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Abstract

Based on the recasting techniques of Rust and Voit (1990, J. Amer. Statist. Assoc. 85, 572–578), an
S-system form of the noncentral beta distribution is extended from that of the noncentral F distribution
and the other one is newly derived. The computing methods of this distribution have received much
attention during the last decade. Its cumulative probabilities, densities, quantiles and related distribu-
tional values can be calculated in one S-system form. We demonstrate the new computational results
using the S-system numerical solver ESSYNS. Consistent results are obtained from these two S-system
forms under various situations. In addition, we compare the performance with an ad hoc comput-
ing method by evaluating the cumulative probabilities and densities jointly. The S-system formulation
provides signi�cant numerical advantages over its original form. Further properties are also discussed.
c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For most univariate statistical distributions, tabulations for frequently cited values
of parameters can be made quite extensive; those for other parameterized values are
usually interpolated or extrapolated. However, those tables for some sophisticated or
new generated distributions may not be available or their computing procedures have
not yet been implemented in any software package. The ad hoc calculations from
scratch raise some practical problems since it involves integrals, implicit forms, or
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in�nite series. Most of these properties usually make numerical computing di�cult.
On the other hand, many statistical distributions such as �2; F; and t-distributions
can be recast in the S-system canonical form with a set of simultaneous nonlinear
�rst-order di�erential equations. These formulations o�er signi�cant numerical advan-
tages over representations of the distributions in their original forms (Rust and Voit,
1990; Savageau, 1982; Voit, 1991; Voit and Rust, 1987, 1988, 1990, 1992). How-
ever, the noncentral beta distribution with S-system is not available. This distribution
has received much attention during the last decade (Chattamvelli, 1995; Ding, 1994;
Frick, 1990; Lam, 1995; Lee, 1992; Lenth, 1987; Norton, 1983; Posten, 1993). In
this article, we newly recast the noncentral beta distribution into the S-system formu-
lation. Moreover, the S-system form of the noncentral F distribution (Rust and Voit,
1990) is extended for computing the noncentral beta since these two distributions
are closely related.
The power-law formalism and associated S-system di�erential equations give us a

systematic methodology for nonlinear analysis. The dynamics of a nonlinear system
can be well represented by the S-system that indicates its ability to capture Saturable
and Synergistic characteristics of nonlinear systems. Its canonical form is represented
as

Ẋ i = �i

n∏
j=1

X gij
j − �i

n∏
j=1

X hij
j ; i = 1; 2; : : : ; n;

where Ẋ i = dXi=dt; �i and �i are nonnegative, and gij and hij are any real numbers.
Irvine and Savageau (1990) and Irvine (1988) propose a convenient numerical algo-
rithm with Taylor’s approximation in the logarithmic space. So the variables Xi are
con�ned to be positive (Savageau and Voit, 1987). Based on their implemented codes
ESSYNS (Voit et al., 1990), our recasting S-system formulation of noncentral beta
distribution is demonstrated and compared with the extended one from the noncen-
tral F distribution. The computing results are quite consistent. This soft computing
is very general as well as powerful for calculating the statistical distributions in the
S-system formulation. A fruitful application area that is just beginning to emerge is
computational statistics (Kennedy and Gentle, 1980; Voit, 1991).
In addition to briey describe the noncentral beta distribution in Section 2, we

derive its recasting form and related theorem. Moreover, the S-system form of F
distribution in Rust and Voit (1990) is extended for computing the noncentral beta
distribution. Their equivalent representations are also discussed. In Section 3, we
demonstrate the computational results of the two formulations using the S-system
numerical solver ESSYNS. Moreover, the ad hoc computing method of Ding (1994)
is chosen for comparison in calculating the densities and cumulative probabilities.
Finally, concluding remarks are presented in Section 4.

2. S-system forms of noncentral beta

The standard form of noncentral beta distribution is in terms of the distribution of
the chi-square variates, X = �22a(�)=(�

2
2a(�) + �22b) where �22a(�) denotes a noncentral
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�2 random variate with 2a degrees of freedom with noncentrality parameter � and �22b
is the central one. It was considered by many researchers (e.g., see, Chattamvelli,
1995). Other forms of noncentral beta distribution can be seen in Johnson et al.
(1994). The distribution of X is usually represented as an in�nite sum of Poisson
weights of central beta distribution, that is,

FB(s; a; b; �) =
∞∑
i=0

uiFB(s; a+ i; b); fB(s; a; b; �) =
∞∑
i=0

uifB(s; a+ i; b);

where FB(s; a; b; �); fB(s; a; b; �) denote the respective noncentral beta distribution
function and density with shape parameters a; b and noncentrality parameter
�;FB(s; a; b); fB(s; a; b) are the corresponding central ones, with 0≤ s≤ 1; a¿ 0;
b¿ 0; �≥ 0; ui = e−�=2(�=2)i=i!: Here we have

FB(s; a; b) = FB(s; a; b; 0)=
�(a+ b)
�(a)�(b)

∫ s

0
xa−1(1− x)b−1 dx;

fB(s; a; b) = fB(s; a; b; 0)=
�(a+ b)
�(a)�(b)

sa−1(1− s)b−1:

Computing the noncentral beta distribution has received much attention during the
last decade. It can be used in the calculation of the power functions of tests of general
linear hypotheses. These include standard tests used in the analysis of variance. This
distribution is not only interesting in itself, but also related to other distributions,
such as �2; F , student t, binomial, and negative binomial (Johnson et al., 1994; Lee,
1992). In particular, the noncentral F distribution function can be evaluated through
the noncentral beta since the noncentral F variate is simply a monotone function
of the noncentral beta one, that is, the noncentral F distribution GF(·) in terms of
noncentral beta distribution by

GF(t;m; n; �) = GF(t; 2a; 2b; �) = FB(s; a; b; �)

where t=(b=a)s=(1−s) or s=mt=(mt+n); hereafter this relation is called the beta-F
link condition. Most of the evaluation methods of noncentral beta distribution except
for Ding (1994) relies heavily on the central beta one (the incomplete beta integral).
So the conventional computing methods are to develop an e�cient and accurate
algorithm for calculating the central beta distribution. With our proposed S-system
formulation for this distribution, it can evaluate distributional values of interest jointly
and more conveniently.

2.1. Recasting the noncentral beta distribution

Based on the recasting techniques proposed by Savageau and Voit (1987) as well
as the applications to the statistical distributions illustrated by Rust and Voit (1990),
we derive the noncentral beta distribution in terms of S-system form in the following.
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The density function of noncentral beta distribution is represented as

fB(s; a; b; �)

=
∞∑
i=0

(
e−(�=2)(�=2)i

i!

)
�(a+ b+ i)
�(a+ i)�(b)

sa+i−1(1− s)b−1

= e−(�=2)
∞∑
i=0

1
i!

(
�
2
s
)i (a+ i − 1 + b)× · · · × (a+ b)

(a+ i − 1)× · · · × (a)
�(a+ b)
�(a)�(b)

sa−1(1− s)b−1

= e−(�=2) (s)fB(s; a; b; 0)

where 0¡s¡ 1; a; b¿ 0, are the shape parameters, and � is the noncentrality
parameter, and where we put  (s) =

∑∞
j=0(1=j!)((�=2)s)

j�(j) with �(j) =∏ j
i=1((a + b + i − 1)=(a + i − 1)): We show in Appendix A that  (s) satis�es the

following di�erential equation:

(2s) ′′(s) = (�s− 2a) ′(s) + �(a+ b) (s):

Based on these, its S-system formulation for all positive values of the shape param-
eters a and b can be recast as follows:

X1 = s; Ẋ 1 = 1;

X2 = 1− s; Ẋ 2 =−1;
X3 = a−1bX1X−1

2 ; Ẋ 3 = a−1bX−2
2 ;

X4 = s(1− s)fB(s; a; b; 0); Ẋ 4 = aX−1
1 X4 − bX−1

2 X4;

X5 = FB(s; a; b; 0); Ẋ 5 = X−1
1 X−1

2 X4;

X6 =  (s); Ẋ 6 = X7X8;

X7 =  ′(s)X−1
8 ; Ẋ 7 =

�
2
X7 − aX−1

1 X7;

X8 =  ′(s)X−1
7 ; Ẋ 8 =

�
2
(a+ b)X−1

1 X6X−1
7 ;

X9 = FB(s; a; b; �); Ẋ 9 = e−�=2X−1
1 X−1

2 X4X6 (=fB(s; a; b; �));

(BX1)

where Ẋ i = dXi=ds and details for deriving X7; X8 can be seen in Appendix A. Note
that X3 = (b=a)s=(1 − s) = t is for computing the quantities corresponding to the
F distribution. The S-system formulation is usually not unique; another derivation
for a¿ 1; b¿ 1 can be seen in Chou (1996). This system is for computing Xi(X1),
in general. The central=noncentral densities and cumulative probabilities (in terms of
X1; X2(X1); X4(X1); X5(X1); X6(X1); X9(X1)) are of particular interest. Moreover, by
using the chain rule for evaluating variables with the independent variable X9 instead
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of X1 = s, and putting X̃ i = dXi=ds=dX9=ds; we have the inverted form:

X̃ 1 = e�=2X1X2X−1
4 X−1

6 ;

X̃ 2 = −e�=2X1X2X−1
4 X−1

6 ;

X̃ 3 = e�=2a−1bX1X−1
2 X−1

4 X−1
6 ;

X̃ 4 = e�=2aX2X−1
6 − e�=2bX1X−1

6 ;

X̃ 5 = e�=2X−1
6 ;

X̃ 6 = e�=2X1X2X−1
4 X−1

6 X7X8;

X̃ 7 = e�=2
�
2
X1X2X−1

4 X−1
6 X7 − e�=2aX2X−1

4 X−1
6 X7;

X̃ 8 = e�=2
�
2
(a+ b)X2X−1

4 X−1
7 :

(BX9)

This system is for computing Xi(X9), in general. The quantiles of the noncentral
beta distribution, X1(X9); as well as those of the noncentral F distribution, X3(X9);
and the type I error probabilities, 1−X5(X9); for given levels of power for the
noncentral beta distribution are of particular interest. We call the above formulation
as beta-based derivation (BX). The other one is in the following.

