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Torsion, compactification, and inBation
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We study possible implications of a ten-dimensional Einstein-Kalb-Ramond theory. It is specu-
lated that the compactification process and inflationary process are closely related. It is also found
that the torsion field tends to vanish after the inflation era is completed. This is in fact a general fea-
ture for the torsion Lagrangian. Hence the contribution from the Kalb-Ramond action is negligible
efI'ectively after the inflationary era. Some solutions to the field equations are also presented.

PACS number(s): 04.50.+h, 02.40.—k, 98.80.Cq

There has been intensive study on the implications of
the ten-dimensional Einstein-Kalb-Ramond action [1,2]

dlo Q (io) ~(10) 1 pF FMNP
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Here GM~ = 2RgM~ —RM~ is the Einstein tensor.1

We have. also defined the energy-momentum tensors TM~
and TM~ as

TM~ = BMWBtv—d — gM—w(BPWB 4 + 2V),

BM Q—B Q —V(Q)
M

2

The Kalb-Ramond field strength FM~I is the curvature
tensor for the skew symmetric torsion field AM~. Defin-
ing a three-form [3]

F = FM~~dx A dx R, d2;

and a two-form

(2)

F =dA. (4)

Here we use capital indices M, N, . . . (= 0, 1, 2, . . . , 9)
to denote the ten-dimensional space-time indices. Also
lower case latin indices from the begining (a, b, c, . . .) of
the alphabet will denote the four-dimensional space time
indices (a, b, c = 0, 1, 2, 3). Moreover, i, j, k, l(= 1, 2, 3)
labels the spatial 3-manifold. Finally, we will use lower-
case latin indices from the middle (m, n, . . .) of the al-
phabet to label the six-dimensional compactified inter-
nal space. Here P is the dilaton field. The F term
has also been studied in many articles, especially in the
pointlike limit of the superstring low-energy effective the-
ory, namely, the ten-dimensional supergravity theory [2]
where the F2 term is known as the Kalb-Ramond action.

The equation of motion for the action (1) can be shown

[1,4] to be

A—:AM~dx n dx )

the formal relation between FM~P and AM~ can be read
ofF directly from the following definition:

TM~ ————e (F gMhr —6FMPQFtv ),F P 2 PQ

respectively.
Recent observations [5] indicate that the large-scale

structure of our four-dimensional Universe should be de-
scribed by the well-known Friedmann-Robertson-Walker
[6] (FRW) spaces (denoted as M ). It is known that
the FRW spaces describe all 4-spaces that can be time-
foilated into homogeneous and isotropic spatial 3-spaces.
Moreover, if the ten-dimensional models studied here are
going to have anything to do with real physics, the ten-
dimensional space M has to undergo a dimensional
reduction process (as any Kaluza-Klein theory does).
Therefore M must be compactified into product spaces
of FRW space M and some unknown six-dimensional
spaces M, namely, M —+ M x M .

It seems impossible to pick up the right vaccum merely
from the equations of motion. The choice will then rely
on the choice of some appropriate boundary conditions.
Since our four-dimensional space-time is observed to be
very close to a FRW space with tremendous symmetries
inherent, it is a natural choice to impose a similar sym-
metrical constraint on the compactified M6, namely, one
should take M to be totally homogeneous and isotropic
too. It can be shown that the hypothetical M x M
space is just the generalized FRW space [1] described by
the metric

ds—:gMivdz dz = dt + a (t)h, ~(x)—dx'dx~

+d (t) h „(y)dy dy". (10)

( QFMNP) 0

+MN = +M~ + TM~~

DMB p = e~F + B4,V. —
6

(5)

(6)

Here h, ~ (x) and h „(y) denote the homogeous and
isotropic 3- and 6-space, respectively. To be more
specific, h,zdx'dx&—:[1/(1 —kir2)]dr2 + r2dAs and
h „dx dx" = [1/(1 —k2s )]ds + s dAs. Here ki and
k2 are constants (0, or +1) denoting different topologies
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associated with diferent FRW spaces. Furthermore, dA„
denotes n-dimensional solid angles.

