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Perfect Discrete Multitone Modulation with Optimal
Transceivers

Yuan-Pei Lin Member, IEEEand See-May Phoond/lember, IEEE

Abstract—Recently, discrete Fourier transform (DFT)-based

discrete multitone modulation (DMT) systems have been widely X y°

applied to various applications. In this paper, we study a broader

X
class of DMT systems using more general unitary matrices instead — y1

of DFT matrices. For this class, we will show how to design
the optimal DMT systems over frequency-selective channels 4

e L A
- 2 XM
with colored noise. In addition, asymptotical performance of " YMI M

DFT-based and optimal DMT systems will be studied and shown

to be equivalent. However, for a moderate number of bands, the Fig. 1. System model for ai/-band DMT system over a frequency-selective
optimal DMT system offers significant gain over the DFT-based channel.
DMT system, as will be demonstrated by examples.

Index Terms—bMT, optimal DMT, perfect transceiver, zero ISI.  channel ISI by introducing redundancy using a multirate pre-
coding technique has been studied by Xia in [7].
In the DMT system, the maximum bit raf@, .., depends
on the choice of the transmitting and receiving filters. The use of
R ECENTLY, there has been considerable interest ipore general orthogonal transmitting filters instead of DFT fil-
applying the discrete multitone modulation (DMT)ers is proposed in [8]. From the viewpoint of multidimensional
technique to high-speed data transmission over frequengynal constellations, itis shown that for additive white Gaussian
selective channels such as asymmetrical digital subscribgjise (AWGN) frequency-selective channels, the optimal trans-
loops (ADSL's) and high-speed digital subscriber loopgitting and receiving filters are eigenvectors associated with the
(HDSL's) [1]-{4]. Fig. 1 shows an\/-band DMT system over channel. However, in HDSL applications, the dominating noise
a frequency-selective chann€l(~) with additive noisec(n). s often colored noise known as near end cross talk (NEXT) [1].
The channel is divided intd{ bands using the transmitting |, this paper, we will use the polyphase approach that has
filters £3(z) and receiving filterdy (z). The input bit streamis epjoyed great success in filter bank theory to study the DMT
parsed and coded as modulation symbols, e.g., PAM or QAMystem [2], [9]. We will derive a modified DFT-based DMT
In [5] and [6], Kalet shows that the DMT system with ideakystem that has a better noise rejection property but the same
filters can achieve a signal-to noise-ratio (SNR) within 8-9 dBpst as the traditional DFT-based system. Moreover, optimal
of the channel capacity. transceiver for colored noise will be studied in detail. In par-
In practice, to cancel intersymbol interference (ISI), usuallyicyiar, we will show how to assign bits among the bands so
some degree of redundancy is introduced, and the interpolatiggt the total transmitting power can be minimized for a given
ratio N' > M [1], [2]. The length of the transmitting and re-p;t rate. Based on the optimal bit allocation, the optimal trans-
ceiving filters is usually alsaV. In the widely used discrete cgiver is derived. In [6], the DFT-based DMT system is pro-
Fourier transform (DFT) based DMT system, the transmittingosed as a practical DMT implementation, but its optimality
and receiving filters are DFT filters. Redundancy takes the forgys not been discussed. We will show that the DFT-based DMT
of cyclic prefix. For a given probability of error and transmissiogystems are asymptotically optimal, although they are not op-
power, bits can be allocated among the bands to achieve Mgy for a finite number of bands. Furthermore , the asymptot-
imum total bit ratef;, max. Very high speed data transmissionca| performance of the DFT-based DMT system is the same as
can be achieved using a DFT-based DMT system at a relativgdyt of the DMT system with ideal filters in [5], [6]. Although
low cost [1]. This technique is currently playing an importanthe pFT-based DMT system is asymptotically optimal, the op-
role in high speed modems for ADSL and HDSL [3]. Cancelingma transceiver provides significant gain over the DFT-based
system for a modest number of bands. Examples will be given

. . _ to demonstrate this.
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DMT systems. For this class, we will derive the optimal DM1
system for a given channel in Section V. The asymptotical pe
formance of the optimal DMT and the DFT-based DMT systel
will be studied in Section VI.

B. Notations

1) Boldfaced lower-case letters are used to represent vectt
and boldfaced upper-case letters are reserved for matric« ot < roceiver >
The notationsA” and A" represent the transpose and trans-
pose-conjugate ofl. Fig. 2. Polyphase representation of the transmitter and the receiver.