2.2. F-based derivation

Based on the S-system form of noncentral F distribution (Rust and Voit, 1990),
it can be extended for computing the noncentral beta distribution with the addition
of Y3 = mt=(n+ mt) = s to their original system:

Y1 = t; Ẏ 1 = 1;

Y2 = n+ mt; Ẏ 2 = m;

Y3 = mY1Y−1
2 ; Ẏ 3 = mnY−2

2 ;

Y4 = tgF(t;m; n; 0); Ẏ 4 =
m
2
Y−1
1 Y4 − m

2
(m+ n)Y−1

2 Y4;

Y5 = GF(t;m; n; 0); Ẏ 5 = Y−1
1 Y4;

Y6 =M(t); Ẏ 6 = Y7Y8;

Y7 =M′(t)Y−1
8 ; Ẏ 7 =

�
2
mnY−2

2 Y7 − 12mnY−1
1 Y−1

2 Y7;

Y8 =M′(t)Y−1
7 ; Ẏ 8 =

�
4
mn2(m+ n)Y−1

1 Y−3
2 Y6Y−1

7 − 2mY−1
2 Y8;

Y9 = GF(t;m; n; �); Ẏ 9 = e−�=2Y−1
1 Y4Y6 (=gF(t;m; n; �));

(FY1)
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where Ẏ i = dYi=dt: Consequently, we have the inverted form with the independent
variable Y9 instead of Y1, that is, Ỹ i = (dYi=dt)=(dY9=dt):

Ỹ 1 = e�=2Y1Y−1
4 Y−1

6 ;

Ỹ 2 = e�=2mY1Y−1
4 Y−1

6 ;

Ỹ 3 = e�=2mnY1Y−2
2 Y−1

4 Y−1
6 ;

Ỹ 4 = e�=2
m
2
Y−1
6 − e�=2

m
2
(m+ n)Y1Y−1

2 Y−1
6 ;

Ỹ 5 = e�=2Y−1
6 ;

Ỹ 6 = e�=2Y1Y−1
4 Y−1

6 Y7Y8;

Ỹ 7 = e�=2
�
2
mnY1Y−1

4 Y−1
6 Y7 − e�=2mn

2
Y−1
2 Y−1

4 Y−1
6 Y7;

Ỹ 8 = e�=2
�
4
mn2(m+ n)Y−3

2 Y−1
4 Y−1

7 − e�=22mY1Y−1
2 Y−1

4 Y−1
6 Y8:

(FY9)

This system is for computing Yi(Y9), in general. The quantiles of the noncentral F
distribution, Y1(Y9); as well as those of the noncentral beta distribution, Y3(Y9); and
the type I error probabilities, 1−Y5(Y9); given the levels of power for the noncentral
F distribution are of particular interest (Rust and Voit, 1990). On the other hand, in
order to use this system for computing the central=noncentral densities and cumulative
probabilities of the noncentral beta distribution, we can derive the inverted form with
the independent variable Y3 instead of Y1, that is, �Y i = (dYi=dt)=(dY3=dt):

�Y 1 =
1
mn

Y 22 ;

�Y 2 =
1
n
Y 22 ;

�Y 3 = 1;

�Y 4 =
1
2n

Y−1
1 Y 22 Y4 −

m+ n
2n

Y2Y4;

�Y 5 =
1
mn

Y−1
1 Y 22 Y4;

�Y 6 =
1
mn

Y 22 Y7Y8;

�Y 7 =
�
2
Y6 − 12Y

−1
1 Y2Y7;

�Y 8 =
�
4
n(m+ n)Y−1

1 Y−1
2 Y6Y−1

7 −
2
n
Y2Y8;

�Y 9 = e−�=2 1
mn

Y−1
1 Y 22 Y4Y6 (= gF(t;m; n; �)):

(FY3)
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This system is for computing Yi(Y3), in general. The central=noncentral densities and
cumulative probabilities (in terms of Y1(Y3); Y2(Y3); Y4(Y3); Y5(Y3); Y6(Y3); Y9(Y3))
of the beta distribution are of particular interest.
Note that the equations in (FY3) can be reduced to eight variables as those of

(BX9) and (FY9) after removing the independent variable Y3 from the system. To
further examine the close relationship between these two S-system forms under the
beta-F link condition, X1 = s = mt=(mt + n) = Y3 or Y1 = t = (b=a)s=(1 − s) = X3;
the density functions and the cumulative probabilities of the noncentral beta and F
distributions are related by

FB(s; a; b; 0) = GF(t;m; n; 0) (i:e:; X5(s) = Y5(t));

FB(s; a; b; �) = GF(t;m; n; �) (i:e:; X9(s) = Y9(t));

fB(s; a; b; 0) =
(n+ mt)2

mn
gF(t;m; n; 0) (cbf);

fB(s; a; b; �) =
(n+ mt)2

mn
gF(t;m; n; �) (nbf);

gF(t;m; n; 0) =
a
b
(1− s)2fB(s; a; b; 0) (cfb);

gF(t;m; n; �) =
a
b
(1− s)2fB(s; a; b; �):

So, we have s(1 − s)fB(s; a; b; 0) = tgF(t;m; n; 0) (i.e., X4(s) = Y4(t)) as well as
 (s) =M(t) (i.e., X6(s) = Y6(t)) in the two S-system forms, which are derived by

a
b
(1− s)2fB(s; a; b; 0) = gF(t;m; n; 0) from (cfb);

bs
a(1− s)

a
b
(1− s)2fB(s; a; b; 0) =

bs
a(1− s)

gF(t;m; n; 0):

So, it is

s(1− s)fB(s; a; b; 0) = tgF(t;m; n; 0):

Similarly,

fB(s; a; b; �) =
(n+ mt)2

mn
gF(t;m; n; �) from (nbf);

e−�=2fB(s; a; b; 0)  (s) = e−�=2 (n+ mt)2

mn
gF(t;m; n; 0)M(t):