In order to solve Eq. (5), we will accept the proposed
ansatz

F b, (z) = F b, (x),
F- .(z) =F -.(~)

closed one-forms defined on M are exact, there exists a
scalar field y that satisfies

d'e&r = ay.

For example, all simply connected spaces [i.e. , IIi(M) =
0] and contractible spaces belong to the class Hi (M) = 0.

Therefore, one has
while setting all other cross space index components to
zero, i.e. , F b = F „=0. One can then show that
F~„„has to vanish identically obeying the equations
of motion (5)—(7). Therefore, (5) reduces to a four-
dimensional equation

r = e-&d-'0 y,

if Hi(M4) = 0. Note that the d 6 factor can be ab-
sorbed into y by defining B y'—:d 6B y if d and y are
both functions of t only. This is basically what we meant
by the minor error mentioned earlier. The replacement
is, however, illegal if spatial dependence is present. Con-
sequently, one can write

B.(~gdse&F") = O. (13)

Note that we have written g&4& as g for convenience. In
fact, we will omit most superscripts &4& from now on. Fur-
thermore, the superscript ~i ~ will also be omitted unless
there are possible confusions that cannot be avoided by
reading the definition domains specified by the equations.

Note that the ds factor [1] has been overlooked in many
previous works. As we will show later, this error will not
acct the result in the FRW spaces dependent only on
t, except for some modifications on the vanishing tor-
sion fi.eld. This oversight is, however, inappropriate and
will have nontrivial impact in certain models. Note that
this equation can in fact be integrated rather straight-
forwardly. Indeed, this can be solved by observing that
the compactified Kalb-Ramond field strength F~b, is a
totally skew-symmetric type T(0, 3) tensor. Therefore
one can map it to some type T(1,0) contravariant vec-
tor Td with the help of the totally skew-symmetric type
T(0, 4) Levi-Civita tensor 6 b,g. Specifically, there exists
a contravariant vector T" such that

(2o)T~b T b=e d ~ B~QBbg ——g bB QB
2

(21)x
2

Note that we have used the identity F2
—6e 2&d i~B yB~y in deriving (20) and (21). More-
over, from the Bianchi identity DMGM~ ——0, one has
D TM~ + D TM~ ——0. This equation can be shown
to be

(22)B~g(DbB y —6B PBby —BbPB y) = 0

after some algebra. Here we have assumed that y = y(t),
a function of t only. We also write d(t) = ei ~'l and
a(t) = e ~'l for convenience.

Note that (22) is valid for any form of V(P). In fact,
one can also show that Eq. (22) is still valid in the pres-
ence of the spin-1 gauge fields and spin-2 matter fields.
Indeed, the contributions from gauge fields and matter
fields in (6) can be cast into the energy-momentum ten-
sors associated with the gauge fields AM and matter fields

Q, i.e. , TMiv ~ TMiv + TMiv + TM~ + TMiv . Additional
terms in the energy momentum tensor are conserved sep-
arately due to their equations of motion. Hence (22)
is indeed valid in the presence of the gauge and matter
fields. Moreover, (22) is in fact also true in the induced
gravity model [4,8] that has gPR couplings to ensure that
all coupling constants are made dimensionless.

Note also that torsion field is the only variable that
hides some of its dynamics implicitly in the Bianchi re-
lation, namely, the field dependence cannot be read off
after we have used up its field equation (13). This is a
very unique property of the torsion field.

Furthermore, (22) can be written more explicitly as

d
Fabc = &abed+ (14)

for every totally skew symmetric type T(0, 3) tensor F b,
defined on our four-dimensional base manifolds. Indeed,
one notes that both sides of equation (14) have exactly
the same symmetry among their indices such that all
degrees of freedom have been taken into account. Hence
one can write (13) as

abcdB (ds PT ) = 0 (i5)

By introducing a one-form T—:T dx~, (15) can be writ-
ten as a two-form equation

*d(d"~T) = O

Big(Bi + 3Bin —6BiP —Bi&[&)Big = 0.

