one another by a large time interval 2L/c.
Fortunately, in almost all cases, people are more inter-
ested in the temporal–spatial behavior of a single ul-
trashort light pulse than a pulse train. It is necessary to
point out that, for an ideal ULPEMLLSR, all the mono-
chromatic Gaussian field components w(x, y, n, z) have
the same 0 phase at the z 5 0 plane,31 and therefore the
weighting function g(n) is a positive real function in this
case.

From Eq. (12) one can find that, except for the constant
factor pb21, the spectrum distribution w (0, 0, n, 0) of the
on-axis near-field distribution f(0, 0, t, 0) at the point (r
5 0, z 5 0) can be directly described by the weighting
function g(n). On the other hand, in most femtosecond
laser experiments,24–28 the measured spectrum distribu-
tion approximately equals the square of the weighting
function g(n), and the reconstructed pulsed intensity dis-
tribution from interferometric autocorrelation is approxi-
mately equal to the on-axis near-field intensity distribu-
tion V2(0, 0, t, 0) at the point (r 5 0, z 5 0). These
properties will be very helpful for comparing our theoret-
ical models with experimental results in Section 4.

3. ULTRASHORT PULSED SINC-GAUSSIAN
LIGHT BEAMS
Let us now consider a family of special bandwidth-limited
ULPEMLLSR’s whose weight functions gn(n) have the
form

gn~n! 5 An expF i
np~n 2 nc!

d
G (13)

in the range of n l < n < nh , where the orders n are inte-
gers; namely, n 5 0, 61, 62, ...; nc 5 (nh 1 n l)/2, is the
central frequency; d 5 (nh 2 n l)/2, is the half-bandwidth;
An is the normalization coefficient corresponding to the
order n. We point out that the central frequency nc is dif-
ferent from the concept of the carrier frequency. The
former is always valid for an arbitrary ultrashort light
pulse with an arbitrary bandwidth, but the latter is
meaningful only for the ultrashort light pulses that sat-
isfy the quasi-monochromatic condition (nh 2 n l)
! (nh 1 n l)/2. They are approximately equivalent only
for quasi-monochromatic ultrashort light pulses.

Substituting Eq. (13) into Eqs. (12) and (11), one can
obtain

Fn~x, y, t, z ! 5 2
i2pdAn

~b 1 ipzc !Pn
expS 2

inpnc

d
D

3 FexpS iPnnh

d
D 2expS iPnn l

d
D G , (14)

Pn 5 np 2 2pdt 1
idp2r2

b 1 ipzc
, (15)

where t 5 t 2 z/c is the local time at the z 5 z plane and
Pn is the complex temporal–spatial beam parameter cor-
responding to the order n.

Equation (14) provides a family of analytical solutions
of the time-dependent wave equation [Eq. (1)] in the
paraxial approximation. These analytical solutions can
be completely determined by four simple parameters d,
nc , (or n l ,nh), b, and n. Note that the order n includes
negative integer. From Eq. (14) one can deduce that
none of these bandwidth-limited ultrashort light pulses
has singularity because fn(x, y, t, z) → 0 when t → 6`
or when r → ` or both.

In terms of the relations nh 5 nc 1 d, n l 5 nc 2 d, and
exp(iu) 5 cos(u) 1 i sin(u), Eq. (14) can be reexpressed as

fn~x, y, t, z ! 5
4pdAn

b 1 ipzc
exp~2i2pnct!

