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Perfect Discrete Multitone Modulation with Optimal
Transceivers

Yuan-Pei Lin, Member, IEEE,and See-May Phoong, Member, IEEE

Abstract—Recently, discrete Fourier transform (DFT)-based
discrete multitone modulation (DMT) systems have been widely
applied to various applications. In this paper, we study a broader
class of DMT systems using more general unitary matrices instead
of DFT matrices. For this class, we will show how to design
the optimal DMT systems over frequency-selective channels
with colored noise. In addition, asymptotical performance of
DFT-based and optimal DMT systems will be studied and shown
to be equivalent. However, for a moderate number of bands, the
optimal DMT system offers significant gain over the DFT-based
DMT system, as will be demonstrated by examples.

Index Terms—DMT, optimal DMT, perfect transceiver, zero ISI.

I. INTRODUCTION

RECENTLY, there has been considerable interest in
applying the discrete multitone modulation (DMT)

technique to high-speed data transmission over frequency
selective channels such as asymmetrical digital subscriber
loops (ADSL’s) and high-speed digital subscriber loops
(HDSL’s) [1]–[4]. Fig. 1 shows an -band DMT system over
a frequency-selective channel with additive noise .
The channel is divided into bands using the transmitting
filters and receiving filters . The input bit stream is
parsed and coded as modulation symbols, e.g., PAM or QAM.
In [5] and [6], Kalet shows that the DMT system with ideal
filters can achieve a signal-to noise-ratio (SNR) within 8–9 dB
of the channel capacity.

In practice, to cancel intersymbol interference (ISI), usually,
some degree of redundancy is introduced, and the interpolation
ratio [1], [2]. The length of the transmitting and re-
ceiving filters is usually also . In the widely used discrete
Fourier transform (DFT) based DMT system, the transmitting
and receiving filters are DFT filters. Redundancy takes the form
of cyclic prefix. For a given probability of error and transmission
power, bits can be allocated among the bands to achieve max-
imum total bit rate . Very high speed data transmission
can be achieved using a DFT-based DMT system at a relatively
low cost [1]. This technique is currently playing an important
role in high speed modems for ADSL and HDSL [3]. Canceling
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Fig. 1. System model for anM -band DMT system over a frequency-selective
channel.

channel ISI by introducing redundancy using a multirate pre-
coding technique has been studied by Xia in [7].

In the DMT system, the maximum bit rate depends
on the choice of the transmitting and receiving filters. The use of
more general orthogonal transmitting filters instead of DFT fil-
ters is proposed in [8]. From the viewpoint of multidimensional
signal constellations, it is shown that for additive white Gaussian
noise (AWGN) frequency-selective channels, the optimal trans-
mitting and receiving filters are eigenvectors associated with the
channel. However, in HDSL applications, the dominating noise
is often colored noise known as near end cross talk (NEXT) [1].

In this paper, we will use the polyphase approach that has
enjoyed great success in filter bank theory to study the DMT
system [2], [9]. We will derive a modified DFT-based DMT
system that has a better noise rejection property but the same
cost as the traditional DFT-based system. Moreover, optimal
transceiver for colored noise will be studied in detail. In par-
ticular, we will show how to assign bits among the bands so
that the total transmitting power can be minimized for a given
bit rate. Based on the optimal bit allocation, the optimal trans-
ceiver is derived. In [6], the DFT-based DMT system is pro-
posed as a practical DMT implementation, but its optimality
has not been discussed. We will show that the DFT-based DMT
systems are asymptotically optimal, although they are not op-
timal for a finite number of bands. Furthermore , the asymptot-
ical performance of the DFT-based DMT system is the same as
that of the DMT system with ideal filters in [5], [6]. Although
the DFT-based DMT system is asymptotically optimal, the op-
timal transceiver provides significant gain over the DFT-based
system for a modest number of bands. Examples will be given
to demonstrate this.