Therefore, we have

 (s) =M(t) by (cbf):

Note that X1=Y3, X3=Y1, X4=Y4, X5=Y5, X6=Y6; and X9=Y9 under the beta-F link
condition can also be con�rmed with the initial values reported in Tables 1 and 2
of Appendix A. Moreover, we can compute the central=noncentral densities from the
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outputs of either form as follows:

Beta-based system F-based system

fB(s; a; b; 0) = X−1
1 X−1

2 X4 =
1
mn

Y−1
1 Y 22 Y4

fB(s; a; b; �) = e−�=2X−1
1 X−1

2 X4X6 =
1
mn
e−�=2Y−1

1 Y 22 Y4Y6

gF(t;m; n; 0) =
a
b
X−1
1 X2X4 = Y−1

1 Y4

gF(t;m; n; �) =
a
b
e−�=2X−1

1 X2X4X6 = e−�=2Y−1
1 Y4Y6

These can be used to compute the distributional values of interest in one S-system
form of F or beta. Note that after the S-system form of beta-based derivation is
inverted with the X3 = (b=a)s=(1− s) as the independent variable, it is an equivalent
F-based system for computing densities and cumulative probabilities.

3. Demonstrations and comparisons

In order to evaluate the computing results of the noncentral beta by our new
S-system derivation, we conduct the demonstration by the following steps:

1. Choose the alternative procedure (FY) in Section 2.2 as the comparison-based
system and the same various situations in Rust and Voit (1990) as our pivotal
cases (Tables 1 and 2).

2. Check the consistency of the computing results by the same procedure (FY)
running on the two di�erent PC systems (Tables 3 and 4).

3. Compare the testing results of the noncentral beta by our newly derived form
(BX) with those by the (FY) S-system (Tables 3 and 4).

4. Perform the calculation of the noncentral beta densities and cumulative probabili-
ties using the two S-system forms and an ad hoc method of Ding (1994), reported
in Table 5 of Appendix A.

According to the pivotal cases, a convenient set of initial conditions is de�ned at
t=1 or s= a=(a+ b)=m=(m+ n), where central=noncentral F and beta distributions
have nonzero densities and cumulative probabilities. Their initial values are computed
by our implemented C codes primarily based on the algorithms of Ding (1994) and
Singh and Relyea (1992). They are reported in Table 1 (BX) and Table 2 (FY) of
Appendix A. Note that the initial values in the 1st and 6th rows of Table 2 coincide
with those of Rust and Voit (1988, p. 276, their values shown in square brackets)
that seem to be used in Rust and Voit (1990). These values are made on a SPARC
5 SUN workstation.
Subsequently, the S-system form evaluation using the numerical solver ESSYNS

(implemented only for PC) is conducted on a DEC (Venturis FP 575) PC 586
system. All the conductions reported in Tables 3–5 are under the ESSYNS system
error bound 10−12: We �rst check the consistency of the results under the di�erent
PC systems by running the same outputs (Tables 1 and 2 in Rust and Voit, 1990)
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of the type I error probabilities (reported in Table 3) as well as quantiles (reported
in Table 4) for given levels of power (0.8,0.9). Their original results are shown in
the 1st rows (R&V) while ours are put in the 2nd rows (FY9) of Tables 3 and 4
by running the extended form (FY9) for each case. Table 3 shows that the pairs
of type I error probabilities have the same values except for the case 3. Similarly,
Table 4 shows the values of various quantiles in the 1st and 2nd rows of each case
are almost the same except for the cases 6 and 8. Note that the values of case 3 in
Table 3 and case 6 in Table 4, which are partially underlined, seem the typing errors
from Rust and Voit (1990). So, the computational variation between these two PC
systems is negligible.
Under the same situations, our derived formulation (BX9) is evaluated in the fol-

lowing. To see the type I error probabilities for given levels of power (0.8,0.9),
1−X5(X9) is the desired output values shown in the 3rd rows (BX9) while the com-
parion ones are 1−Y5(Y9) by the form (FY9) shown in 2nd rows (FY9) for each case
of Table 3. Note that X9(s)=Y9(t) whenever t=bs=a(1−s): The reported values of two
forms are all equal up to 10 signi�cant digits for the cases under study. On the other
hand, for computing the noncentral beta (or F) quantiles corresponding to the same
two power points, X1 (or X3 for F) is the desired output values shown in the rows
(BX9) while the comparion ones are Y3 (or Y1 for F) from the form (FY9) reported
in the rows (FY9) of Table 4. To compare the F quantiles, the reported values be-
tween the 2nd and the 3rd rows are all equal upto 10 signi�cant digits for cases 1–5
whose noncentrality parameter is 25 while those for cases 6–10, whose noncentrality
parameter is 50, show at least 7 signi�cant digits agreed. Similarly, the values in the
4th and 5th rows for comparing the beta quantiles are the same for cases 1–5 (the
noncentrality being 25) while those for cases 6–10 (the noncentrality being 50) show
at least 8 signi�cant digits agreed. The di�erence may be due to the error propagation
of the data representations and the approximation methods. It seems that the bigger
the value of noncentrality is, the larger the error propagates during the proceeding
of the numerical solver. Chattamvelli (1995) pointed out the considerations for nu-
merical calculations with large noncentrality parameter values. It is also under our
further study. However, our demonstrated results are quite consistent and satis�ed.
For calculating the noncentral beta distributional values, most algorithms are for

computing cumulative probabilities except for Ding’s one (1994) allowing joint eval-
uation of the distribution function and the density. This method is chosen for com-
puting the probabilitiy as well as cumulative density functions (p.d.f and c.d.f.) at the
point 0.5 of the noncentral beta and for comparing with those by the two S-system
forms (BX1) and (FY3); all the error bounds are set to be 10−12: Table 5 shows
that the computing results from these three methods are equal upto 12 signi�cant
digits under the speci�ed precision for all cases.