2) The functioné(n) is defined as

where theM x N matrix § has[S]x, » = hx(n). The imple-
§(n) = 1, n=0 mentation of the receiver is as shown in Fig. 2. Using polyphase
10, otherwise. representation, we can decompose the channel as

3) The notation dia@, a1, - --ay—1) denotes amd x M C(z) = Co(z™) + CL(zM)z 1 + -+ + On_1 ()2 VL.

diagonal matrix with diagonal elemenis. ) .
It can be shown [9] that thé&/ x N system incorporating the

delay chain, the channél(>), and the advance chain in Fig. 2

can be redrawn as in Fig. 3. Thé x N channel matrixC(z)
Consider Fig. 1, where ai/-band DMT system is shown. is defined as

U_s_ually, _the channel is modeled as an LTI fiI_t’é(z) with ad- Colz) 2 Oy_1(z) - 2 'Ci(2)

ditive noisee(n). Assume that’(z) is an FIR filter of orderL C1(2) Co(z)

(a reasonable assumption after time domain equalization) an@(») =

e(n) is a zero-mean wide sense stationary random process. For : :

a given number of band¥, the interpolation ratiaV is chosen Cn-1(2)  COn-2(z) - Co(2)

asN = M + L. Redundancy is introduced so that the re- ) ) 1)
ceiver can remove ISI due 6(z) and decoding can be per_Matrlces in the above form are known as pseudo-circulant ma-

formed blockwise. As the interpolation ratlé > M, we say trices,_and their properties can be foun_d in [9]. With the as-
that the system is over interpolated. The filtBjgz) andHy () Sumption that the channél(_zz is an FIR f'lt‘erOf orderL, we

are called transmitting and receiving filters, respectively. In tHf@n WriteC(z) = co +c127" + -+ + cpz” 7. The channel
DMT system,F},(~) andHy(») have length=N. When the out- matrix C(z) is pseudo-circulant with the first column given

Il. SYSTEM MODEL AND POLYPHASE REPRESENTATION

T ..
putsin, k = 0,1, ---M — 1 are identical to the inputs,, PY (¢ ¢ --- ¢ 0 --- 0)".Itcan be partitioned as
k=0,1,---M — 1in the absence of channel noise, we sa§ constant matrix and a transfer matrix with
that the system is ISI-free or perfect reconstruction (PR). Cy Ci(»)

The transmitting filterd", (=) haveN coefficients C(z) = o T )

XM  NxL
N_1 whereC|, is a lower triangular Toeplitz matrix given by
Fk(z): z_:ofk(n)z . co 0 0 0
c c 0
We can write thel x M transmitting bank as ' 0

cr, Cr—1 0

(Folz) Ii(z) -+ Fu-1(2)) Co=|0 o o|. ©)

=(1 =zt ... »~(N-IH@

where theN x M matrix G has[G], x = fx(n). The imple- 0 0 L -t <o
mentation of the transmitter is as shown in Fig. 2. Let the re- : : I
ceiving filters beH;(z) = Ef)z_ol hi(n)z™. (Noncausal filters 0 0 0 - ¢f

are used here for notational conveniende;- 1 delays can be

added to obtain causal filters.) In a similar manner, we can wri'tAe Perfect R ion Conditi
the M x 1 receiving bank as . Perfect Reconstruction Condition

From Fig. 3, we see that the overall transfer func) of
Ho(z) 1 the DMT system is

=
T~
N
~—
™

=5 : T(z) = SC(2)G. 4)

Hj\l—.l(z) 2Nl WhenT(z) = I, the DMT system has the ISI-free property.
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M N N W — M A M-pt paralle! cyelic channel cyclic serial/ M-pt | V%
xﬁ c z c@ z t S z X _4 IDFT serialVHP"ﬁx removal ™| parallel || DET | * YCpyy
- Fig. 5. M-band DFT-based DMT system.
T(z) o . . .
the M -point inverse DFT of each input block and adding cyclic
Fig. 3. Polyphase representation of the DMT system. prefix of lengthL [10]. This is equivalent to choosing the inter-
polation ratioN as
Tin(2) = | Hy (@)

N=M+L.