3 expS 2
p2r2nc

b 1 ipzc D sinc~Pn!, (16)

where sinc(u) 5 sin(u)/u, is the sinc function. From Eq.
(16) one can find that, except for the constant factor
4pdAn , each one of this family of bandwidth-limited ul-
trashort light pulses can be expressed as the product of
the monochromatic Gaussian light beam exp(2i2pnct)
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3 exp@2p2r2nc /(b 1 ipzc)#/(b 1 ipzc) with the central fre-
quency nc times the sinc function of the complex
temporal–spatial beam parameter Pn . For this reason,
we name them ultrashot pulsed sinc-Gaussian light
beams (UPSGLB’s). Usually, the sinc function of the
complex temporal–spatial beam parameter Pn can be re-
garded as the envelope of the nth-order UPSGLB when
nc @ d, but note that this interpretation will become am-
biguous and even meaningless when the central fre-
quency nc becomes only a few times the half-bandwidth d.
Equation (16) also shows that the temporal–spatial cou-
pling properties of the nth-order UPSGLB are completely
determined by the complex temporal–spatial beam pa-
rameter Pn . Especially, as we show below, the real part
of the parameter Pn directly describes the time delays
with the increase of the coordinate variable r and with the
increase of the order n.

We have a special interest in the temporal–spatial be-
haviors of UPSGLB’s on the propagation axis. On the
propagation axis the parameter Pn and the analytic sig-
nal fn(0, 0, t, z) of the nth-order UPSGLB, respectively,
reduce to Pn 5 np 2 2pdt and

fn~0, 0, t, z ! 5
4pdAn

b 1 ipzc
exp~2i2pnct!

3 sinc~np 2 2pdt!. (17)

In particular, the on-axis near-field fn(0, 0, t, 0) and the
on-axis far-field limz → `fn(0, 0, t, z) further reduce to

fn~0, 0, t, 0 ! 5 4pdAnb21 exp~2i2pnct!

3 sinc~np 2 2pdt!, (18)

lim
z→`

fn~0, 0, t, z ! 5
4dAn

zc
exp~2ip/2!exp~2i2pnct!

3 sinc~np 2 2pdt!. (19)

To our surprise, except for the factor b21 in Eq. (18), the
parameter b has no influence on the near-field and the
far-field pulse profiles of UPSGLB’s on the propagation
axis. Equations (18) and (19) also reveal the interesting
2p/2 Gouy phase shift between the on-axis near-field and
the on-axis far-field. This property is very similar to that
of the focused single-cycle electromagnetic pulse, which
was pointed out by Feng et al.23

From laser beam and resonator theory30,31 we know
that the common complex spatial beam parameter q of
the monochromatic eigen Gaussian fields w(x, y, n, z) of a
stable resonator is given by

1

q
5

ipc

b 1 ipzc
. (20)

When this relation is substituted into Eq. (15), the com-
plex temporal–spatial beam parameters Pn can be reex-
pressed as

Pn 5 22pdS t 2
n

2d
2

r2

2cR D 1 i
dpr2

c
ImS 1

q D , (21)

where R is the real curvature radius and is given by 1/R
5 Re(1/q). From Eq. (21) one can see that the real part
of the complex temporal–spatial beam parameter Pn di-
rectly describes the time delays with the increase of the
coordinate variable r and with the increase of the order n.
Figure 2 provides the real optical-field distributions
Vn(0, 0, t, 0) of the negative first-order, the zeroth-order,
and the positive first-order UPSGLB’s at the point (r
5 0, z 5 0). The time delay of UPSGLB’s with the in-
crease of the order n is explicitly shown in Fig. 2. Figure
2 also shows that different UPSGLB’s with different or-
ders n give different emphasis on different time ranges.
For example, the zeroth-order UPSGLB gives an empha-
sis on the time range that is near the t 5 0 point. By the
way, at the z 5 0 plane, UPSGLB’s have no time delay
with the increase of the radial coordinate r because in this
case the curvature radius R is infinite. Figure 3 shows
the time delays of the zeroth-order UPSGLB with the in-
crease of the coordinate r at the z 5 3.14 m plane. In
these two figures the parameters are chosen such that
n l 5 300 THz (the corresponding wavelength is 1.0 um),
nh 5 500 THz (the corresponding wavelength is 0.6 um),
nc 5 400 THz, d 5 100 THz, and b 5 3p2 3 108 m2 s21.

