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Abstract—The capacitated multipoint network design problem evaluate the fithess of chromosomes (solutions). Ishibuchi and
(CMNDP) is NP-complete. In this paper, a hybrid genetic algo- Murata [24] presented the single-objective genetic algorithm

rithm for CMNDP is proposed. The multiobjective hybrid genetic ; Fp ; ;
algorithm (MOHGA) differs from other genetic algorithms (GA's) (_SOlGA)b_thatt. tr?nsla’:.tes me|tI.p|e ob_jer(]:tt_lve ffun(;_tlons Into- a
mainly in its selection procedure. The concept of subpopulation is Single-objective tunction by using weighting functions.

used in MOHGA. Four subpopulations are generated according ~ In this paper, the capacitated multipoint network design
to the elitism reservation strategy, the shifting Prifer vector, the problem (CMNDP) is considered. A multiobjective hybrid
stochastic universal sampling, and the complete random method, genetic algorithm (MOHGA) is proposed for CMNDP. The

respectively. Mixing these four subpopulations produces the next : ) : i :
generation population. The MOHGA can effectively search the fea- MOHGA differs from other GA's mainly in its selection

sible solution space due to population diversity. The MOHGA has Procedure. The concept of subpopulation is used in MOHGA.
been applied to CMNDP. By examining computational and analyt- Four subpopulations are generated according to the elitism
ical results, we notice that the MOHGA can find most nondomi- reservation strategy, the shifting Prufer vector, the stochastic

nated solutions and is much more effective and efficient than other (niversal sampling, and the complete random method, respec-
multiobjective GA's. tively. Mixing these four subpopulations produces the next
Index Terms—Genetic algorithms, minimal spanning tree, mul- generation population. The MOHGA can effectively search the

tiobjective function, nondominated solution, subpopulation. feasible solution space due to popu'ation diversity_ By app|y|ng
MOHGA to CMNDP, we notice that the MOHGA can find
I. INTRODUCTION most nondominated solutions in the feasible solution space and

] o ) is much more effective and efficient than other multiobjective

HE problem of effectively transmitting data in a networks ag.
| involves the design of communication subnetworks. A | the next section, a brief introduction to GA's is given. Sec-
critical issue in network design is to find a set of links whichion 111 describes the MOHGA. The problem formulation of
connect communication nodes such that the cost (or delay)&@QiNDP is detailed in Section IV. In Section V, computational

the selected paths between pairs of nodes is minimized, aftheriments are presented. Section VI concludes this paper with
the constraints of network capacity and reliability are met. 'ﬁ‘ossible future research directions.

the real world, network design has long been recognized as
multiobjective in nature. For a centralized multipoint network;
i.e., a tree network, the network design problem gives rise to
a well-known combinatorial optimization problem, namely,
the constrained minimal spanning tree (CMST) problem. The oyerview
CMST is NP-complete. Many heuristics, e.g., [3], [5], [10],
[11], [14], [16], [30], have been proposed. However, their The concept of a GA, introduced by Holland [21], is based
works took account of only cost or delay. In recent years, gen the mechanics of natural selection and natural genetics. A
netic algorithms (GA's) have been applied to various multipleA starts with an initial set of random solutions, callepagp-
criteria decision making (MCDM) problems. Fonseca andlation. Each individual in the population is callecchromo-
Fleming [12] explored the fitness assignment method. Hxrn SOME representing a solution to the problem. The initial popula-
al. [22] investigated multiobjective problems via test functiondion evolves through successive iterations, cajjederations
Tamaki et al. [35] studied the multiobjective scheduling®A measure of fitness defines the quality of an individual chro-
problem and the decision tree induction problem. Schaffgfosome. In each generation, chromosomes are evaluated by
[33] proposed the vector evaluated genetic algorithm (VEGA) fitness function, also called a&valuation function. After a
to solve multiobjective optimization problems. In VEGA, ahumber of generations, highly fit individuals, which are anal-
population is divided into many disjoint subpopulations. Fd?gous to good solutions to a given problem, will emerge. Be-
each subpopulation, a different objective function is used €&use of this property, the GA is more robust than existing direct
search methods, like the hill climbing method [27].
, , , _ A GA consists of five components, as described in Davis’s
Manuscript received February 17, 1999; revised February 29, 2000. T%I%)Ok [7]. These five components are as follows:
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3) an evaluation function that can evaluate the fitness of °
chromosomes;
4) genetic operators that can create the next generation pop-

ulation; 0 °
5) a way to set up control parameters; e.g., population size, e

the probability of applying a genetic operator, etc. e

B. Encoding Methods e

To solve a problem using GA, the method of encoding its SPiy. 1. Seven-node tree and its Prifer encodingl, 1,4, 4, 4].
lutions is very important. For a CMST problem, its tree repre-
sentation is encoded. There are three ways of encoding tree: 1)
edge encoding [15], 2) vertex encoding [15], and 3) edge-arf the following steps.

