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For an n-by-n complex matrix A, we consider the numbers of line segments and elliptic arcs
on the boundary @WðAÞ of its numerical range. We show that (a) if n � 4 and A has an
(n� 1)-by-(n� 1) submatrix B with W(B) an elliptic disc, then there can be at most 2n� 2
line segments on @WðAÞ, and (b) if n � 3, then @WðAÞ contains at most (n� 2) arcs of any
ellipse. Moreover, both upper bounds are sharp. For nilpotent matrices, we also obtain
analogous results with sharper bounds.

Keywords: Numerical range; Nilpotent matrix

AMS Subject Classification: 15A60

1. Introduction

For an n-by-n complex matrix A, its numerical range W(A) is, by definition, the subset
fhAx, xi: x 2 C

n, kxk ¼ 1g of the complex plane, where h�, �i and k � k are the standard
inner product and norm in C

n, respectively. It is known that W(A) is always
a convex set. For other properties of the numerical range, the reader is referred to
[5, Chapter 1].

In this article, we are concerned with the numbers of line segments and elliptic arcs on
the boundary of a numerical range. The study of the former has been the topic of some
recent articles [1–3]. The main result in Section 2 below says that if A is an n-by-n
(n � 4) matrix which has an (n� 1)-by-(n� 1) submatrix B with numerical range an
elliptic disc, then @WðAÞ can have at most 2ðn� 2Þ line segments. On the other hand,
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ifW(A) is only assumed to contain an elliptic disc E and @WðAÞ and @E intersect at more
than n points, then @WðAÞ contains at least one and at most (n� 2) arcs of @E. These
results are proved using the classical Riesz–Fejér theorem on nonnegative trigonometric
polynomials via Kippenhahn’s theorem on the duality between the boundary @WðAÞ
and the curve given by the determinantal equation detðxReAþ yImAþ zInÞ ¼ 0,
where ReA ¼ ðAþ A�Þ=2 and ImA ¼ ðA� A�Þ=ð2iÞ are the real and imaginary parts
of A, respectively. All the upper bounds here are shown to be sharp by various exam-
ples.

In Section 3, we restrict ourselves to nilpotent matrices. We prove the nilpotent
analogues of the two above-mentioned results in Section 2, namely, for an n-by-n
nilpotent matrix A, (a) if A has an (n� 1)-by-(n� 1) submatrix B with W(B) a circular
disc centered at the origin, then, for 3 � n � 5 (resp., n � 6), @WðAÞ has at most n� 2
(resp., 2ðn� 4Þ) line segments, and (b) if W(B) contains a circular disc D centered at the
origin and @WðAÞ and @D intersect at more than n� 2 points, then WðAÞ ¼ D
if 2 � n � 4, and @WðAÞ contains at least one and at most n� 4 arcs of @D if n � 5.
Again, all such upper bounds are sharp.

In the following, we use D to denote the open unit disc fz 2 C : jzj < 1g, and Jn the
n-by-n Jordan block

0 1

0 . .
.

. .
.

1

0

266664
377775:

It is known that WðJnÞ ¼ fz 2 C : jzj � cosð�=ðnþ 1ÞÞg (cf. [4, Proposition 1]).

2. Matrices in general

We start by recalling Kippenhahn’s theorem [7, Satz 10], which brings algebraic
geometry techniques to bear on the study of numerical ranges. It says that if A is an
n-by-n matrix, then W(A) equals the convex hull of the real points in the dual of the
curve pAðx, y, zÞ � detðxReAþ yImAþ zInÞ ¼ 0, that is,

WðAÞ ¼ faþ ib 2 C : a, b real, axþ byþ z ¼ 0 tangent to pAðx, y, zÞ ¼ 0g^:

Based on this, we can give an upper bound for the number of line segments on the
boundary of a numerical range. This was also alluded to in [2].

LEMMA 2.1 For an n-by-n matrix A, there can be at most nðn� 1Þ=2 line segments on
@WðAÞ. If pA is irreducible, then there are at most ðn� 1Þðn� 2Þ=2 such line segments.

