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Program analysis techniques have been widely applied in various fields of software
engineering, such as debugging, testing, and proof of simple correctness properties. In object-
oriented (OO) programs, inheritance, association, and aggregation relationships may introduce
complicated dependencies concealed within classes that might obstruct program analysis.  This
paper proposes a class relationship flow models to provide analysis for inheritance, association,
and aggregation of class relationships.  The flow model consists of three flows, inheritance,
association, and aggregation flows, corresponding to these relationships.  A sequence of class
relationships is represented as a flow path from one class to another.  Along a flow path, each
member within a class is associated with an operation, define or use, to represent whether its
status is changed or referenced.  Thereby, the concealed dependencies introduced by class
relationships can be analyzed according to the flow operations.  The analysis might be used as
a technique for program understanding, anomaly detection, and program testing.
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1. INTRODUCTION

Program analysis predicates some properties of the dynamic behavior of a program
statically. It has been extensively used to enable various optimizations and transformations
in compilers.  Program analysis techniques are also widely applied in software engineering,
such as in static debugging, testing, proof of simple correctness properties, and so forth [1].
The object-oriented (OO) paradigm for software development has gained momentum and
popularity over the years.  The paradigm provides the features of object abstraction,
encapsulation, inheritance, and polymorphism for program construction.  More and more
OO components and class libraries have become available.  These libraries encourage pro-
gram reuse for building (large-scale) software systems, and the analysis of OO components
for reuse, testing, debugging, and maintenance is becoming important.  Most program ana-
lyzers focus on detecting features likely to be bugs for a single class in light of the specific
syntax of a language [2].  Nevertheless, an appropriate model for analyzing class libraries is
still lacking.

In OO programs, a class encapsulates attributes and methods (both are also called
members) as the state and behavior of its instances (objects).  The details of programs are
often hidden inside classes deeply.  The relationships between classes include inheritance,
association, and aggregation [3].  An inheritance relationship between one class and another,
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called subclass, means that the subclass can possess members of the class.  An association
relationship between two classes, where one is associated with the other, means that the
latter class’s members can be used in the former.  An aggregation relationship between two
classes means that an instance of one class is a part of one instance of the other.  On the
other hand, such a relationship implies that one class can propagate some information (e.g.,
methods or attributes) to the other via the relationship.  This propagation can be transitive
via a sequence of relationships over several classes.  That is, class relationships may intro-
duce dependencies concealed within classes.  The class diagrams used in most OO method-
ologies [4, 5] are too coarse-grained to describe the concealed information propagated via
these class relationships.  For example, from Fig. 1, one observes that “class B inherits from
class A” and “class E inherits from class B.”  However, one may not know which members
defined in A and B are inherited by E.  As to association, one can know that “class A can be
associated with class S by invoking method draw() in S.”  If the invocation is made by
means of a polymorphic message, the methods implemented in classes T and U can be
invoked potentially.  That is, A has implicit association relationships with T and U.  Based
on aggregation, it is obvious that “class Y encapsulates class X’s instance as its attribute”
and “X encapsulates class E’s instance as its attribute.”  This figure does not reveal “which
members in E and X are accessible in Y.”  Such information propagated via class relation-
ships implicitly might increase the difficulty of understanding, debugging, and testing OO
programs [6-8].

Fig. 1. An example of a class diagram.

In [9], an inheritance flow model was presented to reveal members propagated among
classes via inheritance relationships.  The model does not consider the other two class rela-
tionships that might incur implicit dependencies among classes.  In order to analyze these
implicit dependencies, this paper proposes a class relationship flow model, which consists
of inheritance, association, and aggregation flows used to represent implicit propagation
introduced by class relationships, by extending the inheritance flow model.  The association
flow describes the method invocations and attribute accesses along with a sequence of
association relationships.  The aggregation flow describes the members of a class that are
accessible along with a sequence of aggregation relationships.
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In the class relationship flow model, a sequence of class relationships is represented
as a flow path class by class.  Each member within a class is associated with an operation,
define or use, to describe whether its status is changed or referenced along a flow path.
Hence, the implicit information propagated among classes can be deemed as along these
flow paths of class relationships.  Such notation is the same as traditional data flow [10].  To
illustrate the flow model in practice, Java [11] is used in sample programs through this
paper.  This flow model can be used in program analysis techniques in several applications,
e.g., program understanding, anomaly detection, and program testing.

The remainder of this paper is organized as follows.  Section 2 reviews related work
on flow analysis.  Section 3 proposes a class relationship flow model that consists of
inheritance, association, and aggregation flows.  Then, the analysis of class relationship
flow is presented in the next section.  Section 5 discusses several applications of flow
analysis.  In the final section, we draw conclusions and suggest directions for work.

2. BACKGROUND

2.1 Preliminary Definitions

In object-oriented languages, the definition of a member (i.e., a method or attribute)
in a class can be divided into signature and body parts, where the signature denotes the
member declaration, and the body denotes the member implementation.  A member can be
denoted as (t, n, p, b), where t is a member type (a returned value type for a method), n is a
member name or identifier, p is a list of formal parameters (none for an attribute), and b is
a member body.  A member signature consists of t, n, and p.  A member is abstract or pure
virtual when it has no body, i.e., b is null.  Let M1 = (t1, n1, p1, b1) and M2 = (t2, n2, p2, b2) be
two members.  The signatures of M1 and M2 are identical if t1 = t2, n1 = n2, and p1 = p2.  These
two signatures are indistinguishable if t1 π t2, n1 = n2, and p1 = p2.

In a class, let a member d be inherited from a superclass, and let a member d¢ be
specified in the class definition.  The signature of d¢ overrides that of d when the two
signatures are indistinguishable. The body of d¢ will override that of d in the class when the
two signatures are indistinguishable or identical.  For example, in the program shown in
Fig. 2, the signature of member id in class Vehicle and that in class Car are indistinguishable
because one is of the int type, and the other is of the String type.  The signatures of move()
in the two classes are identical.  In this case, id in Car overrides the signature and body of
that inherited from Vehicle whereas move() in Car overrides only the body of that inherited
from Vehicle.

class Vehicle{
public int id;
public void move(){ /* body of Vehicle move */};

  }
class Car extends Vehicle {

public String id;
public void move(){ /* body of Car move */ };

}

Fig. 2. An example of member overriding.
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To represent the structure of OO programs, we define a graph, called a Program
Structure Graph (PSG).  A PSG is a multi-digraph, where vertices represent classes, interfaces,
methods, and attributes, and multiple edge sets represent class inheritance, interface
inheritance, public-/protected-/private-memberships, declaration, and method invocation,
respectively.  The vertex and multiple edge sets were first discussed in [12].  A program
structure graph for an OO program can, thus, be defined as follows.

Definition 2.1: Let P be an OO program.  A Program Structure Graph (PSG) of P is defined
as GPSG(P) = (V, E), where:

1. V = Vc » Vi » Vm » Va, where
∑ Vc is a set of vertices representing classes,
∑ Vi is a set of vertices representing interfaces,
∑ Vm is a set of vertices representing methods, and
∑ Va is a set of vertices representing attributes.