vertex encoding [30]. Step 1) Let vertex be the lowest eligible node @’ and

1) Edge Encoding:Consider an undirected and connected vertex;j be the first element oP. If ¢ #£ 7, add the
graphG = (V,E), whereV is the set of vertices of/, and edge fromi to j into 7", and then remove verteix
E'is the set of edges af. For each edge of £, an indexk from P’ and vertexj from P.

is assigned; i.e = {ex |k = 1,2,...,K, whereK is the Step 2) Repeat Step 1 until no elements are leftin
number of edges off}. A treeT of G can be represented by Step 3) For the remaining last two verticesand v of F’,
edge encodingls’ = {¢} } wheree) = 1if ¢ is an edge of” add the edge from to v into 7".
and 0 otherwise. Edge encoding is an intuitive representation oB) Edge-and-Vertex Encoding®almer and Kershenbaum
atree. In acomplete graph dfnodes, the total number of edgeg30] proposed the link-and-node biased encoding method, also
is equal taN (N — 1)/2. There ar@¥ (N ~1)/2) possible values termed as the edge-and-vertex encoding as presented by Gen
for £. All trees have exactlyv — 1 edges. If£’ contains other and Cheng [15]. This encoding does not directly encode a tree,
than N — 1 1s, it is not a tree. However, even ' contains but a modified cost matrix. Based on the modified cost matrix,
exactly N — 1 1s, it is still unlikely thatE” represents a tree. a tree is generated by Prim’s algorithm [31]. For a graph of
Therefore, edge encoding is not suitable for CMST due to the nodes, the chromosome of this representation has biases,
extremely low probability of using it to obtain a tree. including node bia$; and link biasb;;, for the N nodes and

2) Vertex Encoding:In 1889, Cayley [4] proved the fol- each of th V(N — 1)]/2 links, for a total of[N(N 4 1)]/2
lowing formula: the number of spanning trees in a completgases. In this method, two parameteks, and P», are used
graph ofN' nodes is equal toV (¥ =2, Prifer [32] presented the as the multipliers of the maximum link cosE,.... The cost
simplest proof of Cayley’s formula by establishing a one-to-onfatrix (Cy;) is biased byy;, b;;, P, Ps, andCi,ax USINg
correspondence between the set of spanning trees and a set
of sequences of integers, with each integer between 1 and Ol = Cij + PibijCumax + Pa(bi + b;)Crnax.
n inclusive [15]. The sequence af integers for encoding a !
tree is known as Prifer vector (or Prifer number). The Prifegimer claimed that this version of representation could encode
encoding and decoding procedures are explained as followsgny tree, given appropriate values of theb;, andb;; [30].

Prufer encoding procedure However, as pointed out by Gen and Cheng [15], this encoding
For a treel’, its corresponding Prifer vectdt can be ob- has three major disadvantages:

tained by the following steps: 1) it requires a very long encoding (memory cost);
Step 1) Let vertex be the lowest labeled leaf node (node of 2) it needs a conventional minimum spanning tree algorithm

degree 1) off’; let vertex; be incident to vertex; to generate a tree from its encoding (computation cost);
append; to the end of” (¥ is constructed from left  3) it contains no useful information such as degree, connec-
to right in sequence). tion, etc, about a tree.