A. Outline

In Section II, we derive the polyphase representation of the
system model that characterizes the channel, the transmitter, and
receiver in the DMT system. Based on the polyphase represen-
tation, a modified DFT-based DMT system is proposed in Sec-
tion III. In Section IV, we develop a more general class of perfect
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DMT systems. For this class, we will derive the optimal DMT
system for a given channel in Section V. The asymptotical per-
formance of the optimal DMT and the DFT-based DMT system
will be studied in Section VI.

B. Notations

1) Boldfaced lower-case letters are used to represent vectors,
and boldfaced upper-case letters are reserved for matrices.
The notations and represent the transpose and trans-
pose-conjugate of .

2) The function is defined as

otherwise.

3) The notation diag denotes an
diagonal matrix with diagonal elements.

II. SYSTEM MODEL AND POLYPHASEREPRESENTATION

Consider Fig. 1, where an -band DMT system is shown.
Usually, the channel is modeled as an LTI filter with ad-
ditive noise . Assume that is an FIR filter of order
(a reasonable assumption after time domain equalization) and

is a zero-mean wide sense stationary random process. For
a given number of bands , the interpolation ratio is chosen
as . Redundancy is introduced so that the re-
ceiver can remove ISI due to and decoding can be per-
formed blockwise. As the interpolation ratio , we say
that the system is over interpolated. The filters and
are called transmitting and receiving filters, respectively. In the
DMT system, and have length . When the out-
puts , are identical to the inputs ,

in the absence of channel noise, we say
that the system is ISI-free or perfect reconstruction (PR).

The transmitting filters have coefficients

We can write the transmitting bank as

where the matrix has . The imple-
mentation of the transmitter is as shown in Fig. 2. Let the re-
ceiving filters be . (Noncausal filters
are used here for notational convenience; delays can be
added to obtain causal filters.) In a similar manner, we can write
the receiving bank as

...
...

Fig. 2. Polyphase representation of the transmitter and the receiver.

where the matrix has . The imple-
mentation of the receiver is as shown in Fig. 2. Using polyphase
representation, we can decompose the channel as

It can be shown [9] that the system incorporating the
delay chain, the channel , and the advance chain in Fig. 2
can be redrawn as in Fig. 3. The channel matrix
is defined as

...
...

...

(1)
Matrices in the above form are known as pseudo-circulant ma-
trices, and their properties can be found in [9]. With the as-
sumption that the channel is an FIR filter of order , we
can write . The channel
matrix is pseudo-circulant with the first column given
by . It can be partitioned as
a constant matrix and a transfer matrix with

(2)

where is a lower triangular Toeplitz matrix given by

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...

(3)

A. Perfect Reconstruction Condition

From Fig. 3, we see that the overall transfer function of
the DMT system is

(4)

When , the DMT system has the ISI-free property.
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Fig. 3. Polyphase representation of the DMT system.

Fig. 4. Equivalent multirate system for the transfer functionT (z).

B. Interchange of Transmitter and Receiver

One immediate advantage of the polyphase approach is that
it tells us that we can interchange the transmitting and receiving
filters and still preserve the PR property. To see this, observe
that the matrix is Toeplitz. It satisfies

(5)

where is the reversal matrix. For example

Note that . Using this fact and (4) and (5), we can
get

Therefore, if a DMT system with transmitter and receiver pair
( , ) is perfect, then the DMT system ( , ) is also
perfect. This implies that we can exchange the transmitting fil-
ters and receiving filters , and the system is still
perfect, even when the channel is a frequency selective one. This
result will be used later in Section III.

C. PR Condition on the Transmitting and Receiving Filters

The polyphase representation allows us to redraw the multi-
rate filter bank in Fig. 1 as the LTI system in Fig. 3.
Note that is the transfer function from theth input to
the th output; therefore, represents the multirate system
in Fig. 4. By applying the so-called polyphase identity [9], such
an interconnection yields an LTI system, and the transfer func-
tion is the zeroth polyphase of . Therefore, we
have

The PR condition can be also be expressed as

for

Since , we can
interchange the transmitting and receiving filters without af-
fecting the PR property.