2. E = (Eext, Eimp, Epub, Epro, Epri, El, Em), where
∑ Eext Õ Vc ¥ Vc is a set of edges from a class to its immediate subclass representing class

inheritance,
∑ Eimp Õ Vi ¥ (Vc » Vi) is a set of edges from an interface to its immediate subclass or

subinterface representing interface inheritance,
∑ Epub Õ (Vm » Va) ¥ (Vc » Vi) is a set of edges from a member to its definition class

representing public-membership relationships,
∑ Epro Õ (Vm » Va) ¥ (Vc » Vi) is a set of edges from a member to its definition class

representing protected-membership relationships,
∑ Epri Õ (Vm » Va) ¥ (Vc » Vi) is a set of edges from a member to its definition class

representing private-membership relationships,
∑ El Õ Vc ¥ Va is a set of edges from a class to an attribute representing declaration

dependencies [12], and
∑ Em Õ (Vm » Va) ¥ Vm is a set of edges from a member to a method that accesses the

member directly.

The subsequent definition for a PSG is for convenience IN presenting our model.

Definition 2.2: Let e1, e2, ..., and ek be a set of edges in a PSG. (e1, e2, ..., ek) is a path in the
graph if and only if the terminal vertex of ei is the initial vertex of ei+1 for 1 £ i  £ k - 1.  Let
vI be the initial vertex e1, and let vT be the terminal vertex of ek.  The path from vI to vT is

denoted as vI Æ vT for short. For a path va Æ vb = (e1, e2, ..., en) V Va E E E bx y z∪ ∪ ∪ →
L ,

means that "�  j, 1 £ j £ n, ej Œ Ex » Ey »... » Ez.
From Program I (see Fig. 3), we can construct a PSG as shown in Fig. 4.  The classes

for primitive data types (e.g., char, integer, etc.) are omitted in a PSG.

class Rec{  public long array[] = new long[200]; }
class C0 {
     public int stateC = 0;

}
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interface FunPack {
     abstract public void funC();

}
class C1 extends C0 implements FunPack {
     public Rec nameList = new Rec();
     public void funC( ) {  ...}

}
class C2 extends C1
     private S0 objS = new S0( );
     public void setup( ){  objS.setS( ); }

}
class S0{
     private int stateS;
     public void setS( ){  stateS = 0; }

}

Fig. 3. Program I.

Fig. 4. The PSG of Program I.

2.2 Related Work

Data flow analysis is a technique used to ascertain and collect information about
define, use, and kill  operations on variables in a program (e.g., [10, 13]).  A variable is
defined in a statement if a value is assigned to the variable.  A variable is used if the variable
is referenced in a statement.  A variable is killed if the value of the variable is no longer
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available.  Conventional data flow analysis often represents a program as a control flow
graph, where vertices denote statements, and edges denote execution sequences between
statements.  Along an execution path in the graph, the flow information for a variable can be
expressed as a sequence of operations. The flow information is useful not only for optimiz-
ing and parallelizing compilers [14], but also for using many program analysis techniques
(e.g., program dependency graphs [15, 16], program slicing [17], ripple effect analysis [18],
and so on).  In OO programs, a variable represents an object with its own state and behavior
defined in a class, rather than data only.  The data flow information alone is insufficient to
analyze the information implicitly propagated via class relationships.

Sudholt and Steigner [19] extended an inter-procedural data flow analysis algorithm
for OO programs.  Their approach first thoroughly decomposes an object into a set of pro-
cedures and global variables and then performs an inter-procedural data flow analysis algo-
rithm (e.g., [20]) on these variables with the procedures.  It focuses on low-level data flow
information for optimization and parallelization of compilation.  In [21], Hierarchical Data
Flow Analysis (HDFA) was proposed to explore data flow information in OO programs for
three hierarchical layers: classes, objects, and attributes.  The HDFA consists of class flow,
object flow, and attribute flow, in which three kinds of operations, kill , define, and use, are
used to describe the states of attributes, objects, and classes for each of the hierarchical
layers.  As in traditional data flow analysis, an object flow and a class flow are derived from
the state change of the variables when a number of messages are executed.  The extended
inter-procedural data flow analysis and HDFA focus on the state change of program execution,
rather than on class relationships.

Kung in [3] proposed an object relation diagram (ORD) to represent the relationships
between classes with inheritance, association, and aggregation for change impact analysis
during regression testing.  An example of ORD is shown in Fig. 1.  The drawback of ORD is
that it is too coarse-grained for exploring implicit propagation among classes via class
relationships.

3. A FLOW MODEL FOR CLASS RELATIONSHIPS

This section presents a class relationship flow model that consists of inheritance,
association, and aggregation flows used to express the implicit information propagated among
classes via inheritance, association, and aggregation relationships.

3.1 Inheritance Flow

Classes in an OO program can be structured as a hierarchy via inheritance relationships.
In a class hierarchy, a class can either use the members inherited from its superclasses
without explicit declaration, or it can redefine them.  Both the signature and body of an
inherited member can be propagated via inheritance, and they are called signature-inherit-
ance and body-inheritance, respectively.

In [9], an inheritance flow model was proposed to describe the members of inherit-
ance in a class hierarchy.  In this model, each member is associated with a pair of operations
which stand for its signature and body defined or used in a class.  For signature/body-
inheritance, the operations on a member are defined as follows.
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Definition 3.1: In inheritance flow, an operation on the signature of a member for a class
or interface is either a signature-inheritance define (Dsi) or signature-inheritance use (Usi).

1. A Dsi on a member means that the signature of the member is declared in the class or
interface originally.

2. A Usi on a member means that the body of the member is implemented in the class, and
that the member signature is inherited from a superclass.

A member with a Dsi indicates that the member signature is not inherited from a superclass.
An operation on a member is a Usi when the class overrides the member body inherited
from a superclass.

Definition 3.2: In inheritance flow, an operation on the body of a member for a class is
either a body-inheritance define (Dbi), body-inheritance use (Ubi), or null (Nbi).

1. A Dbi on a member means that the body of the member is newly defined or redefined in
the class.

2. A Ubi on a member means that the body of the member exists but is not specified in the
definition of the class.

3. An Nbi on a member means that neither Dbi nor Ubi on the body of the member, i.e., the
body does not exist.

A Dbi on a member indicates that the member body is implemented or re-implemented,
while a Ubi means that the member body is inherited from a superclass, no matter whether
or not it is used in a class.  An Nbi on a member means that the member is abstract.

To simplify discussion as in [9], we can define a flow graph, called a class relation-
ship graph (CRG) so as to represent inheritance, association, and aggregation relationships
for our flow model.  The CRG is extended from the PSG with vertex tags.  A class relation-
ship flow graph for a program can, thus, be defined as follows.

Definition 3.3: A Class Relationship Graph (CRG) of an OO program P is defined as GCRG

(P) = (V, E, T), where:

1. (V, E) is GPSG(P).
2. T = {<tsi, tbi> | tsi Œ {Dsi, Usi, e} and tbi Œ {Dbi, Ubi, Nbi, e}} is a set of vertex tags.  T(X) =

<X.tsi, X.tbi> is a pair of vertex tags associated with vertex X, where X.tsi and X.tbi repre-
sent the operations of signature-inheritance and body-inheritance on X, respectively.