Fig. 4. Equivalent multirate system for the transfer funcflan (z). In general, the length of the prefik is smaller thanl/. The

) ) redundancy allows the receiver to remove ISI, and the overall
B. Interchange of Transmitter and Receiver system is perfect. The receiver consists ofiéirpoint DFT ma-
One immediate advantage of the polyphase approach is this¢ and M scalarsl/C fork =0, 1, ---, M — 1, whereCj
it tells us that we can interchange the transmitting and receiviage thei/-point DFT of the channel impulse response [10]. It
filters and still preserve the PR property. To see this, observas the great advantage that the whole system is almost channel
that the matrixC(z) is Toeplitz. It satisfies independent, except for the scalarsl/Cy,.
With cyclic prefix added, the transmitter is given by

C(Z) = JNCT(Z)JN (5)
wi
whereJ y is the N x N reversal matrix. For example G= wt
Jy = <(1) (1)) . whereW is the M x M unitary DFT matrix with

1 —3(27/M)kn .
Note thatJ xJx = I. Using this fact and (4) and (5), we can [Wlkn = v J@m/A) forO<k,n<M-1 (6)

et
g andW is theM x L submatrix ofW that contains the ladt

T (2) = (G IN)C(2)(IxST). columns ofW (assumingL < M). The receiver is

Therefore, if a DMT system with transmitter and receiver pair S=r"(0 W) (7)

. T T .
(G, 5) is perfect, then the DMT systenf{ 5™, G"Jy)isalso oo s the M x M diagonal  matrix
perfect. This implies that we can exchange the transmitting fﬁ’ia@(C Ci, -, Ch1). The transmitting and receivin
ters Fy.(») and receiving filtersH (), and the system is still Iters g;e lrés e’cti\j\éf ' 9 g
perfect, even when the channel is a frequency selective one. 'IIHS - resp y

result will be used later in Section IIl. N1
Fk(z) :W(L—]W)k Z W_nkz_n,
C. PR Condition on the Transmitting and Receiving Filters n=0
M-1

The polyphase representation allows us to redraw the multi: 1 . nk_n  _i2n/M
rate filter bank in Fig. 1 as th&/ x A LTI system in Fig. 3. Hi(z) = Cr z Z W2, wheret = e=/Z7/A0.
Note thatl},, (=) is the transfer function from theth input to =0
thekth output; thereforel},, () represents the multirate systemThe receiving filters are DFT filters of lengfid, and hence, the
in Fig. 4. By applying the so-called polyphase identity [9], sucfiequency responses will have a main lobe of wigitf 1.
an interconnection yields an LTI system, and the transfer func-Now, if we exchange the transmitter and the receiver (with
tionis the zeroth po'yphase ﬁk(Z)C(Z)Fn(Z) Therefore, we S“ght modiﬁcations), we get the modified DFT-based DMT

have system [15],
_ wi —1
Tin(2) = (Hi(2)C(2) Fn(2)) | v - G=|"y ) S=I"[WW

The PR condition can be also be expressed as whereW is the M x L submatrix of that contains the first

(Hi(2)C(2)Fo(2)) v = 6(k—n), for0 <k n< M—1. L columns of# . The transmitting and receiving filters are now
M-1 N—1

; 1
Since(Hi(2)C(2)Fn(2)) v = (Fn(2)C(2) Hi(2)) v weean F(z)= > W™ Hy(z) = Y W™
interchange the transmitting and receiving filters without af- ne0 Ch 0

fecting the PR property. The modified system has the same complexity as the conven-

tional case. However, the new receiving filters are DFT filters
with length V instead ofM in the conventional case. This al-

The block diagram of the DFT-based DMT system is showinws the new system to enjoy additional advantages. First, the
in Fig. 5. The transmitter performs two operations: computingew receiving filters have a narrower bandwidthy N. Fig. 6

[ll. M ODIFIED DFT-BASED DMT SYSTEMS
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20t 1
—— traditional € T
modified > U
10}
a0}
© ot
Fig. 7. Block diagram of the general receiver solution.
H
-10} R % i
. " = wherelU andV are, respectivelyy x N andM x M unitary ma-
-20 LANUUUIN = trices. The column vectors &f are the eigenvectors 61,C5
0 0.005 0.01 0.015

and the column vectors & are the eigenvectors 6f; C. The
Fig. 6. Magnitude responses of the first receiving filters in the conventiondf@tlix A is diagonal

DFT-based DMT system and the modified systemZfoe 32 andM = 256.