By substituting the relations zR 5 b/(pc), t8 5 t, Dt
5 1/(pd), and w0 5 2pnc into Eq. (25) of Ref. 15 and the
expression E 5 w(x, y, z, t)exp@iw0(t 2 z/c)#, one can
prove that the example given by Eq. (25) of Ref. 15 is just
the complex conjugate of the zeroth-order UPSGLB and
therefore has the same real optical-field distribution
V(x, y, t, z) as the zeroth-order UPSGLB. This property
shows that the example given by Eq. (25) of Ref. 15 is a
special case of the UPSGLB’s.

Fig. 2. Time delay with the increase of the order n at the point
(r 5 0, z 5 0). (A) n 5 21, (B) n 5 0, and (C) n 5 1. The pa-
rameters are chosen such that nc 5 400 THz, d 5 100 THz, and
b 5 3p2 3 108 m2 s21.
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It is well known that the spectral density D(n) of an ul-
trashort light pulse, which expresses the energy included
in the monochromatic component w(x, y, n, z), is given by

D~n! 5 2E E
2`

`

u w~x, y, n, z !u2dxdy. (22)

The spectral density D(n) is always independent of the
longitudinal coordinate z because of the energy conserva-
tion law. Therefore one can conveniently evaluate the
spectral density Dn(n) of the nth-order UPSGLB at the
z 5 0 plane. Substituting Eqs. (13) and (12) into Eq.
(22), the spectral density Dn(n) of the nth-order UPSGLB
can be determined to be

Dn~n! 5 H pAn
2b21n21 for n l < n < nh

0, elsewhere
. (23)

From Eq. (23) one can deduce that all UPSGLB’s with
different orders n have the same spectral density because
Dn(n) is independent of the orders n. This property is
due to the fact that the quantities gn(n)gn* (n) are inde-
pendent of the order n. Equation (23) also shows that
the spectral density Dn(n) is equal to 0 in the ranges of
0 , n , n l and of nh , n , `. If we use wavelength l
5 cn21 as the variable, the spectral density Dn(l) of the
nth-order UPSGLB has a linear relation Dn(l)
5 pAn

2b21c21l with wavelength l in the range of cnh
21

< l < cn l
21. One can prove that this linear relation re-

sults from the property W0
2(l) } n21 } l. Substituting

Eq. (23) into the normalization condition En

Fig. 3. Time delay with the increase of the radial coordinate r of
the zeroth-order UPSGLB at the z 5 3.14 m plane. (A) r
5 0.0 mm, (B) r 5 1.0 mm, and (C) r 5 2.0 mm. The param-
eters are the same as in Fig. 2.
5 *0
`Dn(n)dn 5 1, the normalization coefficient An of the

nth-order UPSGLB can be determined to be

An 5 H b

p@ln~nh! 2 ln~n l!#
J 1/2

. (24)

Equation (24) implies that all UPSGLB’s with different
orders n have the same normalization coefficient. Of
course, this property is also due to the fact that the quan-
tities gn(n)gn* (n) are independent of the order n.

We know that, for a general polychromatic light beam,
the instantaneous intensity V2(x, y, t, z) expresses the
energy that flowed through the point (x, y, z) at the t
moment.29 However, for an ultrashort light pulse with
an ultrawide bandwidth, the pulse duration is so short
that the instantaneous intensity V2(x, y, t, z) is very dif-
ficult to measure. Fortunately, in this case, the time-
integral intensity I(x, y, z) 5 *2`

` V2(x, y, t, z)dt is still
easy to measure. In fact, people usually use the time-
integral intensity distribution I(x, y, z) to describe the
transverse properties of an ultrashort light pulse at the
z 5 z plane.24,32,33 For example, under the intensity mo-
ment theory for polychromatic pulsed light beams, all the
transverse intensity moments are defined on the basis of
the time-integral intensity I(x, y, z).32,33 By the way, ac-
cording to the intensity moment theory for polychromat-
ic pulsed light beams, all the ULPEMLLSR’s (including
UPSGLB’s) have the best beam quality because their
monochromatic Gaussian field components satisfy the
condition that W0

2(n)n 5 const.33

In terms of Parseval’s theorem, the relation
w(x, y, 2n, z) 5 w* (x, y, n, z), u gn(n)u 5 An

2, and Eqs.
(13) and (12), one can express the time-integral intensity
In(x, y, z) of the nth-order UPSGLB as

In~x, y, z ! 5
2An

2p2

b2 1 p2z2c2 E
nl

nh

expS 2
2p2br2n

b2 1 p2z2c2D dn.