In a class, a member associated with <Usi, Ubi> or <Usi, Nbi> implies that it is inherited
from a superclass or superinterface.  Since the member is not defined for the class, there is
no vertex with vertex tag <Usi, Ubi> or <Usi, Nbi> in CRG.  Therefore, T(X) in CRG is either
<Dsi, Dbi>, <Dsi, Nbi>, or <Usi, Dbi>.  Note that if an OO language provides public, protected,
and public inheritances, then the CRG needs different inheritance edges to represent them.
Here, our target language, Java, allows public inheritance only; the other two inheritances
and related work are not discussed.
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An example of a CRG is shown in Fig. 5.  The CRG is constructed from Program I.
The pairs of vertex tags denoting the flow operations are attached to the bottom of each
method and attribute vertice.  The vertex tags for the vertices without corresponding inher-
itance flow operations are not shown in the figure.

For example, method funC() in interface FunPack shown in Fig. 3 is associated with
<Dsi, Nbi>, since it is abstract.  For attribute attrib in C0, its associated operation is <Dsi, Dbi>
because its signature and body have been defined.  In class C1, method funC()’s body is
defined, but the signature is inherited from FunPack.  Therefore, funC() in C1 is associated
with <Usi, Dbi>.  Class C2 possesses attrib and funC() inherited from its superclasses implicitly.
These two members are available in C2; the operations on them are <Usi, Ubi>, and they do
not appear in the program context of C2.

An inheritance flow path from one class to another in CRG can be specified as in the
following definition.

Definition 3.4: Let q1 and q2 be two class or interface vertices in a CRG.  A flow path from
vertex q1 to vertex q2 is an inheritance flow path, denoted as q q

IHF1 2 → , iff one of the
following holds:

1. q1 Æ q2 Œ Eext » Eimp; or
2. $a, a Œ Vc » Vi, such that q1 Æ a Œ Eext » Eimp and α IHF

q → 2 .

For  example,  an inher i tance f low path f rom c lass C0 to  c lass C2 is
“ C C C

Eext Eext
0 1 2 →  → ”, shown as the bold, grey arrow in Fig. 5.

Fig. 5. The CRG of Program I.

A pair of vertex tags for inheritance
flow operations
Inheriteance flow path 

Association flow path

Aggregation flow path
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3.2 Association Flow

An association relationship between two classes denotes that the execution of a method
in an instance of one class might send a message to an instance of the other class to invoke
the corresponding method.  For a class, its method body includes the messages sent to its
parameters (if they exist), class attributes, and global objects.  These messages, whose
receivers could be the instances of other classes, thus increase the number of method
executions.  Again, the executions will incur message passing.  That is, a method might be
invoked by a number of methods for execution along a sequence of association relation-
ships of classes.  The method invocation sequences along with association relationships
constitute the association flow.  A sequence of association relationships is called an asso-
ciation flow path.

Along an association flow path, a set of members might be invoked (or accessed) by
a message.  This can be described by the flow operations defined below.

Definition 3.5: In association flow, the operation on a member for a class is an association
define (Das) or association use (Uas).

1. A Das on a member means that the class owns the member.
2. A Uas on a member means that the class contains a message that might access or invoke

the member.

According to this definition, a Das on a member implies that the class explicitly defines the
member or inherits it from the other class.  A Uas on a member implies that the member
might be invoked by some message within the class.

For example, in Fig. 5, the method setup() and attribute objS in class C2 are both
associated with Das since they are defined in the class.  Similarly, the methods setS() and
stateS in class S0 are associated with Das.  There is a message in setup() to invoke setS(), and
setS() contains a message to access stateS.  Therefore, the operations on setS() and stateS
are Uas.

Fig. 6. An association flow path.

In CRG, an association flow path from one class to another can be defined as follows.
The definition is recursive.  The necessary base condition of q q

ASF1 2 →  means that member
d of class q1 might be accessed by the method c of class q2.  δ χ

Em
 →  means that d might

be invoked or accessed by some message within c.  The base condition is illustrated in Fig.
6.
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Definition 3.6: Let q1 and q2 be two class vertices in a CRG.  A flow path from vertex q1 to
vertex q2 is an association flow path, denoted as q q

ASF1 2 → , iff one of the following
holds:

1. $ d, d Œ Vm » Va, and $ c, c Œ Vm, such that δ Epub Epro Epri
q∪ ∪ → ∧1 δ χ

Em
 → ∧

χ
Epuh Epro Epri

q∪ ∪ → 2 ; or
2. $ a, a Œ Vc, $ d¢, d¢ Œ Vm » Va, and $ c¢, c¢ Œ Vm, such that ′  → ∧∪ ∪δ

Epub Epro Epri
q1

′  → ′ ∧δ χ
Em  ′  →∪ ∪χ α

Epub Epro Epri , and α ASF
q → 2 .

In Fig. 5, an association flow path, S C
ASF

 → 2, is shown by the dashed bold arrow
because “setS()

Epub
S → ”; i.e., class S owns method setS(), and “setS()Em

 → setup()
Epub

 → C2”.

3.3 Aggregation Flow

An aggregation relationship between two classes means that an instance of one class
is encapsulated as an attribute in the other class.  A class that has an aggregation relationship
with another class can be encapsulated in the latter class.  With a sequence of aggregation
relationships, one class’s members concealed within another class under multiple layers of
encapsulation might be still accessible in the latter class.  The accessible members along
with aggregation relationships are called an aggregation flow.  A sequence of aggregation
relationships is called an aggregation flow path.

In an aggregation flow path, a class’s instance can be encapsulated as an attribute
within another class along the sequence of aggregation relationships.  The operations in
aggregation flow are stated in Definition 3.7.

Definition 3.7: In an aggregation flow, the operation on a member in a class is either an
aggregation define (Dag) or aggregation use (Uag).

1. A Dag on a member means that the class owns the member.
2. A Uag on a member means that the member can be directly accessed within the class.

According to the definition, in a class, a Dag on a member implies that the class explicitly
defines the member or inherits it from another class.  A Uag on a member implies that the
member can be accessed in the class.  For example, class Rec in Program I encapsulates

Fig. 7. An aggregation flow path.
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array as a public attribute.  The operation on the attribute in Rec is Dag.  The object nameList,
an instance of Rec, is encapsulated as an attribute in class C1.  Hence, Rec’s attribute array
is accessible in C1, and the operation on array in C1 is a Uag.

In CRG, an aggregation flow path from one class to another can be described as
follows.  The necessary condition to form an aggregation flow path between two classes is
that one class encapsulates an instance of the other as an attribute directly or indirectly.  The
first condition of Definition 3.8 is shown in Fig. 7.

Definition 3.8: Let q1 and q2 be two class vertices in a CRG.  A flow path from vertex q1 to
vertex q2 is an aggregation flow path, denoted as q q

AGF1 2 → , iff one of the following
holds:

1. $ d, d Œ Va, such that q q
E Epub Epro Epril1 2 → ∧  →∪ ∪δ δ ; or

2. $ a, a Œ Vc, and $ d¢, d¢ Œ Va, such that q E Epub Epro Epril1  → ′ ∧ ′  →∪ ∪δ δ α , and
α

AGF
q → 2 .