Step 2) Remove vertexand the edge;;, which connects
vertices: and .
Step 3) Go back to Step 1 until there is only one edge leftin
T P is obtained. For a multiobjective optimization problem, its nondominated
For example, Fig. 1 depicts a 7-node tree. Vertex 2 is the low Qutio,ns (Th_e definition is s_tated @n Ap;?endix A.) can be found
labeled leaf node and vertex 1 is incident to vertex 2. Vertex GAS_' To find good solutions via GAS’ the C‘?’?Cf’pt of sub-
becomes the first element &f, then, vertex 2 and edgg, are population proposed by Schaffer [33] is a promising approach.
removed. In the second iteration, vertex 3 is the lowest leaf node .
and vertex 1 is incident to vertex 3. Append vertex Proand A Subpopulation
then remove vertex 3 and edgg. Repeat the process untilonly 1) Elitism Reservation Strategyin traditional GA's, a chro-
edgeeyr is left. P is obtained and is equal o, 1,4, 4, 4]. mosome in the current generation is selected into the next gen-
Prifer decoding procedure eration with certain probability. The best chromosomes of the
For a Prifer vectoP and the set of its eligible verticd®’, a current generation may be lost due to mutation, crossover, or
unique tree representation Bf denoted ag’, can be obtained selection during the evolving process, and subsequently causes

I1l. M ULTIOBJECTIVE HYBRID GENETIC ALGORITHM
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difficulty in reaching convergence. In other word, it takes more e o
generations; i.e., running time, to get quality solutions. Tamaki

et al.. [35] proposed an elitism reservation strategy that permits c ° e
chromosomes with the best fitness to survive and be carried into e

the next generation. °

2) Shifting Prifer Vector:The shifting Prifer vector,
introduced in this paper, is a genetic operator. The well-knovAy. 2. New tree after applying the shifting Prifer vector and its Prifer
problem of Priifer encoding [30] is that it does not presenfgcoding= [4.1,4.4.4].
locality. Changing one element of a Prifer vector can change

its corresponding tree topology dramatically. To remedy thigan be used in conjunction with the stochastic universal sam-
problem, we introduce a new genetic operator, called thfing method. Nevertheless, the best chromosomes of the cur-
shifting Prufer vector. This operator maintains maximurfent generation may be lost due to crossover and mutation. This
locality; i.e., it keeps the similarity between chromosomegyoblem can be overcome by including the elitism reservation
The concept of the shifting Prifer vector is stated as follows:dfrategy during a genetic search. But, globally optimal solu-
replaces the leftmost element of a Prifer vector by a randongigns are rarely obtained. In order to find globally optimal so-
selected nonleftmost element of the same vector. The Ngons, the shifting Priifer vector is added to the selection pro-
vector differs from the old one only in the leftmost elemengedure. According to the discussions aforementioned, we pro-
Thus, the new topology differs from the old one in at most twggse the mix method as follows: first, four subpopulations are
edges (The proof of this assertion is presented in Appendix Banerated according to the elitism reservation strategy [35], the
In most cases, the difference is only one edge. The shiftiggitting Priifer vector, the stochastic universal sampling [2], and
Prifer vector is a local search method. According to the resulfe complete random method, respectively; then, mixing these
obtained by the well-known Add and Drop searching heuristiggyr subpopulations produces the next generation population.
[26], [28], [31], changing only one element in every iteration of
the search process always leads to a globally optimal solutign. The Multiobjective Hybrid Genetic Algorithm
Thus, the shifting Prifer vector can significantly improve the
quality of newly found chromosomes. MOHGA
Fig. 2 illustrates the new tree after the shifting Priifer vector Step 1) Set the maximum number of generatiQRax, and

is applied to the 7-node tree shown in Fig. 1. We notice that the initialize the loop countett, to zero. .
new tree and the old one differ in only one edge. Step 2) Produce the initial populatiofi(t), by using the
3) Stochastic Universal Samplingd simple way to per- complete random method and Prufer encoding.

form sampling is to spin a roulette wheel. Unfortunately, this Step 3) Evaluaté(¢); exit, if the solutions are found.
sampling method does not guarantee that any particular sampl&tep 4) Generate the subpopulatiéf); (t), by using the

will actually be chosen in any given generation. This is a elitism reservation strategy.

well-known problem of the roulette wheel selection method. Step 5) Generate the subpopulati&i»(t), by using the

Baker suggested the stochastic universal sampling method [2]. shifting Prufer vector.