(25)

Simply integrating Eq. (25), one can further obtain

In~x, y, z ! 5
2An

2

br2 expS 2
2p2bncr

2

b2 1 p2z2c2D
3 sinhS 2p2bdr2

b2 1 p2z2c2D , (26)

where sinh(u) 5 @exp(u) 2 exp(2u)#/2 is the sinh func-
tion. From Eq. (26) one can find that all the UPSGLB’s
have the same time-integral intensity distribution be-
cause In(x, y, z) is independent of the order n. In terms
of the relation sinh(u) 5 (m50

` u2m11/(2m 1 1)! . u when
u . 0, one can deduce that the time-integral intensity
distribution In(x, y, z) of the nth-order UPSGLB is al-
ways larger than the Gaussian intensity distribution

I~x, y, nc , z ! 5
4An

2p2d

b2 1 p2z2c2 expS 2
2p2bncr

2

b2 1 p2z2c2D ,

with the central frequency nc . On the other hand, from
Eq. (25) one can deduce that the time-integral intensity
In(x, y, z) is always smaller than the Gaussian intensity
distribution
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I~x, y, n l , z ! 5
4An

2p2d

b2 1 p2z2c2 expS 2
2p2bn lr

2

b2 1 p2z2c2D ,

with the low-limit frequency n l . Therefore the time-
integral intensity distribution In(x, y, z) of the nth-order
UPSGLB is always between the two Gaussian intensity
distributions I(x, y, nc , z) and I(x, y, n l , z) at the z 5 z
plane. This property is explicitly shown in Fig. 4, where
the parameters are chosen such that nc 5 400 THz, d
5 300 THz, b 5 3p2 3 108 m2 s21, and z 5 0. From
Fig. 4 one can find that the time-integral intensity distri-
bution In(x, y, z) of the nth-order UPSGLB at the z 5 0
plane is a nearly Gaussian profile, but note that, strictly
speaking, In(x, y, z) is not a Gaussian distribution. It is
worth mentioning that the time-integral intensity distri-
bution In(x, y, z) approaches the Gaussian intensity dis-
tribution I(x, y, nc , z) when d → 0, because I(x, y, n l , z)
also approaches I(x, y, nc , z) when d → 0.

4. EXPANDING BANDWIDTH-LIMITED
ULPEMLLSR’s BY UPSGLB’s
Let us now employ UPSGLB’s to expand arbitrary
bandwith-limited ULPEMLLSR’s analytically. Accord-
ing to the Fourier series theory, in the range of n l < n
< nh , an arbitrary weighting function g(n) can be ex-
panded as

g~n! 5 (
n52`

`

cnAn expF i
np~n 2 nc!

d
G 5 (

2`

`

cngn~n!,

(27)

where the expansion coefficient cn is given by

cn 5
1

2And
E

nl

nh

g~n!expF2i
np~n 2 nc!

d
Gdn. (28)

In particular, the expansion coefficient c0 is simply given
by c0 5 ḡ(n)/An , where ḡ(n) 5 *nl

nhg(n)dn/(2d) is the av-
erage of the weighting function g(n) in the range of n l

Fig. 4. Time-integral intensity distribution In(r, 0) of a single
UPSGLB at the z 5 0 plane. The parameters are chosen such
that nc 5 400 THz, d 5 300 THZ, z 5 0, and b 5 3p2