For example, an aggregation path from class Rec to class C1 in Program I is shown as the
dotted bold arrow via “Re c

El
 → nameList

Epub
C → 1”, in Fig. 5.  Note that an interface

in Java can be regarded as a special abstract class because it contains method signatures and
constants only.  Therefore, an interface is contained in an inheritance flow only, not in
association and aggregation flows.

4. FLOW ANALYSIS OF CLASS RELATIONSHIPS

With the class relationship flow model, we can analyze the flow among classes via
inheritance, association, and aggregation relationships.  The analysis can be performed through
the CRG of a program.

4.1 Define-Use Relation

Traditional data flow provides the relations of define and use operations on variables
in control flow for various applications.  A define-use relation indicates that the state of a
variable is changed and referenced along an execution path; this is the essential information
for program parallelization, optimization, and testing [22, 23].  The flow operations in our
model may form the define-use relation as in traditional data flow.  Along a flow path from
one class to another, a define operation on a member in the former class and a use operation
on one in the latter class can be deemed as a define-use relation, called a define-use pair.  A
define-use pair formed by two flow operations is shown in Definition 4.1.

Definition 4.1: Let Dx be a define operation, and let Ux be a use operation, where the
subscript x is ‘si,’ ‘ bi,’ ‘ as,’ or ‘ag’, corresponding to signature-inheritance, body-inheritance,
association, or aggregation flows.  Let Q1 and Q2 be two classes, and let M be a member.
Two flow operations on M, one in Q1 and the other in Q2, form a define-use pair if

1. the operation on M in Q1 is a Dx;
2. the operation on M in Q2 is a Ux; and
3. there exists a flow path from Q1 to Q2, along which there is no Dx on M.
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In an inheritance flow, there are two kinds of define-use pairs, a signature define-use (DUsi)
pair and a body define-use (DUbi) pair, according to the operations of signature-inheritance
and body-inheritance.  A define-use pair formed by the operations of an association flow is
called an association define-use (DUas) pair while that formed by the operations of an ag-
gregation flow is called an aggregation define-use (DUag) pair. The corresponding charac-
teristics of these define-use pairs in CRG can be deduced as shown in the following corol-
laries .

Corollary 4.1: Let q1 and q2 be two classes, and let m be a member.  (m, q1, q2) is a DUsi pair
if the following are true:
1. x.tsi = Dsi and m Æ q1 Œ Epub » Epro;
2. $ m¢, m¢ Œ Vm » Va, such that ′  → ∧ ′ =∪ ∪m q m t U

Epub Epro Epri si si2 . , and the signatures of
m¢ and m are identical; and

3. q q
IHF1 2 →  and � " a, a Œ Vc and q q

IHF IHF1 2 → ∧  →α α , there is no vertex m≤, m≤ Œ
Vm » Va, such that ′′  → ∧ ′′ =∪ ∪m m t D

Epub Epro Epri si siα .  and m≤’s signature and m’s are
indistinguishable.

Fig. 8. A signature define-use pair.

Corollary 4.1 indicates that there are three conditions in a CRG for a signature define-use
pair of member m in the class q1 and class q2.  The first condition is that a Dsi exists on the
member m in the class q1, and that m can be inherited by q1’s subclasses.  The second is that
a Usi exists on m¢ in q2.  Since the signatures of m¢ and m are identical; i.e., the operation on
method m is a Usi, the result is that m’s signature in class q1 is not redefined before being
inherited by class q2 along an inheritance flow path.  If m≤ exists, the signature of m in q1 is
overridden by m≤’s signature.  Fig. 8 illustrates the above description.

The conditions for a DUbi pair in a CRG are given in Corollary 4.2.  The first condi-
tion is that a Dbi exists on member m in class q1, and that m can be inherited by q1’s subclasses.
The second is that a Ubi exists on member m in class q2.  That is, class q2 may own member
m without any explicit declaration.  The final result is that m’s body in class q1 is not
redefined before being inherited by class q2 along an inheritance flow path.  If m≤ exists,
then the body of m inherited by class q2 is not the one specified in class q1.  The corollary is
depicted by Fig. 9.
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Fig. 9. A body define-use pair.

Corollary 4.2: Let q1 and q2 be two classes, and let m be a member. (m, q1, q2) is a DUbi pair
if the following are true:
1. x.tbi = Dbi and m Æ q1 Œ Epub » Epro;
2. there is no vertex m¢, m¢ Œ Vm » Va, such that ′  → ∧ ′ =∪ ∪m q m t D

Epub Epro Epri bi bi2 . , and
m¢’s signature and m’s are identical or indistinguishable; and

3. q q
IHF1 2 →  and " a, a Œ Vc and q IHF1  → ∧α α

IHF
q → 2 , there is no vertex m≤, m≤ Œ

Vm » Va, such that ′′  → ∧ ′′ =∪ ∪m m t D
Epub Epro Epri bi biα . , and m≤’s signature and m’s are

identical or indistinguishable.

In the CRG of Program I (see Fig. 5), (funC(), FunPack, C1) is a DUsi pair, and
(stateC, C0, C1) is a DUbi pair. Note that a member associated with Usi or Ubi in a class does
not mean that it is invoked (or accessed) in the class.  Therefore, the define-use pairs can be
used to compute whether a class possesses the signatures and bodies of inherited members
from superclasses.

For an association flow, a define-use pair can be regarded as the invocation relation
between a sender and a receiver of a message.  The define-use pairs include direct and
indirect method invocations or attribute accesses.  Since an association flow does not in-
volved interfaces, these define-use pairs exist between classes.  For a member, only one
occurrence of a Das exists along an association flow path.

Corollary 4.3: Let q1 and q2 be two classes, and let m be a member. (m, q1, q2) is a DUas pair
if the followings are true:
1. m.tbi = Dbi and m Æ q1 Œ Epub » Epro » Epri;
2. $ d, d Œ Vm, such that m q

Em Epub Epro Epri
 → ∧  →∪ ∪δ δ 2 ; and

3. q q
ASF1 2 → .

Corollary 4.3 shows the conditions for an association define-use pair. The first con-
dition is that the class q1 may own member m, namely, a Das on m in q1.  The second is that
class q2 has some method d containing a message to invoke/access method m; i.e., a Uas is
on m in q2.  The final result is that there is an association flow path from class q1 to class q2.
The overriding of method m does not have to be considered in an association flow path.  Fig.
10 depicts a DUas of member m in class q1 and class q2.  In the CRG of Program I, (setS(),
S, C2) is an association define-use pair since setS() defined in S might be invoked by method
setup() in C2.



JIUN-LIANG CHEN AND FENG-JIAN  WANG632

For an aggregation flow, a define-use pair is a special whole-part relation between a
class and its encapsulated members. An aggregation define-use pair implies that a member
of a class encapsulated inside another class is accessible by the latter class. The encapsula-
tion might be across multiple encapsulation layers along an aggregation flow path.

Corollary 4.4: Let q1 and q2 be two classes, and let m be a member.  (m, q1, q2) is a DUag pair
if the following are true:
1. m.tbi = Dbi and m Æ q1 Œ Epub;
2. $ d, d Œ Va, such that; q q

E Epub Epub Epro Epril1 2∪ ∪ ∪ → ∧  →δ δ  and
3. q q

AGF1 2 → .