Hence if B,y P 0, one finds

after multiplying (15) with dx h dx' such that (15) be-
comes 6 b'" B (dse~Tg) dxbhdx, = 0. Here* is the Hodge
star operator [3] which maps a differential n form into its-
dual (d —n)-form in d-dimensional spaces. Therefore, one
has

d(dse&T) = O (17) B,y = k exp( —3a + P+ 6P).

due to the involutive property of the Hodge star oper-
ator, namely, ** = X the identity map. If we live in a
(pseudo-)Riemannian space M that has trivial first co-
homology group [7], namely, H (M) = 0 such that all

Here k is a constant. This indicates that the y field will
be decreasing badly if the three-space scale factor a(t)
inmates. In fact the Kalb-Ramond term e@F becomes
6k2e 6 +& after substituting the solution (24). Therefore
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if action (5) is assumed to induce the inflationary process,
the torsion field contribution to the post-inflation era is
negligible.

For clarification, we will study more explicitly a special
case of this model, namely the case when Bqg = ki =
k2 ——0. Note that, by computing the ten-dimensional
Einstein tensor induced by the lOD FRW metric given by

(10), one has G b
——G b +t b and Gm„= 2d2(t)h „G

where t b and G are defined as

curvature B. Furthermore, one can also get an expression
of R by computing the mn equation of (6) with the help
of equation (26). Eliminating both R obtained above,
one has the

8 P+68 PB P 5k—qe ~+ e—~ ~8 yB g+ =—0.
1 q2 V

(27)

In fact, (27) can be written more explicitly as
t b = 3g b(28'P + 78,PB'P —5kie '~)

6(D—,BbP + 8 PBbP),
G = B+ 108 P + 308 PB P —20kie

(25)
(26)

(8, + 38,n+ 68,P) B,P = ——e 4' —5kge
k2 U
4 8

(»)
By computing Tr(G b ) given in (6) with the help of (25),
one has an equation for the expression of the 4-scalar Furthermore, Eq. (7) and the tt equation of (6) give

(8, + 38,o. + 68,P)8,& = —k'e ' +4' —84, V,
2

(B,o)~ + 68,~8,P + 5(B,P) + —(B,P) = e —+~ —kie —5k2e ~ + —. (30)

Note that we have replaced the torsion contributions in
(28)—(30). One may also note that (28) and (29) can be
written more compactly as

3a+6P g ~q k2 —3n+6P+P g V 3m+6@

Note that Eq. (32) indicates that esn+si Bqg has to be
decreasing monotonically as long as ByV & 0. If a(t)
inflates and d(t) contracts smoothly such that ad in-
creases, 8&/ must also be a decreasing function in order
to remain consistent.

Now we are left with three equations [4] (30)—(32) for
three unknowns. If Bqg = ki = k2 = 0, (32) also gives
k = 0. Therefore, (31) can be solved to give

Bqt9 = const x e

Equation (33) indicates further that if a(t) inflates, d(t)
tends to become static very quickly. In fact we are able
to solve this special case exactly. Indeed, (30) becomes
(Bqci) + 68qo.Bqp+ 5(Bqp) = 0. This gives p = —kso;+
const accordingly. Here k3 can be either j. or 5. Hence
(33) can be integrated to obtain

a(t) = (ap + ait)",
d(t) = dp(ap + ait)',

(34)
(35)

after some algebra. Here p and q are constants such that
(p, q) = (—3, 3) if k3 = 1 or (p, q) = (-, —-') if ks = -'.
Also dp, ap, and aq are constants to be fixed by imposing
appropriate boundary conditions.