3 108 m2 s21.
< n < nh . In terms of Eqs. (27), (12), and (11), the ana-
lytic signal f(x, y, t, z) of the bandwidth-limited UL-
PEMLLSR with the above weighting function g(n) can be
finally expanded by

f~x, y, t, z ! 5 (
n52`

`

cnfn~x, y, t, z !, (29)

where fn(x, y, t, z) is the nth-order UPSGLB, which is
given by Eq. (16). Note that the expansion coefficients cn
are usually complex. As pointed out before, for an ideal
ULPEMLLSR, its weighting function g(n) is a positive
real function. It can be proved that, in this ideal case,
the expansion coefficients cn have the property that c2n
5 cn* . Therefore, for an ideal ULPEMLLSR, one can
evaluate only the expansion coefficients of positive order
UPSGLB’s and then use the relation c2n 5 cn* to conve-
niently obtain the expansion coefficients of the corre-
sponding negative order UPSGLB’s. We emphasize that
the expansion method developed in this section is gener-
ally valid because arbitrary weighting functions g(n) can
be strictly expanded by the Fourier series in the range of
n l < n < nh . It is worth mentioning that the family of
UPSGLB’s are not orthogonal to one another (i.e.,
***2`

` fn(x, y, t, z)fm* (x, y, t, z)dxdydt Þ 0 when m
Þ n), although the Fourier series gn(n) are orthogonal to
one another (i.e., *nl

nhgn(n)gm* dn 5 0 when m Þ n) in the
region of n l < n < nh .

To understand this expansion method better, let us
now present two special examples.

Example 1: a single zeroth-order UPSGLB. As we
pointed out before, for an ideal ULPEMLLSR, the weight-
ing function is a positive real function. We find that the
weighting function g0(n) of the zeroth-order UPSGLB is
just a positive real function. This property implies that a
single zeroth-order UPSGLB can be used to describe some
real bandwidth-limited ULPEMLLSR’s.

Figure 5 provides the on-axis near-field intensity distri-
bution V0

2(0, 0, t, 0) of a zeroth-order UPSGLB at the
point (r 5 0, z 5 0). In Fig. 5 the parameters are chosen
such that n l 5 316 THz (the corresponding wavelength is

Fig. 5. Pulse intensity V2(0, 0, t, 0) of a single zeroth-order UP-
SGLB at the point (r 5 0, z 5 0). The parameters are chosen
such that nc 5 396 THz and d 5 80 THz.
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;0.95 um), nh 5 476 THz (the corresponding wavelength
is ;0.63 um), nc 5 396 THz, and d 5 80 THz. Compar-
ing Fig. 5 with Fig. 4 of Ref. 28 [note that this figure is not
the pulse intensity V2(0, 0, t, 0) but rather the interfero-
metric autocorrelation of the real optical field
V(0, 0, t, 0)] and with the inset of Fig. 1 of Ref. 27, one
can find that the experimental results observed by Refs.
27 and 28 are very similar to the on-axis near-field inten-
sity distribution V0

2(0, 0, t, 0) of the zeroth-order UPS-
GLB at the point (r 5 0, z 5 0). These similarities show
that the zeroth-order UPSGLB itself has practical mean-
ing.

Example 2: a novel model of a nearly temporal–
spatial Gaussian beam. The models of a nearly
temporal–spatial Gaussian beam are very meaningful,
because, in many practical cases, the ULPEMLLSR’s in-
deed have such temporal–spatial behaviors.24,26,31 Wang
et al.14 analytically investigated the temporal–spatial
propagation problem of an ULPEMLLSR with a Gaussian
weighting function. Unfortunately, they extended the in-
tegral region to the negative frequency domain and then
made the solution diverge with larger r. To overcome
this drawback, Porras15 limited the integral region in the
positive frequency domain and obtained a solution in
terms of the error function with a complex variable [see
Eq. (27) of Ref. 15]. However, Porras’s treatment still
has two drawbacks: One is that the solution is inconve-
nient to use because it is expressed as the complicated er-
ror function with a complex variable, and the other is that
the weighting function used there is not bandwidth lim-
ited. To overcome these shortcomings, we now suggest a
novel model of a nearly temporal–spatial Gaussian beam
whose weighting function has the form