Corollary 4.4 shows the conditions for an aggregation define-use pair in a CRG.  The
first condition is that class q1 owns member m, i.e., a Dag on m in q1, and member m must be
accessible from outside of class q1; i.e., m is a public member of class q1.  The second is that
class q1’s instance must be encapsulated within some attribute d of class q2.  The third is that
there is an aggregation flow path from class q1 to class q2.  A Dag on m along an aggregation
flow path occurs only once.  It is not necessary to consider whether member m will be
overridden along the flow path.  The define-use pair is illustrated in Fig. 11.  In the CRG of
Program I, a DUag pair, for example, is the attribute array in classes Rec and C1.

Fig. 11. An aggregation define-use pair.

4.2 Hybrid Class Relationships

Association flow with inheritance
The members propagated via an inheritance flow may introduce implicit association

relationships between classes.  In other words, one class can associate with another without
any association flow path between them.  Such an association can be achieved by means of
inherited members or polymorphism.  For example, class B in Fig. 12 owns method mA(E)
from class A. Method mA(E) contains the message shape.draw() that invokes the method
draw(), whose receiver’s class is E.  Class E inherits the method draw() from class D.
Therefore, class B has an association relationship with class E.

Fig. 10. An association define-use pair.
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class A{
    public void mA(E shape){ shape.draw(); }

}
class B extends A
     ...

}
class D{
    public void draw(){ ... }

}
class E extends D
     ...

}

Fig. 12. Program II.

To model an association flow in a class hierarchy, inheritance relationships have to
be taken into consideration.  An association flow path from one class to another in a CRG
is restated by Definition 4.2.  The flow path may include inheritance edges, besides the
membership and member access edges considered in Definition 3.6.

Definition 4.2: Let q1 and q2 be two class vertices in a CRG.  A flow path from vertex q1 to
vertex q2 is an association flow path, denoted as q q

ASF1 2 → , iff one of the following
holds:

1. $ d, d Œ Vm » Va, and $ c, c Œ Vm, such that δ Epub Epro Epri Eext
q∪ ∪ ∪ → ∧1 δ χ

Em
 → ∧

χ
Epub Epro Epri Eext

q∪ ∪ ∪ → 2 ; or
2. $ a, a Œ Vc, $ d¢, d¢ Œ Vm » Va, and $ c¢, c¢ Œ Vm, such that ′  →∪ ∪ ∪δ

Epub Epro Epri Eext
q1 ,

′  → ′ ∧ ′  →∪ ∪ ∪δ χ χ α
Em Epub Epro Epri Eext , and α ASF

q → 2 .

This definition is extended from Definition 3.6.  The base condition involves the associa-
tion relationships incurred by inherited members as Fig. 13 shows.  Thus, the association
relationship of classes B and E mentioned above can be modeled as an association flow path
from E and B, E B

ASF
 → .  The flow path shown as the dashed bold arrow in Fig. 14 is

formed by “draw() 
Epub Eext

D E →  → ” and “draw() Em
 → mA(E) Epub Eext

A B →  → ”.

Fig. 13. Ann association flow path with inheritance
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A Das on a member in a class means that the class owns the member.  The member
can be defined by the class or inherited from the class’s superclass.  A Das in a CRG can be
stated as follows.

Corollary 4.5: Let q be a class and m be a member.  The association flow operation on m is
a Das in q iff one of the following conditions holds:

1. m.tbi = Dbi and m Æ q Œ Epub » Epro » Epri; or
2. $ a, a Œ Vc, such that (m, a, q) is a DUbi pair.

In Corollary 4.5, the first condition implies that member m is specified within class q while
the second imp;ies that there exists one superclass a of q defining m inherited by class q.
For example, the association flow operation on draw() in class E (see Program II) is a Das

because (draw(), D, E) is a DUbi pair.
A Uas on a member in a class is caused by the method that sends a message to access

the member within the class.  The method can be defined within the class or inherited from
other class.  Such a Uas in a CRG can be found as follows.

Corollary 4.6: Let q be a class and m be a member.  The association flow operation on m is
a Uas in q iff one of the following conditions holds:

1. $ d, d Œ Vm, such that m q
Em Epub Epro Epri

 → ∧  →∪ ∪δ δ ; or

2. $ a, a Œ Vc, and $c, c Œ Vm, such that m Em
 → χ , and (c, a, q) is a DUbi pair.

The corollary above shows the conditions for a Uas on a member.  The first condition im-
plies that a method d in class q contains a message to invoke m.  The second one implies
that there exists a class a, from which class q inherits a method c containing a message to
invoke m.  For example, a Uas is on draw() in class B (see Program II), since draw()Em

 → mA
(E) and (mA(E), A, B) is a DUbi pair.

Aggregation flow with inheritance
An inheritance flow may also introduce an implicit aggregation flow such that one

class may aggregate another without any aggregation flow path to the latter.  For example,
the public attribute array in class Rec (see Program I) is accessible in class C1 because
Rec’s instance is encapsulated as nameList in C1.  Class C2 inherits nameList from C1 and

Fig. 14. An association flow path from E to B.
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is allowed to access array defined in Rec. C2 is aggregated in class F (see Program III in Fig.
15), so the public members in C2 might also be accessible in F.  Therefore, F may aggregate
Rec via aggregation and inheritance relationships.

class F
    public C2 objC2 = new C2();
          // class C2 is defined in Program I
          ...

}

Due to inheritance relationships, the flow path between classes for aggregation flow
has to be redefined as follows.

Definition 4.3: Let q1 and q2 be two class vertices in a CRG.  A flow path from vertex q1 to
vertex q2 is an aggregation flow path, denoted as q q

AGF1 2 → , iff one of the following
holds:

1. $ d, d Œ Vm » Va, such that q q
E Eext Epub Epro Epri Eextl1 2∪ ∪ ∪ ∪ → ∧  →δ δ ; or

2. $ a, a Œ Vc, and $ d¢, d¢ Œ Vm » Va, such that α δ δ
E Eext Epub Epro Epri Eextl

q∪ ∪ ∪ ∪ → ′ ∧ ′  → 2 ,
and α AGF

q → 2 .

This definition is recursive, and the base condition involves the aggregated classes
via inheritance edges besides membership and declaration edges in Definition 3.8.  Such a
case is shown in Fig. 16.  For example, the aggregation of classes F and Rec in Program III
can be an association flow path from Rec and F.  The flow path, Re c

AGF
F → , is formed

by “Re c
El

 → nameList Epub Eext
C C →  →1 2” and “C objC F

E Epubl
2 2 →  → ”.  The

dotted bold arrow in Fig. 17 shows the flow path.

Fig. 16. An aggregation flow path with inheritance.

Fig. 17. An aggregation flow path from Rec to F.

Fig. 15. Program III.
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According to Definitions 3.5 and 3.7, the meaning of Das is the same as that of Dag.
Therefore, the necessary conditions in Corollary 4.5 can be applied to a Dag on a member in
a class. The necessary conditions for Uag with an inheritance flow in a CRG is shown in
Corollary 4.7.