III. M ODIFIED DFT-BASED DMT SYSTEMS

The block diagram of the DFT-based DMT system is shown
in Fig. 5. The transmitter performs two operations: computing

Fig. 5. M -band DFT-based DMT system.

the -point inverse DFT of each input block and adding cyclic
prefix of length [10]. This is equivalent to choosing the inter-
polation ratio as

In general, the length of the prefix is smaller than . The
redundancy allows the receiver to remove ISI, and the overall
system is perfect. The receiver consists of an-point DFT ma-
trix and scalars for , where
are the -point DFT of the channel impulse response [10]. It
has the great advantage that the whole system is almost channel
independent, except for the scalars .

With cyclic prefix added, the transmitter is given by

where is the unitary DFT matrix with

for (6)

and is the submatrix of that contains the last
columns of (assuming ). The receiver is

(7)

where is the diagonal matrix
diag . The transmitting and receiving
filters are, respectively

where

The receiving filters are DFT filters of length , and hence, the
frequency responses will have a main lobe of width .

Now, if we exchange the transmitter and the receiver (with
slight modifications), we get the modified DFT-based DMT
system [15],

where is the submatrix of that contains the first
columns of . The transmitting and receiving filters are now

The modified system has the same complexity as the conven-
tional case. However, the new receiving filters are DFT filters
with length instead of in the conventional case. This al-
lows the new system to enjoy additional advantages. First, the
new receiving filters have a narrower bandwidth . Fig. 6
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Fig. 6. Magnitude responses of the first receiving filters in the conventional
DFT-based DMT system and the modified system forL = 32 andM = 256.
(frequency normalized by2�).

gives a comparison of the conventional and new receiving fil-
ters for the same transmitting power. Only the first receiving
filters of these two systems are shown as the other receiving
filters are shifted versions of the first filter. The narrower main
lobe in the modified case gives a better performance in rejecting
out-of-band noise [4]. Moreover, the new receiving filters have
longer length. The channel noise will be averaged over a longer
block, and the effect of impulsive noise will be reduced.

Note that although the proposed scheme has potential advan-
tage when the channel noise is narrowband or impulsive, its per-
formance is not necessarily better in all types of channel envi-
ronments. We can always find a channel environment where the
conventional system performs as well or better.

IV. GENERALIZED PERFECTDMT SYSTEMS

The transmitter of the modified DFT system can be viewed as
the coding of the input block of size using DFT vectors plus
the padding of zeros. The signal in theth band is transmitted
using the th DFT vector. We can generalize the system by using
the more general orthogonal vectors for transmission instead of
DFT vectors. The transmitter becomes a general unitary matrix
followed by the padding of zeros, i.e.,

(8)

where is an arbitrary unitary matrix. As the channel
has order , there will not be any interblock interference (IBI)
due to a nonideal channel. With the partition of the channel ma-
trix in (2), it follows that

where is as defined in (3). Now, the condition for perfect
reconstruction becomes

(9)

This means that should be a left inverse of the constant ma-
trix . Using singular value decomposition (SVD), we can
decompose as

(10)

Fig. 7. Block diagram of the general receiver solution.

where and are, respectively, and unitary ma-
trices. The column vectors of are the eigenvectors of ,
and the column vectors of are the eigenvectors of . The
matrix is diagonal

diag (11)

The diagonal elements are the singular values of , which
are positive as has full rank. Therefore, exists. The SVD
of immediately gives us one possible choice ofsuch that
the PR condition in (9) is satisfied

(12)

However, the above equation gives only one possible solu-
tion. To obtain all solutions, we note that the PR condition in
(9) only requires that be a left inverse of . As is
of dimension , the receiver is not unique. In fact, we
can choose

(13)

where is an arbitrary matrix. The flexibility of can be
exploited to improve the frequency selectivity of the receiving
filters [11] or to minimize the total output noise power. The dis-
cussion of the later is given next.