g~n! 5 0.5An 1 0.5An cos@p~n 2 nc!/d# (30)

in the range of n l < n < nh , where An is given by Eq.
(24). Substituting this weighting function into Eq. (28),
one can obtain c0 5 0.5, c1 5 c21 5 0.25, and cn 5 0 for
other orders. Then the analytic signal f(x, y, t, z) of the
above-mentioned nearly temporal–spatial Gaussian beam
can be expressed as

f~x, y, t, z ! 5 0.5f0~x, y, t, z ! 1 0.25f1~x, y, t, z !

1 0.25f21~x, y, t, z !. (31)

Figure 6 provides the weighting function g(n), the near-
field intensity distribution V2(0, 0, t, 0) at the point (r
5 0, z 5 0), and the transverse intensity distribution
V2(r, 0, 0) at the z 5 0 plane at the original t 5 0 mo-
ment. In this figure the parameters, for comparison with
Ref. 26, are chosen such that nh 5 375 THz (the corre-
sponding wavelength is ;0.8 um), n l 5 341 THz (the cor-
responding wavelength is ;0.88 um), nc 5 358 THz, d
5 17 THz, and b 5 3.75p2 3 108 m2 s21. Figure 6 ex-
plicitly shows the nearly temporal–spatial Gaussian in-
tensity profile of the suggested model, which is very simi-
lar to many experimental results. In fact, Figs. 6(A) and
6(B) are very consistent with the experimental result of
Ref. 26. Compared with the nearly temporal–spatial
Gaussian beams introduced by previous papers,14,15,31 our
model has at least the following two advantages: One is
that our model can be described by a simple analytical ex-
pression, and the other is that the weighting function
g(n) of our model is strictly bandwidth limited and there-
fore has more practical meaning.

5. CONCLUSIONS AND DISCUSSIONS
We have analytically presented a family of bandwidth-
limited solutions of the time-dependent wave equation in
the paraxial approximation. This family of solutions has
the product forms of the monochromatic Gaussian light
beam with the central frequency nc times the sinc func-
tion of the complex temporal–spatial beam parameter Pn
and has been named ultrashort-pulsed sinc-Gaussian
light beams (UPSGLB’s). We have investigated their
temporal–spatial evolution behaviors, and, in particular,
we have revealed that the real part of the parameter Pn
directly describes the time delays with the increase of the
coordinate r and with the increase of the order n. As an
important application, we have developed a simple
method to expand bandwidth-limited ULPEMLLSR’s by
UPSGLB’s analytically. To our knowledge, it is the first
time that an analytical expansion set for bandwidth-
limited ULPEMLLSR’s is presented. In addition, we
have analytically investigated two special examples of

Fig. 6. Novel model of a nearly temporal–spatial Gaussian
beam. (A) The weighting function g(n), (B) the pulse intensity
V2(0, 0, t, 0) at the point (r 5 0, z 5 0), and (C) the transverse
intensity distribution V2(r, 0, 0) at the z 5 0 plane at the t
5 0 moment. The parameters are chosen such that nc
5 358 THz, d 5 17 THz, and b 5 3.75p2 3 108 m2 s21.
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bandwidth-limited ULPEMLLSR’s, a single zeroth-order
UPSGLB, and a novel model of a nearly temporal–spatial
Gaussian beam and compared them with experimental
results. The results obtained in this paper have practical
meaning and can be used to study the temporal–spatial
propagation problems of bandwidth-limited ULPEM-
LLSR’s.