4. Concluding remarks

With our newly derived S-system form, various demonstration results are obtained
in Section 3. This system (BX) can be used for directly computing various distribu-
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tional values of those statistics with the noncentral beta and F distribution. Alterna-
tively, the (FY) S-system form extended from Rust and Voit (1990) can be used for
doing the same things equally well. The computing results under both systems are
quite consistent and satis�ed. Further features of S-system formulation can be seen
in Rust and Voit (1990). Some remarks are pointed as follows:

1. The most interesting parts for computing the noncentral distributions are on the
tail part or extreme probabilities and associated quantities. The initial values for
solving the canonical di�erential equations may be hard to pre-calculate for some
canonical S-system forms. So it is crucial to calculate the initial conditions conve-
niently as well as precisely for the canonical S-system under study. Subsequently,
the computing speed, the adaptive step length, the calculation accuracy, and the
order of the approximation algorithm are correlated and inuenced mutually in
the proceeding of numerical calculation. Our implemented C codes can be easily
modi�ed to compute the various initial values of both S-system forms precisely
except for the cases with very large noncentrality parameter values.

2. By performing the two equivalent S-system forms (BX1) and (FY3) to compute
the quantiles of the beta distribution, theoretically they should produce the same
values under study. However, the numerical solver ESSYNS results with larger
diversity in precision for the cases with the large noncentrality; e.g., 50 being
in various cases. The numerical considerations (e.g., sti�ness, error propagation,
stability and accuracy, etc.) implemented in the solver need to be further investi-
gated. One numerical solver to take more characteristics of statistical applications
is under our study.

3. The canonical S-system form for a tractable problem by recasting techniques is not
unique. To recast the statistical distributions optimal in some sense is of interest.
The insensitivity to the initial conditions and the neatness of the canonical form
may be the criteria for consideration.
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Appendix A.

A.1. Theorem and proof

Theorem. The in�nite series relating to the noncentral beta distribution by

 (s) =
∞∑
j=0

�(j)
1
j!

(
�
2
s
)j

where �(j) =
j∏

i=1

(
a+ b+ i − 1
a+ i − 1

)
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solves the di�erential equation

(2s) ′′(s) = (�s− 2a) ′(s) + �(a+ b) (s):

Proof.

 ′(s) =
∞∑
j=1

�(j)
j
j!

(
�
2
s
)j−1 (�

2

)

=
�
2

∞∑
j=0

�(j + 1)
1
j!

(
�
2
s
)j

=
�
2

∞∑
j=0

(
a+ b+ j
a+ j

)
�(j)

1
j!

(
�
2
s
)j

=
�
2

∞∑
j=0

[
1 +

b
a
− b

a
j

a+ j

]
�(j)

1
j!

(
�
2
s
)j

=
�
2

(
1 +

b
a

) ∞∑
j=0

�(j)
1
j!

(
�
2
s
)j
− �
2

∞∑
j=1

b
a

1
a+ j

�(j)
j
j!

(
�
2
s
)j−1 (�

2
s
)

=
�
2

(
1 +

b
a

)
 (s)− �

2
b
a

(
�
2
s
)
�(s); (A.1)

where

�(s) =
∞∑
j=1

1
a+ j

�(j)
j
j!

(
�
2
s
)j−1

=
∞∑
j=0

1
a+ j + 1

�(j + 1)
1
j!

(
�
2
s
)j

:

Then we have

�(s) =
2(a+ b)

�bs
 (s)− 4a

�2bs
 ′(s): (A.2)

Therefore, the result can be further derived with (A.1):

 ′′(s) =
(
�
2

)2 ∞∑
j=1

�(j + 1)
j
j!

(
�
2
s
)j−1

=
(
�
2

)2 ∞∑
j=0

�(j + 2)
1
j!

(
�
2
s
)j

=
(
�
2

)2 ∞∑
j=0

(
1 +

b
a+ j + 1

)
�(j + 1)

1
j!

(
�
2
s
)j

=
�
2


(�
2

) ∞∑
j=0

�(j + 1)
1
j!

(
�
2
s
)j

+
(
�
2

)2 ∞∑
j=0

(
b

a+ j + 1

)
�(j + 1)

1
j!

(
�
2
s
)j
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=
�
2
 ′(s) +

(
�
2

)2
b

∞∑
j=0

(
1

a+ j + 1

)
�(j + 1)

1
j!