A. MMSE Receiver

When the DMT system is perfect, the output noise
comes entirely from the channel noise. We define the average
output noise power as . To analyze the
output noise, we draw in Fig. 7 the general receiverin (13)

and (14)

(15)

(16)

(17)

Observe that the last part is a unitary matrix and that
unitary matrices preserve input energy; therefore,

. As is a diagonal matrix with positive diagonal el-
ements, is minimized if is minimized for each .
However, is related to the vectors and by

where denotes the th element of , and is the th
row of . Now, the minimization of for each can be con-
sidered as a linear estimation problem; should be the op-
timal predictor of given the observation vector. By the
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Fig. 8. Plot of the ratio of the average noise power for the MMSE receiver over
the average noise power for the receiver in (12) for the channel1+ �z .

orthogonality principle, the optimal choice of is given by
. Using (14), we have

where is the autocorrelation matrix of.
The optimal solution of is zero if and are uncorrelated.
One case where this happens is when the channel noiseis
white. The noise vectorhas autocorrelation matrix
and after the unitary transformation , the vectors and are
uncorrelated.

Example 1: Let the channel be with a
NEXT noise source [1]. As changes from 1 to 1, the channel
changes from a lowpass filter to a highpass filter. Usingas
a parameter, we can observe the gain of using the MMSE re-
ceiver in different channel environments. For the same trans-
mitter , we compute the average output noise power

when the receiver is as in (13) and the average output noise
power when MMSE receiver is used. Fig. 8 shows the
ratio as a function of the parameter.

B. Minimum-Redundancy DMT Systems

In the generalization of (8), each input block of size is
passed through a unitary transformation, and then,zeros are
appended to each block. As the channel has order, there is no
block overlapping. The receiver can easily perform blockwise
decoding as there is no interblock interference (IBI). However
zero padding introduces redundancy and equalization is done at
the expense of a data rate loss of . The question that
arises is the following: Is it possible to reduce the amount of zero
padding without introducing IBI? The answer is in the affirma-
tive. With minor conditions on the channel , the number of
padding zeros can be halved. In particular, the minimum number
of padding zeros is , where the function denotes the
smallest integer that is greater than or equal to the number.

Observe that to make successive block decoding indepen-
dent, the receiver requires at leastsamples that are not con-
taminated by IBI from adjacent blocks. Suppose the number of
padding zeros is and that the output block of the trans-
mitter has size . After passing through the channel, the in-
formation of each input block spreads over samples, and
the information spills over to the next block by samples.

Therefore, the first samples of each size block con-
tain information from the previous block. The number of sam-
ples that contains no IBI available to the receiver is

. Therefore, we need
or . Suppose is even and . Then, the
IBI-free samples are the last samples of each block. For the
transmitter input block , the receiver gets , where
is as defined in (3). Therefore, the clean samples are ,
where is the bottom submatrix of . That is

...
...

. . .

. . .
. . .

. . .
...

. . .
. . .

...

As long as is nonsingular, we can invert to recover
.

V. OPTIMAL TRANSCEIVERS

We first derive the bit allocation formula for the generalized
DMT system such that the transmitting power can be minimized
for a given bit rate and a probability of symbol error. Then, we
show how to design the optimal transceiver for arbitrary colored
noise.

A. Bit Allocation

Let the number of bits allocated for theth band be ; then,
the average number of bits per symbol is .
To account for the bit rate reduction due to zero padding, the
average bit rate is

The input power of theth band is , which is also the output
signal power of the th band at the receiver end due to the
property. Suppose the output noise power of theth band is .
For a given probability of error , most modulation systems
under high bit rate assumption satisfy

(18)

where the constantdepends on . For example, in the case of
PAM, the probability of error is related to signal power
and noise power by

where
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Under high bit rate assumption, we have .
This approximation leads to (18) where is given by

.
Define as the transmission power needed in

an -band DMT system for a given bit rate and probability
of error . As the unitary transformation preserves energy,
the average transmission power is

Applying the arithmetic mean (AM) over geometric mean (GM)
inequality to the above equation and using (18), we have

(19)

The equality holds if and only if the bits are optimally allocated
according to

(20)

Let us define the coding gain of bit allocation as

where is the power needed when there is
no bit allocation. Without bit allocation, we have , for

; therefore

(21)

Using (19), the coding gain of bit allocation is

(22)

The above inequality follows from the over in-
equality. The coding gain is the over the of the output
noise variances . Note that this ratio depends on the choice
of unitary transformation of the transmitter. In the next
subsection, we show how to design so that the coding gain
can be maximized.