Baker’s algorithm completes the whole sampling in a single Step 6) Generate the subpopulati®®;(t), by using the

pass, and requires only one random number. A wheel spin, stochastic universal sampling with crossover prob-

whose size is equal to the population size, is divided into ability p. and mutation probability,,.

a number of equally spaced markers. A single spin is usedStep 7) Generate the subpopulati®®,(t), by using the

to generate the random number. The expected vajuéor complete random method.

chromosomek is expressed as, = pop.size * p, where ~ Step 8) Form the next generation populatiaf(t), by

pop.size represents population size andrepresents selection mixing SP1(t), SP2(t), SP3(t), andSP.(t).

probability. Step 9) Increase by 1; if t is less thant,,.«, then go to
4) Complete Random Method?opulation is generated ac- Step 3; otherwise, evalual(ty.ax), exit.

cording to random number and random position. The majatherep. represents the probability of crossovey, the prob-
reason for using the complete random method is to maintain #aility of mutation,P(t) the population of the-th generation,
diversity of the population. andSP;(t) thei-th subpopulation of the-th generation.

IV. CAPACITATED MULTIPOINT NETWORK DESIGN PROBLEM

B. Mix Method A. Problem Formulation

There are two competing factors in the selection procedurethe CMNDP can be formulated as follows:
of a genetic search. They are selection pressure and population

diversity. An increase of selection pressure decreases the diver- min Z CijTiz (1)
sity of the population, and vice versa [27]. The stochastic uni- (4,))EE

versal sampling method increases selection pressure; however,

it may cause the premature convergence of a genetic search. min Z d; ;i 2

To decrease selection pressure, the complete random method V(i,5)CE
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subject to TABLE |
CPU TIME AND NUMBER OF SOLUTIONS
Z wit: <W Yk (3) OF THE 7-NODE PROBLEM W.r.t. MOHGA, SOGA,AND VEGA
(¥
(.)€ Algorithm (CPU time |Average number of non-dominated [Ratio Sol, Sol,
S luti btained (A A/B
Z iy <|S| VS (4) MOHGA : 62278 Soenee talsn.i @ ( o.g 13| 7
(i,4)ES SOGA 2.16 2 0.333 13 78
VEGA 2.365 1.5 0.25 15 78
in]’ =N-1 (5) where A : The number of non-dominated solutions obtained by the algorithm.
iy B : The number of all non-dominated solutions, which is 6 in this problem.
i; €0,1 V(i,5)e L (6)
where Problem 1: For the 7-node network, nodes are randomly
N number of nodes in the network: distributed. Control parameters are given as follows: mutation
E  setof links in the network: ’ probability is set to 0.9, crossover probability is set to 0.5,
T,  k-th link; and it may not e>’<ist for some: population size is set to 100, and the maximum number of
W given wéight matrix: ’ generations is set to 200. Cost, delay, and constrained weight
w;  weight of thei-th noae' matrices are given in Appendix C.
T ’
S spanning tree; All the nondominated solutions; i.e., all possible spanning
|S|  number of edges of; trees, are enumerated. By doing this, we are able to compare
¢;; costof connecting nodeto nodey; i.e., the cost of link the quality of the solutions obtained by MOHGA directly with
(i,7); the cost matriXc; ;) is symmetric; the enumerated solutions. The pair (total cost, total delay)
d;; average delay on linki, j); the delay matrixd; ;) is represents a solution. By enumerating the solutions, we found
symmetric; all six nondominated solutions of this problem, which are
x;;  the 0/1 decision variable; 1, if link, j) is selected, and (13,92), (14,91), (15,85),(16,84),(18,78), and (19,77).
0, otherwise. With ten runs, nondominated solutions obtained by MOHGA

Equation (3) guarantees that the total link weight does not es&n be summarized as follows:
ceed the upper limit, (4) guarantees that the set of chosen i@t 1. {(13,92),(14,91),(15,85),(16,84),(18,78),(19,77)};
does not form any cycle, and (5) guarantees that enough lirk&t 2: {(13,92), (15,85), (16,84),(18,78), (19,77)};

will be chosen to connect the network. Set3: {(14,91),(15,85),(16,84),(18,78), (19, 77)}.
Sets 1, 2, and 3 are obtained 4, 4, and 2 times, respectively.
B. Applying MOHGA to CMNDP Therefore, we can claim that the MOHGA finds 90% of all non-

1) Encoding Method:Priffer encoding provides adominated solutions. .
one-to-one mapping between the set of spanning treedOr comparison, the VEGA and the SOGA are applied to the
and the set of sequences fintegers [15], [30]. Because of Same test problem. In the weighting function of SOGA, weights

this excellent property, we choose Priifer encoding for encodittg (COst) andw2 (delay) are both set to 0.5 [24]. Note that we
chromosomes. only consider the case in whiehl andw?2 are both equal to