(frequency normalized b@). A= diag(Ao, Ag, o, )\Mil)' (11)

gives a comparison of the conventional and new receiving file diagonal elements, are the singular values 6f,, which

ters for the same transmitting power. Only the first receivin@f€ Positive a€’ has full rank. Therefored —* exists. The SVD
filters of these two systems are shown as the other receividgCo immediately gives us one possible choiceSosuch that
filters are shifted versions of the first filter. The narrower maif'€ PR condition in (9) is satisfied

lobe in the modified case gives a better performance in rejecting T 1T

out-of-band noise [4]. Moreover, the new receiving filters have S=G VA~ Uj. 12)

longer length. The channel noise will be averaged over a IongerH the ab i . | ol |
block, and the effect of impulsive noise will be reduced. owever, the above equation gives only one possibie Solu-

Note that although the proposed scheme has potential addé?lr—]' To obtain all solutions, we note that the PR condition in

tage when the channel noise is narrowband or impulsive, its p ) only requires thaf be a left inverse oCoGo. As CoGo is
formance is not necessarily better in all types of channel en&_dmensmnN x M, the receivesS is not unique. In fact, we
ronments. We can always find a channel environment where choose
conventional system performs as well or better.

UT

_ Ug
S=GIvA~l(1 A)< ) (13)
1

V. GENERALIZED PERFECTDMT SYSTEMS
The transmitter of the modified DFT system can be viewed &@ergA ISan arbitrarny/ x L matrix. The er>_(|l_3|I|ty ofAcan b_e_
the coding of the input block of siz&l using DFT vectors plus gxploned to improve t_he frequency SE|eCt'Y'ty of the recenving
the padding of. zeros. The signal in thith band is transmitted f||ters_ [11] orto minimize the total output noise power. The dis-
using thekth DFT vector. We can generalize the system by usir%JSSIon of the later is given next.

the more general orthogonal vectors for transmission instead of

DFT vectors. The transmitter becomes a general unitary matﬁx MMSE Receiver

followed by the padding of. zeros, i.e., When the DMT system is perfect, the output ndise Z —
comes entirely from the channel noiséNVe define the average
G- <G0> (8) Output noise powef as¢ = (1/M)E(&"¢). To analyze the
0 output noise, we draw in Fig. 7 the general rece§én (13)

whereGy is an arbitr.aryM x M uni.tary matri>§. As the channel ¢ =U%, and n=0U7¢ (14)
has ordel, there will not be any interblock interference (IBI)

o

due to a nonideal channel. With the partition of the channel ma- v=e +An (15)

trix C(z) in (2), it follows that q=A"1v (16)
ée=Glvq (17)

C(Z)G = C()Go
] ] ] N Observe that the last paﬁgV is a unitary matrix and that
whereCy is as defined in (3). Now, the condition for perfechnitary matrices preserve input energy: therecheéTé) _
reconstruction becomes E(q"q). As A~ is a diagonal matrix with positive diagonal el-
ements,E(q" q) is minimized if o7, is minimized for eachk.

SCoGo =1. ©) However, vy is related to the vectors andn by

This means tha$ should be a left inverse of the constant ma-
trix CoGy. Using singular value decomposition (SVD), we can
decompos&’, as

v, =[x +ain

where[e/] denotes theéith element ofe/, anda} is the kth
A - - row of A. Now, the minimization of-, for eachk can be con-
Co=[UgU, V' =UoAV (10)  sidered as a linear estimation probleas; should be the op-
0/ vum ; ; ; ;
U timal predictor ofe}, given the observation vectar. By the
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0.93

Therefore, the firsL — £ samples of each sizd + ¢ block con-
tain information from the previous block. The number of sam-
ples that contains no IBI available to the receivefis + ¢) —
(L—4¢) = M+ (2¢ — L). Therefore, we need — L > 0

or {min = [L/2]. SupposeL is even and’ = L/2. Then, the
IBI-free samples are the lagf samples of each block. For the
transmitter input blocle, the receiver get€ Gox, whereCy,

is as defined in (3). Therefore, the clean sample Aoz,

09251

092r

09151 . . .
whereCj is the bottomAM x M submatrix ofCy. That is
0'91 N . N CL/2 ... CO 0 ... 0
-0.1 -0.05 o] 0.05 0.1
p
. ) . . CL Cr/2
Fig. 8. Plotof the ratio of the average noise power for the MMSE receiver over
the average noise power for the receiver in (12) for the chanrepz 1. Cio= 0 . . . 0
. . . . L Co
orthogonality principle, the optimal choice of is given by
A= —E(n?)(E(nn?))"1. Using (14), we have
0 0 e - crp/ yum

A= -UrRyU,(U'RNyU) . . .
o BnUL (U, By U) As long asC is nonsingular, we can inve€1,G, to recover

whereRy = E(ee”) istheN x N autocorrelation matrix of.  +

The optimal solution ofd is zero ife’ andn are uncorrelated.
One case where this happens is when the channel agigds V. OPTIMAL TRANSCEIVERS

white. The noise vectarhas autocorrelation matrity = oll We first derive the bit allocation formula for the generalized
and after the unitary transformatiéff , the vectorg’ andn are  DMT system such that the transmitting power can be minimized
uncorrelated. for a given bit rate and a probability of symbol error. Then, we