This is because through duality every line segment on @WðAÞ corresponds to a
singular point of the degree-n curve pA¼ 0, and the number of the latter is at most
nðn� 1Þ=2 (resp., ðn� 1Þðn� 2Þ=2 if pA is irreducible) (cf. [8, p. 59, Example 5]).

Since the numerical range of a 2-by-2 matrix is an elliptic disc, a line segment or a
singleton, the upper bound nðn� 1Þ=2 (¼1) is obviously sharp for n¼ 2. The numerical
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range of a 3-by-3 matrix A has been classified in [7,6]. It can be a triangular region
(or its degenerate form, a line segment or a singleton) if pA has only linear factors,
an elliptic disc with or without a cone added to it if pA has a quadratic irreducible
factor, or the convex hull of a heart-shaped curve with a line segment on its boundary
or an oval disc if pA is irreducible. From this, it can be seen that for n¼ 3 the upper
bound nðn� 1Þ=2 (¼ 3) in Lemma 1.1 is again sharp. The next lemma takes care of
the cases n¼ 4 and 5. For n¼ 4, this was given in [1, Theorem 37].

LEMMA 2.2 If A is a 4-by-4 (resp., 5-by-5) matrix, then there can be at most 4 (resp., 6)
line segments on @WðAÞ. Moreover, ‘‘4’’ and ‘‘6’’ are sharp in their respective cases.

For any matrix A, let l(A) denote the number of line segments on @WðAÞ.

Proof of Lemma 2.2 Consider a 4-by-4 matrix A. If pA is irreducible, then lðAÞ � 3 by
Lemma 2.1; otherwise, lðAÞ � 3 or 4 depending on whether pA is the product of a linear
factor and an irreducible cubic factor or the product of two (possibly reducible)
quadratic factors. That ‘‘4’’ is sharp can be seen by the 4-by-4 diagonal matrix
diagð1, i, �1, �iÞ.

Now let A be a 5-by-5 matrix. If pA is irreducible, then lðAÞ � 6 by Lemma 2.1. For
the reducible pA with a linear factor, it can be easily seen using the result for the 4-by-4
case that lðAÞ � 6. Below we consider the case when pA is the product of two irreducible
factors pA ¼ p1p2 with p1 quadratic and p2 cubic. Let Cj be the dual curve of pj¼ 0,
j ¼ 1, 2. Then C1 is an ellipse and C2 is either a heart-shaped curve or an oval with
an inner part. Since the degrees of p1 and p2 are 2 and 3, respectively, Bézout’s theorem
[8, Theorem 1.3.5] says that the curves p1¼ 0 and p2¼ 0 have at most 6 intersection
points. By duality, C1 and C2 can have at most 6 common tangent lines. If C2 is
a heart-shaped curve, then its convex hull bC2 has a line segment L on its boundary.
In case C1 and C2 are in the same closed half-plane determined by L, then W(A), as
the convex hull of C1 and C2, can have at most 5 line segments on its boundary;
otherwise, @WðAÞ cannot contain L and thus has at most 6 line segments. For the
other case, if C2 has an oval outer part, then obviously lðAÞ � 6. That ‘‘6’’ is attained
is seen by the 5-by-5 matrix

0 2

0 0

� �
� diagð1þ ", ð1þ "Þi, �1� "Þ

with sufficiently small ">0 (cf. [1, Example 38]). g

A classical result due to J. Anderson from the early 1970s says that if A is an n-by-n
matrix withW(A) contained inD and @WðAÞ intersecting @D at more than n points, then
WðAÞ ¼ D. Among its four known proofs, the one in [10, Lemma 6] is based on the
Riesz–Fejér theorem on nonnegative trigonometric polynomials and the fundamental
theorem of algebra in classical analysis. In the following, we will exploit the ideas
there to deduce sharp bounds of l(A) for certain finite matrices A. The next theorem
is one such example. The condition on the submatrix below arises from our past
experience on estimating l(A) for A a companion matrix (cf. [3]).

THEOREM 2.3 If A is an n-by-n ðn � 4Þ matrix which has an (n� 1)-by-(n� 1)
submatrix B with W(B) an elliptic disc, then lðAÞ � 2ðn� 2Þ. Moreover, ‘‘2ðn� 2Þ’’
is sharp.
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For the proof of Theorem 2.3, we need a lemma from [3, Lemma 5]. It relates the line
segments on @WðAÞ to the numerical ranges of submatrices of A.