One may want to know whether these analytical UPS-
GLB’s can be extended to the cases of linear propagation
in dispersive media and nonlinear propagation (e.g., self-
phase modulation and self-focusing) in Kerr media, be-
cause these propagation behaviors will definitely show up
inside the laser resonators of femtosecond laser devices.
Strictly speaking, the UPSGLB’s cannot generally be ex-
tended to these two kinds of propagation behaviors. For
the linear propagation in dispersive media, the simple
propagation form [Eq. (12)] of the monochromatic Gauss-
ian fields f(x, y, n, z) corresponding to frequency n be-
comes invalid, and, for the nonlinear propagation process
in Kerr media (it is also the gain media at the same time),
both the simple Fourier-type expansion and the simple
propagation law of monochromatic Gaussian beam be-
come invalid. Fortunately, as we discuss below, the UP-
SGLB’s are still good models for describing the temporal–
spatial propagation behaviors of ULPEMLLSR’s, even if
the dispersion, the self-phase modulation, and the self-
focusing are all taken into account. Our analysis is as
follows. (1) Except for the gain medium (i.e., the Ti:sap-
phire medium), all the other elements have only linear
dispersion behaviors, which lead only to some phase dif-
ferences among those monochromatic Gaussian fields
w(x, y, n, z) when the total thickness of these elements is
not too long. For simplicity, we consider only a disper-
sive medium with thickness D (the multiple dispersive el-
ements can be treated similarly). After propagation
through this dispersive medium, Eq. (12) should be added
to a factor exp$i2p@n(n) 2 1#nD/c%, where the refractive in-
dex n(n) describes the dispersive relation with the fre-
quency n. Apparently, this added factor can be included
in the weighting function g(n) of an ULPEMLLSR be-
cause it is independent of the radial coordinate r. (2) Ap-
proximately, the temporal propagation behaviors and the
spatial propagation behaviors in the gain medium can be
independently treated because the gain medium is very
thin (usually the Ti:sapphire medium is only ;2.0-mm
thick). (3) In the gain medium, the dispersion and self-
phase modulation show a complicated solitonlike behav-
ior and cannot be easily described by an analytical ap-
proach. Fortunately, we investigate only the output
properties of an ULPEMLLSR in free space and do not in-
vestigate the complicated solitonlike behavior in detail.
For the output behavior of an ULPEMLLSR, the disper-
sion and the self-phase modulation of the gain medium
change only the weighting function g(n), because the
temporal and the spatial propagation behaviors in the
gain medium can be independently treated. (4) As stated
in items (1)–(3), the total influence of the dispersion and
the self-phase modulation in a laser resonator is that they
change the weighting function g(n) of an ULPEMLLSR.
In this paper we use only the family of UPSGLB’s to ex-
pand an ULPEMLLSR analytically, and this expansion
method is independent of the actual form of the weighting
function g(n). Therefore the dispersion and the self-
phase modulation in a femtosecond laser resonator have
no influence on the results of this paper. In addition, the
change of the weighting function g(n) resulting from the
dispersion and the self-phase modulation has been com-
pensated very well in femtosecond laser devices (espe-
cially in those sub-10-fs laser devices). Otherwise, no
sub-10-fs light pulse can be obtained. (5) As a good ap-
proximation, the self-focusing effect in the gain medium
can be treated as a lens34–36 [i.e., the added phase is an
approximate parabolic function of the radial coordinate r;
see, for example, Eq. (4.1) of Ref. 34 or Eq. (3) of Ref. 36]
when the light power is less than the critical power of
self-trapping, because the transverse intensity distribu-
tion is a nearly Gaussian distribution and the gain me-
dium is very thin [which ensures that the power-series
approximation of Eq. (4.1) of Ref. 34 is valid]. According
to the propagation law of Gaussian beams through a first-
order optical system and the equivalent resonator
theory,37,38 this self-focusing lens changes only the actual
values of the parameters b and z [which changes the lon-
gitudinal position of the common beam waist plane of the
monochromatic Gaussian field distribution w(x, y, n, z)]
in Eq. (12) and does not change the expression form of Eq.
(12) at all. That is to say, the output of an ULPEMLLSR
is still an (approximate) isodiffracting pulsed beam even
if the self-focusing lens in the gain medium is taken into
account. Therefore the self-focusing effect in the thin
gain medium has no influence on the results of this paper
either.
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