B. Design of Optimal Transceivers

Fig. 9 shows the individual parts of the receiverin (12).
We see the last part of the receiver is the unitary matrix

. Let us call it . As preserves input energy, we have
, which is a quantity independent

of . The maximization of coding gain in (22) becomes the

Fig. 9. Receiver block diagram for the derivation of the optimal DMT system.

problem of minimizing the product . Let be the
autocorrelation matrix of ; then, are the diagonal entries
of , and . The matrix is related
to , which is the autocorrelation function of, by

(23)

Using the Hadamard inequality for positive definite matrices
[17], we have

which is a fixed quantity independent of. The equality holds
if and only if the matrix is diagonal (see, e.g., [9]). Therefore,
the optimal is the unitary matrix that decorrelates. In
this case, is minimized and is equal to . The
minimum power required in the optimal DMT system is

(24)

Comparing and in (21),
we obtain the coding gain

trace

Note that this is the coding gain formula for the optimal trans-
form coder when the input random vector has autocorrelation
matrix . The optimal DMT is given by

(25)

Note that the receiver can be replaced by the MMSE receiver
corresponding to the above choice of as derived in the
previous section to further minimize the average output noise
power.

AWGN Channels:When the channel noise is a white process,
the autocorrelation matrix is a diagonal matrix, and
so is . The noise vector is already uncorrelated; therefore,

. The optimal transmitter is simply , and the
receiver is . (This optimal solution in this case is consis-
tent with what Kasturiaet al.have obtained for AWGN channels
from the viewpoint of multidimensional signal constellations.)
We call this design of DMT system AWGN-optimal as it is op-
timal for AWGN noise. The coding gain is
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Fig. 10. Comparison of coding gains for different DMT systems.

where are the diagonal entries of the diagonal matrixgiven
in (11).

Example 2: Let the channel be with
a NEXT noise source. For the same probability of error and
same bit rate, Fig. 10 shows the coding gain for different DMT
systems:

1) coding gain for AWGN-optimal DMT, i.e.,
the system with transmitter and receiver

;
2) coding gain for the optimal DMT in (25);
3) coding gain for the DMT with AWGN-optimal

transmitter and a corresponding MMSE re-
ceiver;

4) coding gain for the DMT with the optimal
transmitter design in (25) and a corresponding MMSE
receiver.

Optimal DMT Systems with Ideal Filters:In the DMT sys-
tems that we have discussed so far, the transmitting and re-
ceiving filters have length . The transmitter and receiver

are constant matrices. If we allow the DMT system to have
longer filters, we gain extra design flexibility. For example, it
can be shown that it is possible to obtain perfect reconstruction
DMT transceiver without introducing redundancy to the system
if ideal filters can be used [11]. In this case the transmitter and
the receiver are transfer matrices and .
The channel matrix is and pseudo-circulant.
Suppose the transmitter is orthonormal, i.e., is
unitary for all ([9, ch. 6]). When the channel has no
zeros on the unit circle, it can be verified that the channel ma-
trix is nonsingular. In this case, if we choose

then the DMT system is perfect. We can verify that the receiving
filters have the form . Using a pro-
cedure similar to that in Section V-A, it can be further verified
that under optimal bit allocation, the transmitting power is

where

where is the power spectral density of the channel
noise in Fig. 1. The design of the optimal DMT system
for minimizing transmission power becomes the problem of de-
signing orthonormal filters such that is minimized.
This problem is the same as designing optimal orthonormal fil-
ters for maximizing coding gain in filter bank theory [12]. The
filters should be the optimal orthonormal filters for the
power spectrum .

VI. A SYMPTOTICAL OPTIMALITY OF DFT-BASED DMT
SYSTEMS

Although the DFT-based DMT systems are not optimal in
general, they are asymptotically optimal, regardless of the type
of channel noise. The performance of the DFT-based DMT sys-
tems approaches that of optimal DMT systems as the number of
bands increases. In particular, for a given error probability
and bit rate, the power required in DFT-based DMT system ap-
proaches that required in the optimal system whenis suffi-
ciently large.