LEMMA 2.4 If A is an n-by-n matrix and B is an (n� 1)-by-(n� 1) submatrix of A, then
every line segment on @WðAÞ intersects @WðBÞ.

Proof of Theorem 1.3 After a suitable affine transformation, we may assume that
WðBÞ ¼ D. Let pðz, uÞ ¼ detðzIn �ReðuAÞÞ for z in C and u in @D. Since ReðuBÞ is an
(n� 1)-by-(n� 1) submatrix of ReðuAÞ for any u, juj ¼ 1, their eigenvalues interlace.
We infer fromWðuBÞ ¼ D that pð1, uÞ � 0 for all u in @D. Since �pð1, uÞ is a nonnegative
trigonometric polynomial of degree at most n, by the Riesz–Fejér theorem [9, p. 77,
Problem 40] there is a polynomial q of degree � n such that �pð1, uÞ ¼ jqðuÞj2 for
all u. We now assume that there are more than 2ðn� 2Þ line segments on @WðAÞ.
Since each of these lines intersects @D by Lemma 2.4, we have pð1, ukÞ ¼ 0 and hence
qðukÞ ¼ 0 for more than 2ðn� 2Þ many uk’s in @D. As 2ðn� 2Þ � n, the fundamental
theorem of algebra implies that q � 0. Therefore pð1, uÞ ¼ 0 for all u. We express
pðz, uÞ in the form ð

Pn
j¼0 pjðzÞu

jÞ þ ð
Pn

j¼1epjðzÞujÞ, where, for each j, pj (z) is a polynomial
in z with degree � n� j and epjðzÞ ¼ pjðzÞ. From pð1, uÞ ¼ 0 for all u, we obtain pjð1Þ ¼ 0
and thus z� 1 divides pj for all j. Similarly, by considering the smallest eigenvalues of
ReðuBÞ and ReðuAÞ, we also obtain that zþ 1, divides pj for all j. In particular, since
pn(z) and pn�1ðzÞ are divisible by z2 � 1, they are identically zero. Hence
pðz, uÞ ¼ ðz2 � 1Þq1ðz, uÞ, where, for each fixed z, q1ðz, uÞ is a trigonometric polynomial
in u of degree � n� 2. Now we show by some continuity argument that q1ð1, ukÞ ¼ 0
for all k. To this end, let �ðuÞ ¼ maxfz 2 R : q1ðz, uÞ ¼ 0g and �ðuÞ ¼
maxfz 2 R : pðz, uÞ ¼ 0g for u in @D. Since a line segment on @WðAÞ is tangent to @D
at uk, we have �ðukÞ ¼ 1 and �ðuÞ > 1 for all u 6¼ uk in a neighborhood of uk in @D.
Hence there is a sequence vm, m � 1, in @D such that �ðvmÞ > 1 for all m and vm! uk
as m!1. We obtain from

0 ¼ pð�ðvmÞ, vmÞ ¼ ð�ðvmÞ
2
� 1Þq1ð�ðvmÞ, vmÞ

that q1ð�ðvmÞ, vmÞ ¼ 0 and hence �ðvmÞ ¼ �ðvmÞ > 1 for all m. We may assume that �ðvmÞ

converges, say, to r. Then r � 1 and

q1ðr, ukÞ ¼ lim
m!1

q1ð�ðvmÞ, vmÞ ¼ lim
m!1

q1ð�ðvmÞ, vmÞ ¼ 0:

It follows that pðr, ukÞ ¼ 0 and thus r � �ðukÞ ¼ 1. We conclude that r¼ 1 and hence

q1ð1, ukÞ ¼ 0 for all k. Applying the fundamental theorem of algebra again to the
polynomial un�2q1ð1, uÞ of degree at most 2ðn� 2Þ with more than 2ðn� 2Þ zeros
(that is, the uk’s) to obtain q1ð1, uÞ ¼ 0 for all u. In a similar fashion, we have
q1ð�1, uÞ ¼ 0 for all u. Thus pðz, uÞ ¼ ðz2 � 1Þ2q2ðz, uÞ, where, for each fixed z, q2ðz, uÞ
is a trigonometric polynomial in u of degree � ðn� 4Þ. Repeating the above arguments
with q2 replacing q1 and so forth, we obtain eventually pðz, uÞ ¼ ðz2 � 1Þp or
ðz2 � 1Þpðz� 1Þ, p � 2. If this is the case, then the eigenvalues of ReðuAÞ are �1 for
all u, juj ¼ 1, and thus WðAÞ ¼ D contradicting our assumption on the line segments
of @WðAÞ. We conclude that lðAÞ � 2ðn� 2Þ.
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Now we show the sharpness of ‘‘2ðn� 2Þ’’. For n � 4, let A ¼ A1 � A2, where

A1 ¼
0 a
0 0

� �

with 2 cosð�=ðn� 2ÞÞ< a<2 and A2 is the (n� 2)-by-(n� 2) matrix

0 1

0 . .
.

. .
.

1
1 0

26664
37775:

Then A has the (n� 1)-by-(n� 1) submatrix B ¼ A1 � Jn�3 with
WðBÞ ¼ fz 2 C : jzj � a=2g. On the other hand, since WðA1Þ ¼ fz 2 C : jzj � a=2g and
W(A2) is the polygonal region bounded by the regular (n� 2)-gon with vertices
e2�ij=ðn�2Þ, 0 � j � n� 3, which circumscribes the circle jzj ¼ cosð�=ðn� 2ÞÞ, we deduce
from cosð�=ðn� 2ÞÞ < a=2 < 1 that W(A2) has 2ðn� 2Þ line segments on its boundary.
This completes the proof. g

It was suspected in [1] that ‘‘2ðn� 2Þ’’ might be the sharp upper bound of l(A) for all
n-by-n (n � 4) matrices A. The preceding theorem gives another piece of evidence.

An analogous argument as above can be used to give an upper bound for the number
of elliptic arcs on the boundary of a numerical range.

THEOREM 2.5 Let A be an n-by-n ðn � 3Þ matrix. Then
(a) the boundary @WðAÞ contains at most n� 2 arcs of any ellipse, and
(b) if W(A) contains an elliptic disc E and @WðAÞ and @E intersect at more than n points,

then @WðAÞ contains at least one arc of @E.
In these cases, both ‘‘n� 2’’ and ‘‘n’’ are sharp.

Proof To prove (a), we may assume otherwise that @WðAÞ contains arcs �j of the
unit circle @D with endpoints u2j�1 and u2j, 1� j�n� 1. Consider
pðz, uÞ � detðzIn �ReðuAÞÞ for z in C and u in @D as a trigonometric polynomial in u.
Since pð�1, uÞ ¼ 0 for infinitely many values of u, the coefficients of pð�1, uÞ are all
zero. Thus ðz2 � 1Þ divides all such coefficients and hence pðz, uÞ ¼ ðz2 � 1Þq1ðz, uÞ
for some trigonometric polynomial q1 in u of degree �ðn� 2Þ. As in the
proof of Theorem 2.3, consider �ðuÞ ¼ maxfz 2 R : q1ðz, uÞ ¼ 0g and
�ðuÞ ¼ maxfz 2 R : pðz, uÞ ¼ 0g for juj ¼ 1. Then for each k, 1 � k � 2ðn� 1Þ,
�ðukÞ ¼ 1 and �ðuÞ>1 for all u 6¼ uk in a one-sided neighborhood of uk in @D. Hence
there is a sequence of points vm, m � 1, in @D such that �ðvmÞ>1 for all m and
vm! uk as m ! 1. We may argue as before that (a subsequence of ) f�ðvmÞg