Example 1: Let the channel b&(z) = 14 pz~" with @ show how to design the optimal transceiver for arbitrary colored
NEXT noise source [1]. Ag changes from-1to 1, the channel poise.
changes from a lowpass filter to a highpass filter. Usings
a parameter, we can observe the gain of using the MMSE - Bit Allocation
ceiver in different channel environments. For the same trans—l_et the number of bits allocated for tih band bé: then
mitter Gy = V, we compute the average output noise pow ! '

e L e average number of bits per symbdiis (1/M) > 2" by,
€ when the receiver is as in (13.) an_d the average output NOIRE account for the bit rate reduction due to zero padding, the
power&,,ms When MMSE receiver is used. Fig. 8 shows thgvera e bit rate, is
ratio &,,.ms. /€ as a function of the parameter 9 b

M-1
B. Minimum-Redundancy DMT Systems Ry = % b= % > b
In the generalization of (8), each input block of si£ is k=0

passed through a unitary transformation, and teneros are 1pqin
appended to each block. As the channel has akdétere isno ;a1 hower of theith band at the receiver end due to &

block overlapping. The receiver can easily perform bIockwis&operty. Suppose the output noise power ofittieband is52 .
decoding as there is no interblock interference (IBI). However o given probability of erroP., most modulation sysiéms
zero padding introduces redundancy and equalization is don%ﬁﬁler high bit rate assumption satisfy

the expense of a data rate losdgf M + L). The question that

arises is the following: Is it possible to reduce the amount of zero o2 — 2252 (18)

padding without introducing IBI? The answer is in the affirma- o *

tive. With minor conditions on the channgln), the number of where the constantdepends ot.. For example, in the case of
padding zeros can be halved. In particular, the minimum numigsM, the probability of errof®. is related to signal powef%k
of padding zeros i$L /2], where the functioria]| denotes the and noise powedﬁ—gk by
smallest integer that is greater than or equal to the number
Observe that to make successive block decoding indepen- 352
dent, the receiver requires at ledgtsamples that are not con- P.=2(1-2"")Q < W)
taminated by IBI from adjacent blocks. Suppose the number of e
padding zeros i¢ < L and that the output block of the trans<, nore
mitter has sizé// + £. After passing through the channel, the in-
formation of each input block spreads owdr+ L samples, and
the information spills over to the next block By— £ samples.

put power of théth band is«;ik , which is also the output

Qly) = / 2dt, oy >0.
Y

5~
B
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Under high bit rate assumption, we hagé — 1 ~ 2%,
This approximation leads to (18) where is given by
c=1/3(Q7H(Fe/2))%.

Define P(R;, P., M) as the transmission power needed in
anM-band DMT system for a given bit ra#&, and probability Fig- 9. Receiver block diagram for the derivation of the optimal DMT system.
of error P,. As the unitary transformatiof¥, preserves energy,
the average transmission power is

problem of minimizing the producf[ﬁigl a—gk. Let R be the

autocorrelation matrix oé; then,52 are the diagonal entries
of R, and[],1! 62 = [Tary  [Rluk- The matrixR is related
to R, which is the autocorrelation function &f by

1 M-1
_ 2
P(vapev M)—M Z O—ack'
k=0

Applying the arithmetic mean (AM) over geometric mean (GM)
inequality to the above equation and using (18), we have

R=QRQ". (23)

Using the Hadamard inequality for positive definite matrices

M—1 M [17], we have
P(R,, P., M) > 2 ’
(A )z <k1;[0 0”’) M-1 M-1 ) i
M—1 /M H &Ek = H [R]xr > det R=det R
:C22R5(N/J\4) < H &gk> . (19) k=0 k=0
k=0 which is a fixed quantity independent €. The equality holds

and only if the matrixi is diagonal (see, e.qg., [9]). Therefore,

The equality holds if and only if the bits are optimally aIIocatelL imalO is th ; X hat d lates
according to the optima ﬁ){_ﬁl EQe unitary matrix}, that decorrelates. In

this case]],_," 62, is minimized and is equal tdet R. The
X 1 M- minimum power required in the optimal DMT system is
be =b—logy Ge, + 77 log, ;E) G, - (20)

Popt(Ry, Po, M) = 22BN/ M (et R)YM. (24)
Let us define the coding gain of bit allocati6 as

_ Pdirect(va P€7 M)
CG =
P(Ry, P, M)