In what follows, we will also assume kq ——k2 ——0 for
simplicity. It is hard to find an inflationary solution with-
out the help of the potential term. Indeed, if one expects
a slow-rollover [4,8] inflationary solution which requires
(Bqg) « (Bqci), it is easy to show that Eqs. (28) and

8 ( 3n+6pB p)
—3n+6p+Q 5k 3n+4p + 3n+6pk V4' 26

8
(31)
(32)

(30) are inconsistent with the first order approximation
of 6 and P, namely 8&a = ni and 8&P = Pi. In order
to obtain an inflationary solution, one will assume the
broken symmetric potential U(P) =

6 (P —v ) .
Once again, the slow-rollover assumption (Bqg) (&

(8&a.) will be adopted during the inflationary period.
Moreover, we will also assume that P(t = 0) = Pp (& v
as well as the first-order appproximation in n and P, i.e. ,

8&a; ni and BqP Pi. Consequently, (28) and (30)
become

o,, + 6o.iPi + 5Pi -—,2 Vp

6 '

Vp
3o.iPi + 6Pi = —.

8

(36)

(37)

0'p +

Moreover, by assuming 8~3$ &( (Bqg), Eq. (29) can be
shown to give

3vAt— (39)

There are a number of inequalities to be checked for con-

Here we have assumed V Vp Sv during the slow-
rollover period. Eliminating Vp from (36) and (37), one
finds either ni ——Pi or cubi = —3Pi.

Furthermore, ni = —3Pi can be excluded due to the
positivity of Vp. Therefore, one has o.i = Pi for all slow-
rollover models. Note that ni = Pi implies that n and t9
will inflate or decrease all together. Thus these models
will not be helpful in explaining the smallness of the com-
pactified scale. We have to assume here that compactifi—
cation must have been completed before inflation. Note
also that considering D g 6 models will not help resolve
this compactification problem with the slow-rollover ap-
proach. The other non-slow-rollover process is, however,
not excluded. Nonetheless, one can obtain the result



3642 BRIEF REPORTS

sistency. Firstly, the inequalities (Otg) « (Oto. ) and
Ot2$ « (Big) imply

/U2 4—»p» -v&.
32 3

(4o)

Moreover, Vo should not exceed the Planck energy to
exclude quantum effect. This will simply imply that
Av & 8. Finally, a factor e can be achieved only when
Av & 2 x 10 . Note that the inflationary interval
is around 10 in Planck units. Therefore, it is possible
to choose appropriate initial conditions and parameters
such that an inflationary solution can be made relevant
to the physical universe.

One notes also that when P approaches the physical
vaccum P = v, equation (29) indicates a damping os-
cillatory solution which will be used to slow down the
inflationary process as well as to reheat the physical uni-
verse. Indeed, once P approaches v, (29) reduces to

O~y+Av p=0, (41)

by keeping only terms linear in p. Note that damping
is due to hi her-order terms. Moreover, one finds Oqa
BtP = i2 Avp. Here we have assumed P = v+ p and

gap « (B,p}2. In this inflationary solution, the torsion
contribution is hence damped as soon as the inflationary
process is completed.

In summary, we have shown that the inflationary pro-
cess is expected to eliminate the contributions from the

torsion field. There are also a number of related (4+ D)
dimensional models with torsion and perhaps with ad-
ditional scalar fields coupled to the system. Equations
similar to Eq. (24) for these systems can also be ob-
tained such that the torsion field tends to be negligible
in the post-inflationary era. This appears to be a gen-
eral feature of the torsion coupled models. We have also
shown that an inflationary solution can be obtained if we
consider a broken symmetric potential. Similar chaotic
inflationary solutions can also obtained by taking v = 0.

We are, however, unable to obtain an inflationary so-
lution that also induces the compactification scale simul-
taneously in this model, although the possibility is not
excluded. This dual eKect can be obtained by considering
an induced gravity model [8] such that the compacitified
scale factor P decreases as a increases.

We also remark here that there has been confusion
in taking dilaton-free models by imposing a P = const
constraint directly in action (1). This is in fact inappro-
priate from our analysis above. Indeed, eliminating the
P field from (1) means we will lose the P equation (31)
which imposes a strong constraint that the torsion field
has to vanish identically accordingly unless 0, = const.
Therefore, one should not overlook the nontrivial con-
straint imposed by the dilaton field. The d(t) factor in
(13) that has been overlooked previously has also been
restored and studied carefully. After slightly redefining
the y field, all previous results are still valid.
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