1
m¼1

converges to 1 and hence q1ð1, ukÞ ¼ 0 for all k. Applying the fundamental theorem
of algebra to the polynomial un�2q1ð1, uÞ with degree �2ðn� 2Þ yields that
q1ð1, uÞ ¼ 0 for all u, juj ¼ 1. Similarly, we obtain q1ð�1, uÞ ¼ 0 for all u. Thus
pðz, uÞ ¼ ðz2 � 1Þ2q2ðz, uÞ, where, for each fixed z, q2ðz, uÞ is a trigonometric polynomial
in u of degree � n� 4. Repeating these with q2 replacing q1 and so forth, we eventually
obtain that pðz, uÞ ¼ ðz2 � 1Þp or ðz2 � 1Þpðz� 1Þ, p � 1. Thus WðAÞ ¼ D contradicting
our assumption. We conclude that there can be at most (n� 2) arcs of @E on @WðAÞ.
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To prove (b), assume that E ¼ D and that @WðAÞ contains no arc of @E ¼ @D. For
any ">0, let

A" ¼
0 2ð1þ "Þ
0 0

� �
� A:

Since @WðAÞ intersects @D at more than n (isolated) points, @WðA"Þ has more than n arcs
of the circle jzj¼1þ " if " is sufficiently small. As A" is an ðnþ 2Þ-by-ðnþ 2Þmatrix with
WðA"Þ containing the circular disc

W
0 2ð1þ "Þ
0 0

� �� �
¼ fz 2 C : jzj � 1þ "g

and @WðA"Þ containing more than ðnþ 2Þ � 2 arcs of its boundary, this contradicts
what we proved in (a). Hence @WðAÞ must contain at least one arc of @E.

To show the sharpness of ‘‘n� 2’’, let

A ¼
0 2
0 0

� �
� diag ðr, rei�0 , re2i�0 , . . . , reðn�3Þi�0 Þ,

where 1 < r < secð�=ðn� 2ÞÞ and �0 ¼ 2�=ðn� 2Þ. Then W(A) contains

D ¼ W
0 2
0 0

� �� �

and @WðAÞ contains (n� 2) arcs of @D. For the sharpness of ‘‘n’’, consider
A ¼ diagð1, e2�i=n, e4�i=n, . . . , e2�ðn�1Þi=nÞ. Then W(A) is a polygonal region which contains
E ¼ fz 2 C : jzj � cosð�=nÞg, and @WðAÞ is a regular n-gon which intersects @E at exactly
n points. But, obviously, @WðAÞ contains no arc of @E. g

Note that Theorem 2.5 (b) can be contrasted with Anderson’s theorem: if the
numerical range W(A) of an n-by-n matrix A is assumed to be contained in a closed
elliptic disc E with @WðAÞ and @E intersecting at more than n points, then the stronger
conclusion that WðAÞ ¼ E holds.

3. Nilpotent matrices

In this section, we restrict ourselves to nilpotent matrices. We will improve the results in
section 2 to obtain sharper bounds for the numbers of line segments and circular arcs on
the boundary of their numerical ranges.

Our first proposition is the nilpotent analogue of Anderson’s theorem. Its proof is
essentially the same as the one for [10, Lemma 6], so we omit the proof.
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PROPOSITION 3.1 Let A be an n-by-n nilpotent matrix. If W(A) is contained in a closed
circular disc D centered at the origin and @WðAÞ intersects @D at more than n� 2 points,
then WðAÞ ¼ D. In particular, in this case if A is unitarily equivalent to

0 a12 � � � a1n
0 � �

� � �

� � �

� an�1n

0

26666664

37777775,

then at least one of a12, . . . , an�1n, a1n is zero.

The next proposition provides an example of a nilpotent matrix which is useful in
proving the sharpness for the results in this section. In particular, it shows the sharpness
of ‘‘n� 2’’ in Proposition 3.1.

PROPOSITION 3.2 For n � 3, let An be the n-by-n matrix

0 1 0 � � � 0 1
0 1 0

� � ..
.

� � 0
� 1

0 0

26666664

37777775:

Then (a) WðAnÞ�D, (b) @WðAnÞ intersects @D at exactly (n� 2) points, and (c) there are
n� 2 line segments on @WðAnÞ.

Proof (a) For any unit vector x ¼ ½x1, . . . , xn	
T in C

n, we have

jhAnx, xij ¼ jðx2 þ xnÞx1 þ x3x2 þ � � � þ xnxn�1j

� jx2jjx1j þ jx3jjx2j þ � � � þ jxnjjxn�1j þ jx1jjxnj

¼ hUnjxj, jxji � 1,

where Un is the n-by-n unitary matrix

0 1

0 . .
.