(
�
2
s
)j

=
�
2
 ′(s) +

(
�
2

)2
b�(s) ← which is replaced by (A:2)

=
�
2
 ′(s) +

b�2

4

[
2(a+ b)

�bs
 (s)− 4a

�2bs
 ′(s)

]

=
�
2
 ′(s) +

�(a+ b)
2s

 (s)− a
s
 ′(s)

=
(
�s− 2a
2s

)
 ′(s) +

�(a+ b)
2s

 (s):

That is, (2s) ′′(s) = (�s− 2a) ′(s) + �(a+ b) (s):
Note that the Ẋ 7 and Ẋ 8 for recasting the noncentral beta into S-system form are

derived by the above theorem as follows:
Put

 ′(s) = X7X8:

Then

 ′′(s) = Ẋ 7X8 + Ẋ 8X7:

So, we have

 ′′(s) =
1
2s
[(�s− 2a) ′(s) + �(a+ b) (s)]

=
1
2
X−1
1 [(�X1 − 2a)X7X8 + �(a+ b)X6]

=
�
2
X7X8 − aX−1

1 X7X8 +
�
2
(a+ b)X−1

1 X6:

Therefore,

Ẋ 7 =
�
2
X7 − aX−1

1 X7

and

Ẋ 8 =
�
2
(a+ b)X−1

1 X6X−1
7 :

A.2. The tables for evaluation results

The evaluation results are given in Tables 1–5.
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Table 1
The initial values for calculating the form (BX)

a b � X1 (= s for beta) X4 X7
(m) (n) X2 X5 (= cdf: central for both) X8

X3 (= t for F) X6 X9 (= cdf: noncentral for both)

5.5 30 1.54929577464788720e−01 8.46794328864283186e−01 2.39499166968949517e+05
(11) (60) 25 8.45070422535211252e−01 5.42749109369440874e−01 1.0

1.0 5.44613129301171557e+03 2.85822822437959128e−03
5.5 45 1.08910891089108910e−01 8.69743827810119829e−01 2.80808457314026426e+05
(11) (90) 25 8.91089108910891103e−01 5.47131915885933573e−01 1.0

1.0 4.63862215013610512e+03 2.46344614244440241e−03
5.5 60 8.39694656488549629e−02 8.81906822658790057e−01 3.28676156048240024e+05
(11) (120) 25 9.16030534351145009e−01 5.49421653132873500e−01 1.0

1.0 4.26071453188992928e+03 2.27780137905972532e−03
5.5 80 6.43274853801169555e−02 8.91356037870450701e−01 3.96115234716603358e+05
(11) (160) 25 9.35672514619882989e−01 5.51185380665772717e−01 1.0

1.0 3.98878812226587024e+03 2.14378753342197963e−03
5.5 100 5.21327014218009449e−02 8.97166973831606152e−01 4.65348291890082299e+05
(11) (200) 25 9.47867298578199069e−01 5.52263619572691100e−01 1.0

1.0 3.83040415258585199e+03 2.06554295877193692e−03
5.5 30 1.54929577464788720e−01 8.46794328864283186e−01 1.72061435073492944e+08
(11) (60) 50 8.45070422535211252e−01 5.42749109369440874e−01 1.0

1.0 2.40494326061564079e+06 3.01026903603926603e−06
5.5 45 1.08910891089108910e−01 8.69743827810119829e−01 1.56031809229001552e+08
(11) (90) 50 8.91089108910891103e−01 5.47131915885933573e−01 1.0

1.0 1.60820327936249366e+06 2.06282167974606275e−06
5.5 60 8.39694656488549629e−02 8.81906822658790057e−01 1.59632394959358096e+08
(11) (120) 50 9.16030534351145009e−01 5.49421653132873500e−01 1.0

1.0 1.30171143932178780e+06 1.69244706267223280e−06
5.5 80 6.43274853801169555e−02 8.91356037870450701e−01 1.73434024696825802e+08
(11) (160) 50 9.35672514619882989e−01 5.51185380665772717e−01 1.0

1.0 1.10563026075734245e+06 1.45308479877452971e−06
5.5 100 5.21327014218009449e−02 8.97166973831606152e−01 1.91233382993567914e+08
(11) (200) 50 9.47867298578199069e−01 5.52263619572691100e−01 1.0

1.0 1.00047812972492748e+06 1.32377481742240787e−06



356
Z
.Y
.
C
hen,

Y
.C
.
C
hou

/C
om
putational

S
tatistics

&
D
ata

A
nalysis

33
(2000)

343–360

Table 2
The initial values for calculating the form (FY)

m n � X1 (= t for F) X4 X7
(a) (b) X2 X5 (= cdf: central for both) X8

X3 (= s for beta) X6 X9 (= cdf: noncentral for both)

11 60 1 8.46794328864283186e−01 3.13567645704238566e+04
[8.46794328864278e−01] [3.13567645704239e+04]

(5:5) (30) 25 71 5.42749109369440874e−01 1.0
[5.42749109369445e−01]

1.54929577464788720e−01 5.44613129301171557e+03 2.85822822437959128e−03
[5.44613129301172e+03] [2.858228224387e−03]

11 90 1 8.69743827810119829e−01 2.72522667131542148e+04
(5:5) (45) 25 101 5.47131915885933573e−01 1.0

1.08910891089108910e−01 4.63862215013610512e+03 2.46344614244440241e−03
11 120 1 8.81906822658790057e−01 2.52813079647850827e+04
(5:5) (60) 25 131 5.49421653132873500e−01 1.0

8.39694656488549629e−02 4.26071453188992928e+03 2.27780137905972532e−03
11 160 1 8.91356037870450701e−01 2.38419620772621274e+04
(5:5) (80) 25 171 5.51185380665772717e−01 1.0

6.43274853801169555e−02 3.98878812226587024e+03 2.14378753342197963e−03
11 200 1 8.97166973831606152e−01 2.29951313348348194e+04
(5:5) (100) 25 211 5.52263619572691100e−01 1.0