Corollary 4.7: Let q be a class and m be a member.  The aggregation flow operation on m
is a Uag in q iff one of the following conditions holds:

1. $ d, d Œ Va, such that m q
E Epub Epub Epro Epril ∪ ∪ ∪ → ∧  →δ δ ; or

2. $ a, a Œ Vc, and $c, c Œ Va, such that m q
E Epub Epub Epro Epril ∪ ∪ ∪ → ∧  →χ χ  and (c, a,

q) is a DUbi pair.

This corollary shows the necessary conditions for a Uag on a member.  The first condition is
that there is an attribute d of class q, whose class encapsulates m as a public member.  That
is, m is accessible within class q.  The second one is that there exists a class a, from which
class q inherits an attribute c whose class as a public member.  For example, a Uag is an array
in class F (see Program III), because (draw(), D, E) is a DUbi pair.

4.3 Flow Information

For a class, the information propagated via class relationships can be divided into
input, generated, and output flows.  The input flow of a class that includes the members is
from the prior classes in the flow paths.  The generated flow of a class is referred to as the
newly defined or redefined members in the class.  The output flow of a class subsumes the
input and generated flows that can be propagated to the immediate post classes in the flow
paths.  In a CRG, we can define the flow information of a class with respect to inheritance,
association, and aggregation flows as follows.

The signature-inheritance flow information of a class is stated in Definition 4.4.  The
input flow includes the member signatures defined in superclasses or superinterfaces that
are inherited by the class.  The generated flow denotes the newly defined or redefined
signatures in the class.  The output flow involves the signatures, including those from
superclasses, of the class that can be inherited by subclasses.

Definition 4.4: In an inheritance flow, the input, generated, and output signature-inherit-
ance flows of a class q are defined as SIFin(q), SIFgen(q), and SIFout(q), where

SIFin(q) = {(m, a) | (m, a, q) is a DUsi pair};
SIFgen(q) = {(m, q) | m Œ Vm » Va, m.tsi = Dsi, and m Æ q Œ Epub » Epro » Epro}; and
SIFout(q) = SIFin(q) » SIFgen(q) - {(m, q) | (m, q) Œ SIFgen(q) and m Æ q Œ Epri}.

For class C2 in Program I, SIFin(C2) = {(funC(), FunPack), (stateC, C0), (nameList, C1)},
and SIFgen(C2) = {(objS, C2), (setup(), C2)}.  Then, SIFout(C2) = {(funC(), FunPack), (stateC,
C0), (nameList, C1), (setup(), C2)}.

The definition of the input, generated, and output flows for body-inheritance in Defi-
nition 4.5 is the similar to that for signature-inheritance.  Only their corresponding flow
operations and define-use pairs are different. This definition is shown as follows.
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Definition 4.5: In an inheritance flow, the input, generated, and output body-inheritance
flows of a class q are defined as BIFin(q), BIFgen(q), and BIFout(q), where

BIFin(q) = {(m, a) | (m, a, q) is a DUbi pair};
BIFgen(q) = {(m, q) | m Œ Vm » Va, m.tbi = Dbi, and m Æ q Œ Epub » Epro » Epri}; and
BIFout(q) = BIFin(q) » BIFgen(q) - {(m, q) | (m, q) Œ BIFgen(q) and m Æ q Œ Epri}.

In Program I, the body-inheritance flows of C2 are BIFin(C2) = {(funC(), C1), (stateC, C0),
(nameList, C1)}, BIFgen(C2) = {(objS, C2), (setup(), C2)}, and BIFout(C2) = {(funC(), C1),
(stateC, C0), (nameList, C1), (setup(), C2)}.

The association flow of a class can be defined as in Definition 4.6.  The input flow of
class q, ASFin(q), is a set of member-class pairs, (m, a).  Each of the pairs denotes that
member m in class a will be invoked directly or indirectly by a message within q.  The
generated flow of class q includes not only the members specified in q, but also those
inherited from q’s superclasses.  That is, there is a Das on each of these members in q.  The
output flow involves the member-class pairs (m, a), where member m of class a can be
invoked (or accessed) directly or indirectly by some message from the outside (scope) of q.
These pairs are a subset of the union of ASFgen(q) and ASFin(q).

Definition 4.6: In an association flow, the input, generated, and output flows of a class q
are defined as ASFin(q), ASFgen(q), and ASFout(q), where

ASFin(q) = {(m, a) | (m, a, q) is a DUas pair};
ASFgen(q) = {(m, q) | m Œ Vm » Va, and either (i) m.tbi = Dbi and m Æ q Œ Epub » Epro »
Epri, or (ii) $ a, a Œ Vc, such that (m, a, q) is a DUbi pair}; and
ASFout(q) = {(m, a) | (m, a) Œ ASFgen(q) » ASFin(q), and either (i) m q

Epub Epro Eext∪ ∪ →
or (ii) $ d, d Œ V qm Epub Epro Eext

∧  →∪ ∪δ , such that m Em
 → δ }.

For example, the association flows of class C2 in Program I are ASFin(C2) = {(setS(), S),
(stateS, S)}, ASFgen(C2) = {(objS, C2), (setup(), C2), (stateC, C0), (funC(), C1), (nameList,
C1)}, and ASFout(C2) = {(setS(), S), (stateS, S), (objS, C2), (setup(), C2), (stateC, C0),
(funC(), C1), (nameList, C1)}.

In an aggregation flow, the flow information of a class can be defined as in Definition
4.5.  The input flow of class q includes the members that are encapsulated in other classes
and are accessible in q.  The generated flow of class q includes the members specified in q
and those inherited from q’s superclasses.  The aggregation flow operation on each of these
members in q is a Dag.  The output flow of class q involves the members in the input and
generated flows that are accessible outside of q.

Definition 4.7: In an aggregation flow, the input, generated, and output flows of a class q
can be defined as AGFin(q), AGFgen(q), and AGFout(q), where

AGFin(q) = {(m, a) | (m, a, q) is a DUag pair},
AGFgen(q) = {(m, q) | m Œ Vm » Va, and either (i) m.tbi = Dbi and m Æ q Œ Epub » Epro »
Epri, or (ii) $ a, a Œ Vc, such that (m, a, q) is a DUbi pair}; and
AGFout(q) = {(m, a) | (m, a) Œ ASFgen(q) » ASFin(q), and either (i) m q

Epub Eext∪ →
or (ii) $ d, d Œ V qa Epub Eext

∧  →∪δ , such that m Epub El Eext∪ ∪ → δ }.
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For example, the aggregation flows of class C2 in Program I are AGFin(C2) = {(array, Rec),
(stateC, C0), (nameLlist, C1), (funC(), C1)}, AGFgen(C2) = {(objC2, C2), (setup(), C2)},
and AGFout(C2) = {(array, Rec), (stateC, C0), (nameLlist, C1), (funC(), C1), (setup(), C2)}.
Note that access of attribute objC2 from outside of C2 is not allowed, so (objC2, C2) is not
included in AGFout(C2).

4.4 Flow Computation

Since an OO program can be represented as a CRG, computing the flow information
of the program can be performed on the CRG. For a given class, the steps in computing its
flow information can be derived from the definitions given in subsection 4.3.