. .
.

1
1 0

26664
37775

and jxj denotes the unit vector ½jx1j, . . . , jxnj	
T. This shows that WðAnÞ 
 D. That

WðAnÞ 6¼ D follows from the second assertion of Proposition 2.1.
(b) If x0 is the unit vector ½1=

ffiffiffi
n

p
, . . . , 1=

ffiffiffi
n

p
	
T, then hAnx0, x0i ¼ 1. This shows that

@WðAnÞ intersects @D at the point 1. To prove that they intersect at no less than n� 2
points, let U ¼ diagð1, ei�0 , e2i�0 , . . . , eðn�1Þi�0Þ, where �0 ¼ 2�=ðn� 2Þ. Then it is easily
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seen that U�AnU ¼ ei�0An. Hence, in particular, W(An) has an (n� 2)-symmetry. Thus
@WðAnÞ and @D intersect at the points 1, ei�0 , . . . , and eðn�3Þi�0 . Since WðAnÞ 6¼ D, the
first assertion in Proposition 3.1 implies that @WðAnÞ and @D can intersect at no
more than n� 2 points. This proves our assertion.

(c) This is proved in [2, Theorem 6] as a consequence of more general results. g

The next corollary was essentially proved in [6, Theorem 4.1] through computations.
Here we give an alternative more conceptual proof.

COROLLARY 3.3 Let A be a 3-by-3 nilpotent matrix. Then
(a) @WðAÞ contains at most one line segment, and
(b) @WðAÞ has one line segment if and only if A is unitarily equivalent to a matrix

of the form

0 a a
0 a

0

24 35
for some a 6¼ 0.

Proof Since 0 is the only eigenvalue of A, (a) follows easily from the classification of
the numerical ranges of 3-by-3 matrices.

To prove (b), assume that @WðAÞ has one line segment L and

A ¼

0 a b
0 c

0

24 35:
We deduce from Lemma 2.4 that L is tangent to

@W
0 a
0 0

� �� �
, @W

0 b
0 0

� �� �
and @W

0 c
0 0

� �� �
:

Since these are circles with center the origin and radii jaj=2, jbj=2 and jcj=2, respectively,
we obtain, in particular, that jaj ¼ jbj ¼ jcj. Note that a, b and c are not zero for
otherwise WðAÞ ¼ f0g has no line segment on its boundary, contradicting our
assumption. Let b ¼ aei�1 and c ¼ aei�2 with real �1 and �2, and let
U ¼ diagð1, eið�2��1Þ, eið�2�2�1ÞÞ. A computation shows that

U�AU ¼

0 a0 a0

0 a0

0

24 35,
where a0 ¼ ac=b. This proves one direction. The converse follows from
Proposition 3.2 (c). g

For a 4-by-4 nilpotent matrix A, there is not much about W(A) which we know
for sure. For one thing, we suspect that lðAÞ � 2, but are not able to prove it.
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Moreover, there seems to be no easy characterization of those A’s with lðAÞ ¼ 2. For
example, besides A4 of Proposition 3.2 the matrix

A ¼

0 1 0 �2
0 2 i

0 1
0

2664
3775

has also had two (nonparallel) line segments on @WðAÞ (cf. Figure 1).
The next theorem gives the analogue of Theorem 2.3 for nilpotent matrices. It also

generalizes part of Proposition 3.2 (c).

THEOREM 3.4. If A is an n-by-n ðn � 3Þ nilpotent matrix which has an (n� 1)-by-(n� 1)
submatrix B with W(B) a circular disc centered at the origin, then lðAÞ � n� 2 for
n ¼ 3, 4, 5, and lðAÞ � 2ðn� 4Þ for n � 6. Moreover, these upper bounds are sharp.