2) Initial Population: Each individual chromosome in the0-5 since the largest number of nondominated solutions are ob-
initial population is a solution to the problem. We use the conf@ined by settings1 = w2 = 0.5 (Appendix D.) Other control

plete random method to generate the initial population. parameters are set to the same value as those of MOHGA. Com-
3) Evaluation Function: We choose both link cost and transPutational results are summarized in Table I.
mission delay as the evaluation functions for CMNDP. Problem 2: A network of 14 nodes is considered in Problem
2. Network nodes are randomly distributed. Weight, cost, and
V. COMPUTATIONAL EXPERIMENTS delay are randomly generated. Control parameters are given as

follows: mutation probability is set to 0.9, crossover probability
is set to 0.4, population size is set to 100, and the maximum
The simulator is coded in the C++ language and is runnimyimber of generations is set to 1000. Computational results are
on an Intel Pentium-166 MHz PC with 64 MB RAM. In orderpresented in Table II.
to evaluate the solutions of CMNDP obtained by MOHGA, we Problem 3: A network of 28 nodes is considered in Problem
examine a set of problems, with 7, 14, 28, and 56 nodes, B-Network nodes are randomly distributed. Weight, cost, and
spectively. The number of nondominated solutions obtained tglay are randomly generated. Control parameters are given as
MOHGA is affected by control parameters; e.g., mutation proliellows: mutation probability is set to 0.99, crossover proba-
ability, crossover probability, and the maximum number of geiility is setto 0.4, population size is setto 100, and the maximum
erations. The best solution in terms of c@Sbl..), the best so- number of generations is set to1000. Computational results are
lution in terms of delaySolg), or other solutions in terms of shown in Table III.
network designer’s preference can be deduced from all nondomProblem 4: A network of 56 nodes is considered in Problem
inated solutions. The maximum number of generations is dep@nNetwork nodes are randomly distributed. Weight, cost, and
dent on problem size. The lager the problem size, the larger ttelay are randomly generated. Control parameters are given as
feasible solution space. In other words, more generations &okows: mutation probability is set to 0.99, crossover proba-
needed to find the solutions. bility is setto 0.4, population size is setto 100, and the maximum

A. Test Problems and Results
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TABLE I TABLE V
CPU TiME AND NUMBER OF SOLUTIONS OF THE 14-NODE PROBLEM W.I.t. CPU TiME AND NUMBER OF SOLUTIONS OF PROBLEM 5 w.r.t.
MOHGA, SOGA,AND VEGA MOHGA, SOGA,AND VEGA
Algorithm |CPU time Average number of Sol, Sol, Algorithm {CPU time Average number of Sol, Sol,
(Sec) non-dominated solutions (Sec) non-dominated solutions
obtained obtained
MOHGA 37.90 9.5 63 160 MOHGA | 218168 13 1584 1616
SOGA 28.83 25 66 168 SOGA 3793.26 1.3 1678 1621
VEGA 45.04 25 65 162 VEGA 4147.34 1.3 1677 1662
TABLE 1lI TABLE VI
CPU TiME AND NUMBER OF SOLUTIONS OF THE28-NODE PROBLEM W.r.t. CPU TiME AND NUMBER OF SOLUTIONS OF PROBLEM 6 W.r.t.
MOHGA, SOGA,AND VEGA MOHGA, SOGA,AND VEGA
Algorithm |CPU time | Average number of non-dominate| Sol, Sol, Algorithm [CPU time Average number of Sol, Sol,
(Sec) solutions obtained (Sec) non-dominated solutions
MOHGA 56.792 13 585 628 obtained
SOGA 76.192 15 866 891 MOHGA | 2270.52 12 1583 1618
VEGA 83.4 15 854 912 SOGA 3650.50 1 1660 1700
VEGA 3869.85 1 1711 1682
TABLE IV
CPU TiME AND NUMBER OF SOLUTIONS OF THE56-NODE PROBLEM W.I.t. TABLE VII
MOHGA. SOGA AND VEGA CPU TiME AND NUMBER OF SOLUTIONS OF PROBLEM 7 W.r.t.
' ' MOHGA, SOGA,AND VEGA
Algorithm [CPU time Average number of Sol, Soly - -
(Sec) non-dominated solutions Algorithm {CPU time Average number qf Sol, Sol,
obtained (Sec) non-dommat.ed solutions
MOHGA | 2167.58 15 1583 1618 obtained
SOGA | 3780462 13 1678 1620 MOHGA | 2257.46 14 1588 1615
VEGA | 4138.06§ 13 1675 1685 SOGA | 3639.25 2 1640 1653
VEGA 4130.50 15 1634 1656
number of generations is set to 10 000. Computation results are TABLE VIII
listed in Table IV. CPU TIME AND NUMBER OF SOLUTIONS OF PROBLEM 8
i Problems 5’ 6’ and 7:A network of 56 nodes is considered Number of |Algorithm [CPU time (Sec) Average number of non-dominated solutions
in Problems 5, 6, and 7. Network nodes are not random| Nodes obtained
distributed. For Problem 5, most nodes reside at the upp 7 2 262 LA
left corner of the network. For Problem 6, node distributior 3 3,02 32
is sparse. For Problem 7, node distribution is dense. Weigt — . i;ﬁ fg
cost, and delay are randomly generated. Control parameters 2 43.11 2
given as follows: mutation probability is set to 0.99, crossove i ;3;(5) gg
probability is set to 0.4, population size is set to 100, and th — 25 1 96.56 L5
maximum number of generations is set to 10 000. Computatic ; jgjg 621
results are reported in Tables V-VII. 4 56.792 13