Let be the autocorrelation function of the noise
process . Using and , we
can rewrite the transmission power in (24) as

(26)

under optimal bit allocation. For the DFT-based system, the re-
ceiver is as given in (7) so that the minimum power under op-
timal bit allocation is

(27)

where is the DFT matrix, and is the -point
DFT of the channel impulse response.

Using the distribution of eigenvalues for Toeplitz matrices
[13], we can show that (see Appendix A)

(28)
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In addition, using properties of positive definite matrices, we
can show that (see Appendix B)

(29)
On the other hand, it can be shown that [14]

(30)

With the equalities in (28)–(30), we can establish that

(31)

This is the same bound achieved in [5] by studying the asymp-
totical performance of -band DMT systems with ideal brick-
wall filters.

Note that the DMT system developed in [8] does not achieve
this bound asymptotically. To see this, let ; then, the
transmitter and receiver are identity matrices. The coding gain
of the system in [8] is one, regardless of the number of bands. On
the other hand, the coding gain corresponding to the asymptotic
bound in (31) is always greater than one if the channel noise is
not white.

Example 3: Let the channel be .
For the same probability of error and same bit rate,
we can obtain the ratio of power needed in optimal
system over the power needed in the DFT-based system

using (26) and (27)

Note that the ratio is a quantity independent of the given bit
rate and probability of error. Fig. 11 shows the ratio as a
function of for two different noise sources: the AWGN
and NEXT noise source. From Fig. 11, we see that the ratio

approaches 1 as the
number of bands increases. However, in the colored NEXT
case, the ratio approach 1 only for very large; the optimal
system provides significant gain for a moderate number of
bands.

Fig. 11. Asymptotical performances of the DFT-based and the optimal DMT
systems. The ratio of the power needed in the optimal DMT system over the
power needed in DFT-based system for the same probability of error and the
same bit rate for two types of channel noise.

APPENDIX A
PROOF OF(28)

Equation (28) is a result for sequences of asymptotically
equivalent matrices. Define the strong norm and the weak
norm of an matrix , respectively, as

trace

Let and be two sequences of Hermitian matrices.
The subscript of denotes the sequence index and indicates
that the size of is . The size of the matrices grows
with the sequence index. The sequences and are said
to be asymptotically equivalent [13] if

and

Suppose and have eigenvalues and , and
. In [13], Gray shows that

where is an arbitrary function that is continuous on
.

To show (28), we observe that , for
, are the eigenvalues of , where the subscript

indicates that is an matrix. Now, we construct a
sequence of matrices that is asymptotically equivalent to,
and their eigenvalues are . Partition as

where is an matrix. Define
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Then, it can be verified that is an circulant matrix
with the zeroth column given by

It is known that circulant matrices can be diagonalized by DFT
matrices

where is the unitary DFT matrix as defined in (6).
The matrix is diagonal, and the diagonal elements are,
which is the -point DFT of the channel impulse response

. Letting , we then have

The diagonal terms of are so that the eigenvalues of
are . It can be verified that and are asymp-

totically equivalent; therefore

Note that

and

Letting go to infinity, we obtain

and

Observe that for are the -point DFT
of ; they are samples of , i.e., .
Therefore

Equation (28) follows.

APPENDIX B
PROOF OF(29)

Note that the matrix is the leading prin-
ciple submatrix of , where is as defined in
(10). Let the eigenvalues of be ordered as

. Using the interlacing property of eigenvalues for posi-
tive definite matrices [17], it can be shown that
is bounded between the product of the largest eigenvalues
and the product of the smallest eigenvalues

Suppose the power spectral density of the channel
noise has minimum and maximum . Then,
these eigenvalues are bounded between and , in par-
ticular, . It follows that

(32)

(33)

Combining (32) and (33), we have

(34)

In addition, observe that . The matrix is
Toeplitz, and it is the autocorrelation matrix of .
It is known that [16]

Letting go to in (34), we arrive at (29).
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