Proof The assertions for n¼ 3 are easily seen to be true. For n � 4, the proof is ana-
logous to the one for Theorem 2.3. Here we give a brief sketch of it. Assuming that
WðBÞ ¼ D, we obtain from some simple computations with the upper triangular
form of A that pðz, uÞ � detðzIn �ReðuAÞÞ (z 2 C and u 2 @D) is of the form
ð
Pn�2

j¼0 pjðzÞu
jÞ þ ð

Pn�2
j¼1 epjðzÞujÞ, where p0ðzÞ is a polynomial of degree n, and pj (z) is of

degree no more than n� j� 2 and epjðzÞ ¼ pjðzÞ for 1 � j � n� 2. Under the assumption
lðAÞ > n� 2 (resp., lðAÞ > 2ðn� 4Þ) for n ¼ 4, 5 (resp., n � 6), we deduce using the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

W 

W (A)

0
0
0

1
0
0

0
2
0

1

1.5

2

Figure 1.
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Riesz–Fejér theorem and the fundamental theorem of algebra from pð1, uÞ � 0 for all u,
juj ¼ 1, and pð1, uÞ ¼ 0 for more than n� 2 values of u that pð1, uÞ ¼ 0 for all u. This
implies that pjð1Þ ¼ 0 for all j. Similarly, we have pjð�1Þ ¼ 0, and thus z2 � 1 divides
pj(z) for all j. If n¼ 4, then pðz, uÞ ¼ p0ðzÞ, which is independent of u. Thus the same
is true for the largest eigenvalue of ReðuAÞ. This shows that WðAÞ ¼ D, contradicting
our assumption that l ðAÞ > 2. For n � 5, we have pðz, uÞ ¼ ðz2 � 1Þq1ðz, uÞ for some
polynomial q1 such that q1ðz, uÞ is a trigonometric polynomial in u of degree �n� 4
for each fixed z. Using the continuity argument as in the proof of Theorem 2.3,
we infer that q1ð�1, uÞ ¼ 0 for more than 3 (resp., 2ðn� 4Þ) values of u for n¼ 5
(resp., n � 6). Since un�4q1ð�1, uÞ is a polynomial of degree � 2ðn� 4Þ, the fundamental
theorem of algebra again implies that q1ð�1, uÞ ¼ 0 for all u, juj ¼ 1. We then obtain
q1ðz, uÞ ¼ ðz2 � 1Þq2ðz, uÞ and hence pðz, uÞ ¼ ðz2 � 1Þ2q2ðz, uÞ. Proceeding in this fash-
ion, we eventually reach a contradiction. Therefore, lðAÞ � 3 (resp., lðAÞ � 2ðn� 4Þ)
for n¼ 5 (resp., n � 6).

We now show the sharpness of ‘‘n� 2’’ and ‘‘2ðn� 4Þ’’ for 3 � n � 5 and n � 6,
respectively. If 3 � n � 5, then the matrix An in Proposition 3.2 has the (n� 1)-by-
(n� 1) submatrix Jn�1 with WðJn�1Þ ¼ fz 2 C : jzj � cosð�=nÞg, and has n� 2 line
segments on @WðAnÞ. On the other hand, for n � 6, let

A ¼
0 a
0 0

� �
� An�2,

where a satisfies 2 cosð�=ðn� 2ÞÞ<a<2. Then A has the (n� 1)-by-(n� 1) submatrix

0 a
0 0

� �
� Jn�3

with numerical range fz 2 C : jzj � a=2g. Since W(A) is the convex hull of

W
0 a
0 0

� �� �

and WðAn�2Þ, and the line segments on @WðAn�2Þ are all at distance cosð�=ðn� 2ÞÞ from
the origin, we infer that @WðAÞ has 2ðn� 4Þ line segments, completing the proof. g

We remark that it is unknown whether ‘‘n� 2’’ (for n ¼ 4, 5) and ‘‘2ðn� 4Þ’’ (for
n � 6) are upper bounds of l(A) for a general nilpotent matrix A. One approach may
be to show that every such A has a submatrix B with the property in Theorem 3.4.

Our final theorem gives the nilpotent analogue of Theorem 1.5. Again its second
assertion is comparable to Proposition 3.1.

THEOREM 3.5 Let A be an n-by-n nilpotent matrix.
(a) If n � 5, then @WðAÞ contains at most n� 4 arcs of any circle centered at the origin.
(b) If W(A) contains a closed circular disc D centered at the origin and @WðAÞ and @D

intersect at more than n� 2 points, then WðAÞ ¼ D if 2 � n � 4, and @WðAÞ con-
tains at least one arc of @D if n � 5.