ComparingP,,i(Ry, Pe, M) andPypect(Ry, Pe, M) in (21),
we obtain the coding gain

1 -
—tracéR)
whereP et (R, P, M) is the power needed when there is = M41M
no bit allocation. Without bit allocation, we havg = b, for (det R)Y/

k=0,1,---M —1; therefore Note that this is the coding gain formula for the optimal trans-

form coder when the input random vector has autocorrelation

M-1
Puiirect(Ry, Po, M) = c22Rb(N/M)% Z (;—gk_ (21) matrix R. The optimal DMT is given by
k=0
VQ?; —17/T
Using (19), the coding gain of bit allocation is G= < 0 » S=00ATUg. (25)
1 =, Note that the receiver can be replaced by the MMSE receiver
M Tey, corresponding to the above choice Gf as derived in the
CG = =0 >1 (22) previous section to further minimize the average output noise
M—1 M power
< H 5’@) AWGN Channels:When the channel noise is a white process,
k=0

The above inequality follows from thelM over GM in-

the autocorrelation matriy = oI is a diagonal matrix, and
so isR. The noise vectoé is already uncorrelated; therefore,

equality. The coding gain is th&M over theG M of the output @ = I. The optimal transmitte&, is simplyG, = V, and the

noise variances? . Note that this ratio depends on the choicgeceiver isS = Ug . (This optimal solution in this case is consis-

of unitary transformationG, of the transmitter. In the next tentwith what Kasturiat al.have obtained for AWGN channels

subsection, we show how to desigh so that the coding gain from the viewpoint of multidimensional signal constellations.)

can be maximized. We call this design of DMT system AWGN-optimal as it is op-
timal for AWGN noise. The coding gain is

B. Design of Optimal Transceivers Mt

1
i pDRYEY:
k=0
M—1 1/M

k=0

Fig. 9 shows the individual parts of the receivgiin (12).
We see the last part of the receiver is the unitary matrix
GOTV. Let us call it@Q. As @Q preserves input energy, we have
Yot a2 = Yalst 62, which is a quantity independent
of G. The maximization of coding gain in (22) becomes the

Cgmax =
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11 T T T T

where
105} o , /M
M-1 S ( w) dw
Ju. 2 ~ee
1ok EO — <H [W |Fk c | |C(GJ“’)|2 27T>
95f where S..(¢’*) is the power spectral density of the channel
optmmse noisee(n) in Fig. 1. The design of the optimal DMT system
ot - mmse for minimizing transmission power becomes the problem of de-
. -- Gopt signing orthonormal filterg, (e/*) such thatt is minimized.
85l /_,.f ...... CGAWGN—opt | This problem is the same as designing optimal orthonormal fil-
; ters for maximizing coding gain in filter bank theory [12]. The
C . ) ) filters L, (e?*) should be the optimal orthonormal filters for the
% 10 20 30 40 50 power spectruns.(c’*)/|C(e/*) 2.

M

Fig. 10. Comparison of coding gains for different DMT systems.

VI. ASYMPTOTICAL OPTIMALITY OF DFT-BASED DMT

SYSTEMS

where),, are the diagonal entries of the diagonal makigiven  Although the DFT-based DMT systems are not optimal in

in (11). general, they are asymptotically optimal, regardless of the type
Example 2: Let the channel b€'(z) = 1+ 0.5z~ with  of channel noise. The performance of the DFT-based DMT sys-
a NEXT noise source. For the same probability of error angms approaches that of optimal DMT systems as the number of
same bit rate, Fig. 10 shows the coding gain for different DMandsA/ increases. In particular, for a given error probability
systems: and bit rate, the power required in DFT-based DMT system ap-

1) coding gairCG awan—_opt for AWGN-optimal DMT, i.e.,
the system with transmitte®y, = V and receivelS =
U()A_l;

2) coding gairCg,,, for the optimal DMT in (25);

3) coding gainCg,,,ms. for the DMT with AWGN-optimal

proaches that required in the optimal system whérs suffi-
ciently large.