In an inheritance flow, Algorithm 4.1 shows how to compute the input signature-
inheritance flow for a given class c, i.e., SIFin(c).  The algorithm performs a breadth-first
traversal from c backward along the edges of Eext and Eimp, i.e., ascending to c’s superclasses
or superinterfaces.  The traversal is controlled by a queue work_list, in which a vertex can
be stored and popped with first-in-first-out order using the enqueue and dequeue methods.
The traversal finds the member signatures and classes (or interfaces) that form DUsi pairs
with class c.  Because an inheritance flow path in a CRG never forms a cycle, the algorithm
stops after all the superclasses of c have been examined.  The output, SIF_IN, is SIFin(c).

Algorithm 4.1 Computing_SIF_IN(c, GCRG)
Input:  (c, GCRG), c Œ Vc » Vi and GCRG is a CRG
Output:  SIF_IN    /* Input signature-inheritance flow of c */
Begin
SIF_IN := f;
work_list.enqueue (c);                /* Initialize the value of work_list to be ‘c’ */
while work_list is not empty do

v := work_list.dequeue ();  /* Pop a class or interface vertex v from work_list */
for  each s, s Œ Vc » Vi Ÿ s Æ v Œ Eext » Eimp, do
      for  each m, m Œ Vm » Va Ÿ m.tsi = Dsi Ÿ m Æ s Œ Epub » Epro, do

if  (there is no (x, q), (x, q) Œ SIF_IN, such that the signatures of x and m
are indistinguishable)

 then
     SIF_IN := SIF_IN » {(m, s)};  /* Signature DU pair (m, s, c) */

         endif
     endfor
     work_list.enqueue(s);   /* Store c’s superclass s in work_list */
endfor

    endwhile
    output SIF_IN  /* SIFin(c) */

End.

In Algorithm 4.1, each vertex is visited at most once, and the visited method and
attribute vertices are compared with the elements in SIF_IN.  Let |V| denote the number of
vertices in a CRG.  The time complexity of the algorithm is O(|V|2) for the worst case.
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The algorithm used to compute the input flow information for the body-inheritance
of a class is similar to that for signature-inheritance.  The difference is that the bodies of
inherited members are from superclasses only.  That is, it is not necessary to visit interface
vertices.  Algorithm 4.2 shows the computation of the input body-inheritance flow of a
class. The time complexity of this algorithm for the worst case is also O(|V|2).

Algorithm 4.2 Computing_BIF_IN(c, GCRG)
Input:  (c, GCRG), c Œ Vc and GCRG is a CRG
Output:  BIF_IN    /* Input signature-inheritance flow of c */
Begin
BIF_IN := f;

  work_list.enqueue (c);                /* Initialize the value of work_list to be ‘c’ */
  while work_list is not empty do

v := work_list.dequeue ();  /* Pop a class or interface vertex v from work_list
*/

for  each s, s Œ Vc Ÿ s Æ v Œ Eext do
      for  each m, m Œ Vm » Va Ÿ m.tsi = Dsi Ÿ m Æ s Œ Epub » Epro, do

if  (there is no (x, q), (x, q) Œ BIF_IN, such that the signatures of x and
m are indistinguishable)

 then
     BIF_IN := BIF_IN » {(m, s)};  /* Signature DU pair (m, s, c) */

         endif
     endfor
     work_list.enqueue(s);   /* Store c’s superclass s in work_list */
endfor

    endwhile
    output BIF_IN  /* BIFin(c) */

End.

The computations between the generated flows for signature-inheritance and body-
inheritance are similar.  Algorithm 4.3 shows how the generated body-inheritance flow is
computed for a given class c, i.e., BIFgen(c).  The computation is done vertex by vertex,
where the vertex whose tbi tag is Dbi and which has an Epub, Epro, or Epri edge to c is included
in BIF_GEN.  The complexity of this algorithm is O(|V|) for the worst case.

Algorithm 4.3 Computing_BIF_GEN(c, GCRG)
Input:  (c, GCRG), c Œ Vc and GCRG is a CRG
Output:  BIF_GEN
Begin
   BIF_GEN := f;
   for  each m, m Œ Vm » Va Ÿ m.tsi = Dsi Ÿ m Æ c Œ Epub » Epro » Epri, do

BIF_GEN := BIF_GEN » {(m, c)};
   endfor
   output BIF_GEN  /* BIFgen(c) */

End.
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According to Definitions 4.4 and 4.5, the output flows for signature-inheritance and
body-inheritance of a class c, SIFout(c) and BIFout(c), can be obtained from c’s input flow
and generated flow. These output flows can be computed by excluding the private members
from the union of the input and generated flows corresponding to signature/body-inheritance.

The input flows of association and aggregation for a class c, ASFin(c) and AGFin(c),
can be computed by backward traversing the corresponding flow paths from c in a CRG.
The traversal finds the members and classes that form DUas/DUag pairs with c.  As ex-
plained in Subsection 4.2, some association and aggregation flows may be introduced by
inherited members of a class.  To get such association and aggregation flows, we can apply
Algorithm 4.2 (by invoking Computing_BIH_IN()) to find the inherited members of a class.
The detailed steps in computing the input association and aggregation flows of a class are
shown in Algorithms 4.4 and 4.5, respectively.  In these algorithms, the statement
Computing_BIH_GEN() is used to invoke Algorithm 4.3 to get the members specified within
a class.

Algorithm 4.4 Computing_ASF_IN(c, GCRG)
Input:  (c, GCRG), c Œ Vc and GCRG is a CRG
Output:  ASF_IN
Begin
ASF_IN := f;
BIH_IN := Computing_BIH_IN(c, GCRG);    /* call Computing_BIH_IN(c, GCRG) */
BIH_GEN := Computing_BIH_GEN(c, GCRG); /* call Computing_BIH_GEN(c, GCRG) */
use_set := {m | $ q, q Œ Vc, such that (m, q) Œ BIH_IN » BIH_GEN};
for  each v, v c

ASF
 → , do

   BIH_IN := Computing_BIH_IN(v, GCRG);    /* call Computing_BIH_IN(v, GCRG) */
   BIH_GEN := Computing_BIH_GEN(v, GCRG); /* call Computing_BIH_GEN(v, GCRG) */
   def_set := BIH_IN » BIH_GEN;
   for  each (x, s), (x, s) Œ def_set do

if  ($ m, m Œ use_set, and x m
Em

 → ) then
    ASF_IN := ASF_IN » {(x, s)};
endif

    endfor
endfor
output ASF_IN  /* ASFin(c) */

End.

In Algorithm 4.4, the worst case is that all incoming Em edges of each vertex have to
be traversed once when Computing_BIH_IN() is not considered.  Let |E| denote the number
of vertices in a CRG.  The complexity for the worst case is O(|V| ¥ |E|).  In Algorithm 4.5,
each vertex is visited at most once in computing the input aggregation flow of a class,
excluding the invocation of Computing_BIH_IN().  Hence, the complexity of the algorithm
for the worst case without considering inheritance is O(|V|).