5.21327014218009449e−02 3.83040415258585199e+03 2.06554295877193692e−03
11 60 1 8.46794328864283186e−01 2.25273848737364337e+07

[8.46794328864278e−01] [2.25273848737365e+07]
(5:5) (30) 50 71 5.42749109369440874e−01 1.0

[5.42749109369445e−01]
1.54929577464788720e−01 2.40494326061564079e+06 3.01026903603926603e−06

[2.40494326061564e+06] [3.01026905e−06]
11 90 1 8.69743827810119829e−01 1.51427792507314496e+07
(5:5) (45) 50 101 5.47131915885933573e−01 1.0

1.08910891089108910e−01 1.60820327936249366e+06 2.06282167974606275e−06
11 120 1 8.81906822658790057e−01 1.22786994549474213e+07
(5:5) (60) 50 131 5.49421653132873500e−01 1.0

8.39694656488549629e−02 1.30171143932178780e+06 1.69244706267223280e−06
11 160 1 8.91356037870450701e−01 1.04389002929589767e+07
(5:5) (80) 50 171 5.51185380665772717e−01 1.0

6.43274853801169555e−02 1.10563026075734245e+06 1.45308479877452971e−06
11 200 1 8.97166973831606152e−01 9.44977522036453336e+06
(5:5) (100) 50 211 5.52263619572691100e−01 1.0

5.21327014218009449e−02 1.00047812972492748e+06 1.32377481742240787e−06
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Table 3
Comparisons of type I error probabilities for given levels of power

Case a=(m) b=(n) � 1− � = 0:8 1− � = 0:9 S-system types

(11) (60) 0.0177269641 0.0483114486 R & V
1 (11) (60) 25 0.0177269641 0.0483114486 (FY9): 1− Y5

5.5 30 0.0177269641 0.0483114486 (BX9): 1− X5
(11) (90) 0.0129191238 0.0381974512 R & V

2 (11) (90) 25 0.0129191238 0.0381974512 (FY9): 1− Y5
5.5 45 0.0129191238 0.0381974512 (BX9): 1− X5
(11) (120) 0.0107659820 0.0333939053 R & V

3 (11) (120) 25 0.0107659820 0.0333930953 (FY9): 1− Y5
5.5 60 0.0107659820 0.0333930953 (BX9): 1− X5
(11) (160) 0.0092710697 0.0299241466 R & V

4 (11) (160) 25 0.0092710697 0.0299241466 (FY9): 1− Y5
5.5 80 0.0092710697 0.0299241466 (BX9): 1− X5
(11) (200) 0.0084257620 0.0279042347 R & V

5 (11) (200) 25 0.0084257620 0.0279042347 (FY9): 1− Y5
5.5 100 0.0084257620 0.0279042347 (BX9): 1− X5
(11) (60) 0.0001220607 0.0005292381 R & V

6 (11) (60) 50 0.0001220607 0.0005292381 (FY9): 1− Y5
5.5 30 0.0001220607 0.0005292381 (BX9): 1− X5
(11) (90) 0.0000412818 0.0002143243 R & V

7 (11) (90) 50 0.0000412818 0.0002143243 (FY9): 1− Y5
5.5 45 0.0000412818 0.0002143243 (BX9): 1− X5
(11) (120) 0.0000212401 0.0001236418 R & V

8 (11) (120) 50 0.0000212401 0.0001236417 (FY9): 1− Y5
5.5 60 0.0000212401 0.0001236417 (BX9): 1− X5
(11) (160) 0.0000120231 0.0000773930 R & V

9 (11) (160) 50 0.0000120231 0.0000773930 (FY9): 1− Y5
5.5 80 0.0000120231 0.0000773930 (BX9): 1− X5
(11) (200) 0.0000082531 0.0000568557 R & V

10 (11) (200) 50 0.0000082531 0.0000568557 (FY9): 1− Y5
5.5 100 0.0000082531 0.0000568557 (BX9): 1− X5

Table 4
Computing quantiles corresponding to two power points

Case a=(m) b=(n) � 0.1 quantile 0.2 quantile S-system types

(11) (60) 1.9654266674 2.3449621010 R & V for computing F: t
(11) (60) 1.9654266674 2.3449621010 (FY9) for computing F: t = Y1

1 5.5 30 25 1.9654266674 2.3449621010 (BX9) for computing F: t = X3
(11) (60) 0.2648832954 0.3006551483 (FY9) for computing beta: s = Y3
5.5 30 0.2648832954 0.3006551483 (BX9) for computing beta: s = X1
(11) (90) 1.9919675879 2.3648867276 R & V for computing F: t
(11) (90) 1.9919675879 2.3648867276 (FY9) for computing F: t = Y1

2 5.5 45 25 1.9919675879 2.3648867276 (BX9) for computing F: t = X3
(11) (90) 0.1957941353 0.2242299133 (FY9) for computing beta: s = Y3
5.5 45 0.1957941353 0.2242299133 (BX9) for computing beta: s = X1
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Table 4 (Continued.)