Let R;, be thek x k autocorrelation function of the noise
process:(n). UsingR = Ul RyUgandR = A"'R'A~', we
can rewrite the transmission power in (24) as

transmitterGg V and a corresponding MMSE re-
ceiver;

4) coding gainCG pt. mmse for the DMT with the optimal
transmitter design in (25) and a corresponding MMSE

1/M
receiver. < )
k=0

H A
k
Optill al DMT SyStell s with Ideal Filterdn the DMT Sys-

tems that we have discussed so far, the transmitting and gigder optimal bit allocation. For the DFT-based system, the re-
ceiving filters have lengthV. The transmittei and receiver ceiver is as given in (7) so that the minimum power under op-
S are constant matrices. If we allow the DMT system to hawfmal bit allocation is

longer filters, we gain extra design flexibility. For example, it

can be shown that it is possible to obtain perfect reconstruction 1M
DMT transceiver without introducing redundancy to the system [WRMWT]M)
if ideal filters can be used [11]. In this case the transmitter and

the receiver aré/ x M transfer matrice€¥(c?) andS(c’*).  Porr(fy, P, M) = Y
The channel matrixC(e’*) is M x M and pseudo-circulant.

Suppose the transmitt€¥(c’<) is orthonormal, i.e.G(c?) is

unitary for allw ([9, ch. 6]). When the channel(z) has no

zeros on the unit circle, it can be verified that the channel ma-

trix C(e?*) is nonsingular. In this case, if we choose whereW is the M x M DFT matrix, andCj. is the M-point
DFT of the channel impulse response.

Using the distribution of eigenvalues for Toeplitz matrices
[13], we can show that (see Appendix A)
thenthe DMT system is perfect. We can verify that the receiving

) 1/M ) 1/M

w Qd
In|C ()| ) (28)

7)opt(-va P€7 M)

g (det(UT RN U NYM
22Rb/\//\/f( € (JwOl N 0)) (26)

-1

<J\l
c22R1, ]\‘r/]\f k=0
M-1
< II1c?
k=0

(27)

S(eh*) = GT(ej“")C’_l(ej“’)

filters have the fornd. (e?~) = Fy (e?*) /C(e?*). Using a pro-
cedure similar to that in Section V-A, it can be further verified
that under optimal bit allocation, the transmitting power is

M-1
li 2
J\l—)OO < H A

k=0

M-1
lim <H |C|?
M—oo

k=0

F)idea,l — c22R5(]\7/J\4)E0
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In addition, using properties of positive definite matrices, we " " i ! T
can show that (see Appendix B)
o9f
. T /M " joory A
lim (det(Uy RyUy)) = exp InSe(e?“)— ). 08f
M—oo —x 27
e 1r ___ -
On the other hand, it can be shown that [14] 071 I T
06} ,-""’
M1 /M s — AWGN
. / .
m < kHO [WRMWT]kk> o5l -=-= NEXT noise source |
o= 1
=ex </7T In S (c’“’)d—w> (30) ' L .
- _77 e 2 )’ 04 20 40 60 80 100 120

M
With the equalities in (28)—(30), we can establish that ) ) )
Fig. 11. Asymptotical performances of the DFT-based and the optimal DMT
systemsThe ratio of the power needed in the optimal DMT system over the
power needed in DFT-based system for the same probability of error and the

]\}igloo Popt(Ry, P, M) same bit rate for two types of channel noise.
= lim P Ry, P., M
W Porr (R ) ' APPENDIX A
ks jw
_ 2P exp < / " See(;zw )2 d_w> @ PROOF OF(28)
— |C(e)? 2m Equation (28) is a result for sequences of asymptotically

This is the same bound achieved in [5] by studying the asymeguivalent matrices. Define the strong ngjfm|| and the weak
rli)orm| -| of ann x n matrix A, respectively, as

totical performance ol -band DMT systems with ideal brick-

wall filters. t AT A 1/2
Note that the DMT system developed in [8] does not achieve |4]| = max <” - ”)
this bound asymptotically. To see this, &fz) = 1; then, the v vy

transmitter and receiver are identity matrices. The coding gain 1 ; 1/2
of the system in [8] is one, regardless of the number of bands. On |A| = <; tracg A A)) .
the other hand, the coding gain corresponding to the asymptotic

bound in (31) is always greater than one if the channel noiseligt A, andB,, be two sequences ofx n Hermitian matrices.
not white. The subscript: of 4,, denotes the sequence index and indicates

Example 3:Let the channel beC(z) = 1 + 0.5z7L. that the size of4,, is n x n. The size of the matriced,, grows
For the same probability of error and same bit rat&ith the sequence index The sequenced,, andB,, are said
we can obtain the ratio of power needed in optimdP be asymptotically equivalent [13] if
system over the power needed in the DFT-based syste . _
oot Bo. P MY (P (B P M)) using 26) and (27 1Aall: 1Ball < My <00, and  lim |4, — B, | =0