In these cases, both ‘‘n� 4’’ and ‘‘n� 2’’ are sharp.
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Proof (a) The proof proceeds as in that of Theorem 2.5 except that this time, for
pðz, uÞ � detðzIn �ReðuAÞÞ (z 2 C and juj ¼ 1) the trigonometric polynomial pð�1, uÞ
is of degree at most n� 2. Under the assumption that there are more than n� 4
arcs �j of @D on @WðAÞ for n � 5, we have pðz, uÞ ¼ ðz2 � 1Þq1ðz, uÞ for some trigono-
metric polynomial q1 in u of degree at most (n� 4). A continuity argument as before
yields that q1ð�1, ukÞ ¼ 0 for all the more than 2ðn� 4Þ endpoints uk of the �j’s.
Applying the fundamental theorem of algebra to the polynomial un�4q1ð�1, uÞ of
degree �2ðn� 4Þ then gives q1ð�1, uÞ ¼ 0 for all u, juj ¼ 1, and thus
pðz, uÞ ¼ ðz2 � 1Þ2q2ðz, uÞ for some trigonometric polynomial q2 in u of degree at most
n� 6. Proceeding in this fashion, we eventually reach a contradiction. This proves
that there can be at most n� 4 arcs of @D on @WðAÞ for n � 5.

(b) Assume that D ¼ D and that @WðAÞ and @D intersect at more than n� 2 points. If
n¼ 2, then W(A) is itself a circular disc centered at the origin and thus our assumption
implies thatWðAÞ ¼ D. For n � 3, we assume further that @WðAÞ contains no arc of @D.
Consider the ðnþ 2Þ-by-ðnþ 2Þ matrix

A" ¼
0 2þ "

0 0

� �
� A

for sufficiently small ">0. Then @WðA"Þ has more than n� 2 arcs of @D, one in the vici-

nity of each of the more than n� 2 (isolated) intersection points of @WðAÞ and @D. This
contradicts (a). Hence @WðAÞ must contain some arc of @D. We now show that, for
n¼ 3 or 4, this implies that WðAÞ ¼ D. Indeed, in this case, we have
pðz, uÞ ¼ ðz2 � 1Þq1ðz, uÞ as before. Then the coefficient of uj, j ¼ 1, 2, in pðz, uÞ should
all vanish. This shows that pðz, uÞ is a degree-n polynomial in z for any value of u,
juj ¼ 1. Hence WðAÞ ¼ D as asserted.

For the sharpness of ‘‘n� 4’’ (n � 5), consider

A ¼
0 a

0 0

� �
� An�2,

where a satisfies 2 cosð�=ðn� 2ÞÞ < a < 2 and An�2 is the matrix defined in

Proposition 3.2. Then @WðAÞ contains n� 4 arcs of

@W
0 a

0 0

" # !
¼ z 2 C : jzj ¼

a

2

n o
,

since each of the n� 4 line segments on @WðAn�2Þ is tangent to the circle

@WðJn�3Þ ¼ fz 2 C : jzj ¼ cosð�=ðn� 2ÞÞg by Lemma 2.4. To show the sharpness of
‘‘n� 2’’ (n � 3), let A¼An as in Proposition 3.2 and let D ¼ fz 2 C : jzj � cosð�=nÞg.
Then, as proved in Proposition 3.2, D 
 WðAÞ and @WðAÞ and @D intersect at exactly
n� 2 points. In particular, this shows that there can be no arc of @D on @WðAÞ,
completing the proof. g
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We conclude this article by reiterating, in light of Theorems 2.3 and 3.4, the two
problems concerning l(A), the number of line segments on the boundary of the
numerical range W(A) of an n-by-n matrix A:

(a) Is it true that lðAÞ � 2ðn� 2Þ for any n-by-n (n � 6) matrix A?
(b) Is it true that lðAÞ � n� 2 (n ¼ 4, 5) and lðAÞ � 2ðn� 4Þ (n � 6) for any n-by-n

nilpotent matrix A?
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