Comments on "Reliability and component importance of a consecutive- k-out-of- n system" by Zuo

Frank K. Hwang ${ }^{\text {a }}$, Lirong Cui ${ }^{\text {b }}$, Jen-Chun Chang ${ }^{\mathrm{c}}$, Wen-Dar Lin ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
${ }^{\mathrm{b}}$ Laboratories of Reliability and Quality Control, Department of Space, Beijing, People's Republic of China
${ }^{\text {c }}$ Department of Computer Science \& Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC

Received 19 October 1999; received in revised form 13 December 1999

Abstract

Zuo claimed that the comparison of Birnbaum importance between two components for a consecutive- k-out-of- n : G system is the same as that for the F-system. We show that this is not the case and give a correct relation between the two systems. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Consecutive-k-out-of- n system; Reliability; Birnbaum importance

1. Introduction

A consecutive- k-out-of- $n: F$ system, denoted by $L(k, n: F)$, is a line of n components such that the system fails iff some k consecutive components all fail. Similarly, we can define a consecutive- k-out-of- $n: G$ system, denoted by $L(k, n: G)$ as a line of n components such that the system works iff some k consecutive components all work. The reliability of $L(k, n: M), M \in\{F, G\}$, is denoted by $R(k, n: M)$.

Zuo [3] claimed that the Birnbaum importance [4] of component i for a consecutive- k-out-of- $n: G$ system is the same as that for the F-system, which means that the comparison of Birnbaum importance between two components is the same for the G-system and the F system.

In this article, we show that the claim is wrong. We also give a correct relation.

2. The interplay between \boldsymbol{F}-systems and \boldsymbol{G}-systems

The Birnbaum importance of component i in a system S is defined as,
$I_{i}(S)=R(S \mid i$ working $)-R(S \mid i$ failed $)$.

Zuo [3] claimed that
$I_{i}(L(k, n: F))=I_{i}(L(k, n: G))$,

$$
\begin{align*}
& I_{i}(L(k, n: F)) \underset{<}{\gtrless} I_{j}(L(k, n: F)) \\
& \quad \Longleftrightarrow I_{i}(L(k, n: G)) \underset{<}{\gtrless} I_{j}(L(k, n: G)) \tag{2}
\end{align*}
$$

(Note that (1) \Rightarrow (2)).
For the i.i.d. case, we will include p as a parameter in the importance function.

Papastavridis [2] proved

Lemma 1.

$$
\begin{aligned}
& I_{i}(L(k, n: F, p)) \\
& \quad=\frac{R(k, i-1: F, p) R(k, n-i: F, p)-R(k, n: F, p)}{q} .
\end{aligned}
$$

[^0]
Notation

$n \quad$ the number of components in a system k the minimum number of consecutive components required to be failed (good) for the system to be failed (good)
$p_{i}, q_{i} \quad$ probability that component i is good, failed; $i=1,2, \ldots, n$
$p, q \quad$ probability that a component is good, failed in the i.i.d. case
$L(k, n: F), L(k, n: G)$ consecutive- k-out-of- $n: F$ linear system, consecutive- k-out-of- $n: G$ linear system
$R(k, n: F), R(k, n: G)$ reliability of $L(k, n: F), L(k, n: G)$
$R(S \mid E)$ reliability of system S conditional on E
$\bar{R} \quad$ unreliability, where $\bar{R}=1-R$
$I_{i}(S) \quad$ reliability importance of component i in system S (Birnbaum importance)

3. A specific counter-example

Let $n=7$ and $k=3$. Then,

$$
\begin{aligned}
\Delta(p) \equiv & I_{2}(L(3,7: F, p))-I_{4}(L(3,7: F, p)) \\
= & {[R(3,1: F, p) R(3,5: F, p)} \\
& -R(3,3: F, p) R(3,3: F, p)] / q \\
= & \left(p-6 p^{2}+13 p^{3}-13 p^{4}+6 p^{5}-p^{6}\right) / q \\
= & p(1-p)^{2}\left(1-3 p+p^{2}\right)
\end{aligned}
$$

It is easily verifed that between 0 and $1, \Delta(p)$ changes sign once at around $p=0.38$. Therefore $\Delta(0.2)>0>\Delta(0.8)$. It follows,
$I_{2}(L(3,7: F, 0.2))>I_{4}(L(3,7: F, 0.2))$,
$I_{2}(L(3,7: F, 0.8))<I_{4}(L(3,7: F, 0.8))$.
By Corollary 4, the first inequality implies
$I_{2}(L(3,7: G, 0.8))>I_{4}(L(3,7: G, 0.8))$.
The curve of $\Delta(p)$ is given in Fig. 1. We conjecture that $\Delta(p)$ changes sign at most once between 0 and 1 . One would hope that I_{i} have some good property, such as convexity. But this is not the case. For example,

Fig. 1. The curve of $I_{2}(L(3,7: F, p))-I_{4}(L(3,7: F, p))$.

$$
\begin{aligned}
I_{1}(L(k, n: F, p)) & =\frac{R(k, n-1: F, p)-R(k, n: F, p)}{q} \\
& =p q^{k-1} R(k, n-k-1: F, p)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
I_{1}(L(3,7: F, p)) & =p q^{2}\left(1-q^{3}\right) \\
& =3 p^{2}-9 p^{3}+10 p^{4}-5 p^{5}+p^{6}
\end{aligned}
$$

Since $\quad \partial^{2} I_{1} / \partial p^{2}=6-54 p+120 p^{2}-100 p^{3}+30 p^{4}>0$ for p small, I_{1} is not convex (nor is it concave since the second derivative is negative around $p=0.38$).

Zuo and Kuo [5] proved that the importance ranking of components in the consecutive- $2 G$-line is same as in the consecutive-2 F-line. The counter-example given here showed that this conclusion cannot be extended to general k.

References

[1] Kuo W, Zheng W, Zuo M. A consecutive-k-out-of-n:G system: the mirror image of a consecutive-k-out-of-n:F system. IEEE Trans Reliab 1990;39:244-53.
[2] Papastavridis SG. The most important component in a consecutive-k-out-of-n:F system. IEEE Trans Reliab 1987;36:266-8.
[3] Zuo M. Reliability and component importance of a consecutive-k-out-of-n system. Microelectron Reliab 1993;33:243-58.
[4] Birnbaum ZW. On the importance of different components in a multicomponent system. In: Krishnaiah PR, editor. Multivariate analysis-II. New York: Academic Press, 1969. p. 581-92.
[5] Zuo M, Kuo W. Design and performance analysis of consecutive-k-out-of-n structure. Naval Res Logis 1990;37:203-30.

[^0]: * Corresponding author. Fax: +886-3572-4176.

 E-mail address: wdlen@csie.nctu.edu.tw (W.-D. Lin).