Supposed,, and B,, have eigenvaluesy, ; and 3, i, and

Popt(Ry, P, M) Mo £ ok, Br, ke < M. In[13], Gray shows that
Porr(Ry, Py, M) = =
M—1 /M lim — Z Flon, k)= lim — Z F(3, 1)
<H |Ck|2> (det(UY RyU )Y/ M T o TS0
— \k=0 7 AT where F(-) is an arbitrary function that is continuous on
M-1 M-1
I1 % [ W R W Mo, M) >
k MW Kk To show (28), we observe thgt, |, fork =0, 1, ---, M —
k=0 k=0 1, are the eigenvalues dfy; = C Cy, where the subscrigt/

Note that the ratio is a quantity independent of the given Bndlcates thaid, is anM x M matrix. Now, we construct a

rate and probability of error. Fig. 11 shows the ratio as Fpquence of matrices that is asymptotically equivalem i

O N "
function of M for two different noise sources: the AWGNand their eigenvalues af€;|". PartitionCy as
and NEXT noise source. From Fig. 11, we see that the ratio Coo
(Popt(Bs, P, M))/(Porr(Rs, P., M)) approaches 1 as the Co=1cy
number of bandgd/ increases. However, in the colored NEXT ) ] ]
case, the ratio approach 1 only for very ladyk the optimal WhereéCoo is anM x M matrix. Define
system provides significant gain for a moderate number of - Co:1
bands. Co=Cot|{ o )



1710

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2000

Then, it can be verified that is anM x M circulant matrix ~yy_;. Using the interlacing property of eigenvalues for posi-

with the zeroth column given by

(co a c. 0O 0)".

It is known that circulant matrices can be diagonalized by DFT

matrices

Co = wrwt

tive definite matrices [17], it can be shown thiat (U3 RyU.)

is bounded between the product of the largest eigenvalues
and the product of thé/ smallest eigenvalues

Yoy - -1 < det(UERNUG) < vpypar - v—1-

Suppose the power spectral densfty.(c’*) of the channel
noise has minimun9,.,;, > 0 and maximunb ., < co. Then,

these eigenvalues are bounded betw&gp and.S,,.«, in par-

whereW is the M x M unitary DFT matrix as defined in (6). ticular, S, < 70 <71 <+ ++ < Y1 < Smax. It follows that

The matrixI’ is diagonal, and the diagonal elements éfg

which is the M -point DFT of the channel impulse response

c(n). Letting By, = C’ZC’O, we then have
By =Wrirwt.

The diagonal terms df'I" are|Cy|? so that the eigenvalues of

B, are|Cy|?. It can be verified thatd;; and B, are asymp-
totically equivalent; therefore

1 M-1 1 M-1
- - 2 — - - ] 2'
l\}inoo M Z In )\k l\}inoo M Z n |Ok|
k=0 k=0
Note that

] M1 M—1 /M
exp(M Z In A%) = <H A,%)
k=0 k=0

and

/M
|Ck|2> :

/M
Az>

| Mo /M
: 4 2 2
J\}lgloo eXp<M ;0 ln |Cy| ) |Cy| ) .

Observe tha€’y, fork =0, 1, ---, M —1 are theM-point DFT
of ¢(n); they are samples af(c’~), i.e., C), = C(eI2F7/M),
Therefore

1 M-1
exp(M Z In |Ck|2>
k=0
Letting M go to infinity, we obtain

] M1
: 2
]\}Enoo exp <M kE_O In )\k>

and

(i

k=0

lim
M—oo

(i

k=0

M-1
= lim H
M—oo

k=0

| M=l
: = 2
J\}linoo exp(M kz_o In |Cy| )

([

Equation (28) follows.

o2 AW
In |C(&? )|2%> .

APPENDIX B
PROOF OF(29)

Note that the matriXtV2 RxU, is the M x M leading prin-
ciple submatrix ofP = UTRNU, whereU is as defined in
(10). Let the eigenvalues d? be ordered asg < 71 < -+ <

det(US RyUo) <~vpyp41l---yn—1
_ det P
Yoyr - YL—-1
< det P
V&
det P
<

min
det(Ug RyUo) = 7071 -+ - Yar—1
_ det P
YMYM+1 " YN-1
S det P
B '71%’—1
S det P
- Sn%ax

Combining (32) and (33), we have
det P
SL

max

(32)

(33)

det P
-

In addition, observe thatet P = det Ry . The matrixRy is
Toeplitz, and itis theV x N autocorrelation matrix af.. (¢’).
It is known that [16]

lim (det Ry)YN = exp </

7
N—oo _x

< det(UJ RyU,) <

(34)

ln See(ej“")d—w> .

2

Letting M go tooo in (34), we arrive at (29).
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