Case a=(m) b=(n) � 0.1 quantile 0.2 quantile S-system types

(11) (120) 2.0059550346 2.3754201875 R & V for computing F: t
(11) (120) 2.0059550346 2.3754201875 (FY9) for computing F: t = Y1

3 5.5 60 25 2.0059550346 2.3754201875 (BX9) for computing F: t = X3
(11) (120) 0.1553192333 0.1788112615 (FY9) for computing beta: s = Y3
5.5 60 0.1553192333 0.1788112615 (BX9) for computing beta: s = X1

(11) (160) 2.0167885285 2.3835948392 R & V for computing F: t
(11) (160) 2.0167885285 2.3835948392 (FY9) for computing F: t = Y1

4 5.5 80 25 2.0167885285 2.3835948392 (BX9) for computing F: t = X3
(11) (160) 0.1217702529 0.1407990954 (FY9) for computing beta: s = Y3
5.5 80 0.1217702529 0.1407990954 (BX9) for computing beta: s = X1

(11) (200) 2.0234376418 2.3886193570 R & V for computing F: t
(11) (200) 2.0234376418 2.3886193570 (FY9) for computing F: t = Y1

5 5.5 100 25 2.0234376418 2.3886193570 (BX9) for computing F: t = X3
(11) (200) 0.1001441239 0.1161190350 (FY9) for computing beta: s = Y3
5.5 100 0.1001441239 0.1161190350 (BX9) for computing beta: s = X1

(11) (60) 3.6600614410 4.2283318822 R & V for computing F: t
(11) (60) 3.6608614410 4.2283318822 (FY9) for computing F: t = Y1

6 5.5 30 50 3.6608614347 4.2283318725 (BX9) for computing F: t = X3
(11) (60) 0.4016125098 0.4366813433 (FY9) for computing beta: s = Y3
5.5 30 0.4016125094 0.4366813427 (BX9) for computing beta: s = X1

(11) (90) 3.7246885683 4.2750566757 R & V for computing F: t
(11) (90) 3.7246885683 4.2750566757 (FY9) for computing F: t = Y1

7 5.5 45 50 3.7246885614 4.2750566652 (BX9) for computing F: t = X3
(11) (90) 0.3128279895 0.3431885384 (FY9) for computing beta: s = Y3
5.5 45 0.3128279891 0.3431885379 (BX9) for computing beta: s = X1

(11) (120) 3.7590024162 4.3002402791 R & V for computing F: t
(11) (120) 3.7590024439 4.3002403172 (FY9) for computing F: t = Y1

8 5.5 60 50 3.7590024366 4.3002403061 (BX9) for computing F: t = X3
(11) (120) 0.2562706927 0.2827369760 (FY9) for computing beta: s = Y3
5.5 60 0.2562706923 0.2827369754 (BX9) for computing beta: s = X1

(11) (160) 3.7859322067 4.3200399563 R & V for computing F: t
(11) (160) 3.7859322067 4.3200399563 (FY9) for computing F: t = Y1

9 5.5 80 50 3.7859321991 4.3200399448 (BX9) for computing F: t = X3
(11) (160) 0.2065273216 0.2289916098 (FY9) for computing beta: s = Y3
5.5 80 0.2065273212 0.2289916094 (BX9) for computing beta: s = X1

(11) (200) 3.8026228336 4.3323283664 R & V for computing F: t
(11) (200) 3.8026228336 4.3323283664 (FY9) for computing F: t = Y1

10 5.5 100 50 3.8026228258 4.3323283546 (BX9) for computing F: t = X3
(11) (200) 0.1729688206 0.1924269417 (FY9) for computing beta: s = Y3
5.5 100 0.1729688203 0.1924269413 (BX9) for computing beta: s = X1
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Table 5
Computing the p.d.f. and c.d.f. of the noncentral beta distribution at the point s (X1 or Y3) = 0:5

Case a=(m) b=(n) � p.d.f. c.d.f. Procedure

5.5 30 1.492192250467 0.937698141355 (BX1)
1 (11) (60) 25 1.492192250467 0.937698141355 (FY3)

5.5 30 1.492192250466 0.937698141355 Ding

5.5 45 0.056737126536 0.998790001677 (BX1)
2 (11) (90) 25 0.056737126536 0.998790001677 (FY3)

5.5 45 0.056737126536 0.998790001677 Ding

5.5 60 0.000637517151 0.999991063720 (BX1)
3 (11) (120) 25 0.000637517151 0.999991063720 (FY3)

5.5 60 0.000637517151 0.999991063719 Ding

5.5 80 0.000000510002 0.999999995149 (BX1)
4 (11) (160) 25 0.000000510002 0.999999995149 (FY3)

5.5 80 0.000000510002 0.999999995148 Ding

5.5 100 0.000000000172 0.999999999999 (BX1)
5 (11) (200) 25 0.000000000172 0.999999999998 (FY3)

5.5 100 0.000000000172 0.999999999998 Ding

5.5 30 5.176367428689 0.486833691139 (BX1)
6 (11) (60) 50 5.176367428689 0.486833691139 (FY3)

5.5 30 5.176367428689 0.486833691138 Ding

5.5 45 2.120314308968 0.924837196375 (BX1)
7 (11) (90) 50 2.120314308968 0.924837196375 (FY3)

5.5 45 2.120314308967 0.924837196374 Ding

5.5 60 0.183799195055 0.996300698618 (BX1)
8 (11) (120) 50 0.183799195055 0.996300698618 (FY3)

5.5 60 0.183799195055 0.996300698618 Ding

5.5 80 0.001601446203 0.999980118429 (BX1)
9 (11) (160) 50 0.001601446203 0.999980118429 (FY3)

5.5 80 0.001601446203 0.999980118429 Ding

5.5 100 0.000004493590 0.999999960158 (BX1)
10 (11) (200) 50 0.000004493590 0.999999960158 (FY3)

5.5 100 0.000004493590 0.999999960158 Ding
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