Algorithm 4.5 Computing_AGF_IN(c, GCRG)
Input:  (c, GCRG), c Œ Vc and GCRG is a CRG
Output:  ASF_IN
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Begin
ASF_IN := f;
BIH_IN := Computing_BIH_IN(c, GCRG);    /* call Computing_BIH_IN(c, GCRG) */
BIH_GEN := Computing_BIH_GEN(c, GCRG); /* call Computing_BIH_GEN(c, GCRG) */
work_set := {q | $ (a, z), (a, z) Œ BIH_IN » BIH_GEN, such that q Æ a Œ El};
done_set := f;    /*  a set of checked classes */
while work_set π f do
   select a vertex v from work_set;
   work_set := work_set - {v};
   done_set := done_set » {v};
   BIH_IN := Computing_BIH_IN(v, GCRG);    /* call Computing_BIH_IN(v, GCRG) */
   BIH_GEN := Computing_BIH_GEN(v, GCRG); /* call Computing_BIH_GEN(v, GCRG) */
  def_set := BIH_IN » BIH_GEN;
   for  each (x, s) in def_set do

if  (x Æ s Œ Epub) then
      AGF_IN := AGF_IN ( {(x, s)};
endif
if (x Œ Va) then
       work_set := work_set » { r | r Æ x Œ El and r œ done_set };
endif

   endfor
endwhile
output AGF_IN  /* AGFin(c) */

End.

The generated association and aggregation flows for a class are similar since their
definitions are identical (see Definitions 4.6 and 4.7).  Hence, computing the two generated
flows is done to get all the members, including those specified in the class and those inher-
ited from superclasses.  From the input and generated flows for association and aggregation
of a class c, we can obtain the corresponding output flows of c, ASFout(c) and AGFout(c), in
accordance with Definitions 4.6 and 4.7.

These algorithms show that the analysis of class relationships can be reduced to the
graph reachability problem.  They are not optimal but are used to show how our flow infor-
mation in an OO program can be computed.

5. APPLICATIONS

The flow model can provide the flow analysis of class relationships for program
understanding, anomaly detection, and program testing.

5.1 Program Understanding

When reusing a class, a programmer often needs to understand not only the class, but
also its relations with another class [24].  Thus, it is necessary to navigate in a class library
to find the relations.  Inheritance flow information can help one understand what implicit
members a class owns and a class hierarchy [9].  The input flow of a class in an association
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Fig. 18. Hierarchical view of classes.

Fig. 19. Flow analyzer of class relationships for Java Programs.

flow can help one identify that the members defined in other classes might be invoked or
accessed by the class.  For a complicated composition class, its available members from
other classes can be obtained by computing the input flow via aggregation relationships.

The flow analysis tool of this flow model for program understanding is realized in the
Microsoft Windows“ 95/NT environment.  The display and computation of class relation-
ship flows were developed in C++ [25].  To implement the source code scanner, parser, and
CRG constructor for Java programs, we employ the tools flex and bison (both are shareware
developed by GNUTM).  Fig. 18 shows a hierarchical view of Program I.  A user can select
a class to perform inheritance, association, and aggregation analysis.  The result of analysis
is displayed in the window in the middle of Fig. 19.  The analyzer helps the user understand
class libraries by providing flow analysis of class relationships.
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5.2 Anomaly Detection

An anomaly in a program is often an indication of the existence of a programming
error or an inappropriate design.  The flow operation sequences in this class relationship
flow model can be used to detect anomalies in OO programs, such as method interface
conflicts and unimplemented methods [26].  These anomalies can be detected as in tradi-
tional data flow anomaly detection [27].

A member propagated along a flow path, from class q1, class q2, ... to class qk, can be
regarded as a sequence of flow operations, op1, op2, ..., opk.  A method interface conflict
occurs when a superclass introduces a new method while one of its subclasses has previ-
ously introduced a method with the same name.  The new method is overridden and, therefore,
can not be inherited by subclasses.  In this flow model, we can detect the conflict by finding
a sequence of signature-inheritance flow operations that contains ‘DsiDsi’.  An unimplemented
method occurs when a class inherits an abstract method but does not define the method's
body.  This can be detected from a sequence of body-inheritance flow operations that con-
tains ‘NbiUbi’.  In addition, flow operation sequences of association and aggregation might
help to determine whether the reusing approach, by means of inheritance or composition, is
appropriate for existing components.

5.3 Program Testing

Before doing regression testing, it is very important to identify the potentially af-
fected parts to be re-tested when a program is modified.  The potentially affected parts can
be bound by ripple effect analysis with respect to the modification [3, 18].  In order to
reduce the cost of testing, the re-tested parts should be as small as possible.  The more
precise ripple effect analysis is, the smaller the re-tested parts are.  The approach proposed
in [3] uses class relationships to identify affected classes.  This approach can be deemed as
finding the classes that can be reached from a modified class via flow paths in a CRG.  Our
flow model can improve the precision of their approach by using define-use relations.

class S1{
    public void m1(){};
}

class S2{
    public void m2(){};
     public void n2 (S1 objS1) { objS1.m1()};
}

class S3{
      public void m3(S2 objS2){ objS2.m2()};
}

For example, classes S1, S2, and S3 are defined in Fig. 20, and their CRG is shown in
Fig. 21.  Assume that class S1 is modified, but that the relationships among the three classes
are unchanged.  According to the analysis in [3], the classes that need to be re-tested are S1,
S2, and S3 because there is an association flow path from S1 to S3.  In fact, the modification
in S1 does not affect S3 via S2.  This can be detected by our flow analysis since there is no
DUas and DUag pair between S1 and S3.  Hence, only classes S1 and S2 need to be re-tested.

Fig. 20. Program IV.
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During structural testing (also called white-box testing), a sufficient number of test
cases should be fed to a target program in order to satisfy some degree of a coverage crite-
rion [28].  The criterion is defined on a model that represents a program, e.g., all-execution
paths or all-branches in the control flow model.  Thus, coverage criteria are an important
factors affecting test case generation for structural testing. Many OO program testing
techniques, e.g., [23, 29-32], focus on a single class and lack proper criteria for inter-classes.
In the class relationship flow model, the define-use pairs can indicate inter-class testing
criteria, for example, all-flow-paths, all-define-use-pairs, etc.

6. CONCLUSIONS AND FUTURE WORK

In this paper, the class relationship flow model, consisting of inheritance, association,
and aggregation flows, has been proposed to analyze class libraries.  With respect to these
flows, each member within a class is associated with an operation to represent whether its
status is defined or used.  The concealed dependencies propagated along class relationships
can be represented as a sequence of flow operations along a flow path.  By representing a
program as a class relationship graph, the flow analysis can be reduced to the graph reachability
problem.

The interpretation of OO features can vary with program constructs in different
languages, such as inheritance rules and object representation.  Although Java programs
were used for demonstration purposes in this paper, this flow model can be tailored to fit
specific OO languages with minor modification for the interpretation of OO features.  In
addition, this flow model can give a user the ability to interpret behavior evolution, message
passing, and object encapsulation in programs as sequences of flow operations.  These
operation sequences could be applied in various fields of OO software engineering, such as
program understanding, anomaly detection, complexity measurement, and program testing.

Currently, we are improving the efficiency of the flow computation algorithms for
the whole set of classes in a program.  In the future, we plan to develop testing and mainte-
nance tools based on this model, and plan to embed them within an integrated visual-pro-
gramming environment [33].

Fig. 21. The CRG of Program IV.
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