Problem 8: Problem 8 is designed to evaluate the correct-
ness of the mix method as described in Section Ill. Four algo- . . . .
rithms are evaluated. In Algorithm 1, only the stochastic unerage number of nondominated solutions are obtained. Sim-
versal sampling method is used in the selection procedure. |§t|on results are shpwn in Table IX. Results indicate that the
gorithm 2 is obtained by adding the complete random meth ¥ Rot sensitive to the changesBf and ..
to Algorithm 1. Algorithm 3 is obtained by adding the elitism 1) Space Usage Analysigtor a network ofV nodes, Prufer
reservation strategy to Algorithm 2. Algorithm 4 (the MOHGA¥Ncoding requiresV — 2 elements to encode a chromosome.
is obtained by adding the shifting Priifer vector to Algorithm 3\ssume an element is represented by a two-byte integer and
Network nodes of 7, 14, and 28 are considered. Simulation Repulation size is denoted by pop_size. Then, the space usage
sults are reported in Table VIII. By examining Table VIII, weof Prufer encoding is equal {aV — 2) =« 2 + pop.size (of order
notice that Algorithm 4 not only finds more nondominated sd?(&V)). Since the MOHGA, the SOGA, and the VEGA all use
lutions but also obtains them faster than the other three aldy{ifer encoding to encode their chromosomes; therefore, their
rithms. space usage is the same and of oK@éen).

Problem 9: Problem 9 is designed to evaluate the perfor- 2) Running Time (Complexity) Analysis:
mance of MOHGA with respect to different combinations of < Operational Analysis

crossover probability?. and mutation probability?,,. A net- The running time of SOGA, VEGA, and MOHGA is
work of 56 nodes is considered in Problenf9's of values 0.4, calculated in terms of the number of operations executed.
0.5, 0.6, and 0.7 are considered. Ed¢his paired with aF,,, For the three GA's, we have identified eight operations,

whichis of values 0.7, 0.8, 0.9, and 0.99. Average CPU time and which are weighted sum, subgroup selection, shuffle,
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TABLE IX
CPU TiIME AND NUMBER OF SOLUTIONS OF PROBLEM 9
P, P, CPU time(Sec)| Average number of non-dominated
solutions obtained
04| {0.7,0.8,0.9, 0.99} 2171.8 14
05] {0.7,0.8,0.9,0.99} 2168.7 13
06| {0.7,0.8,0.9, 0.99} 21753 14
0.7 {0.7,0.8,0.9,0.99} 2167.8 13
TABLE X

NUMBER OF OPERATIONS OFSOGA, VEGA,AND MOHGA

wﬁ\ SOGA VEGA MOHGA
Operaii
Weighted Sum M*pop_size N/A N/A
@
Subgroup N/A M*pop_size N/A
Selection
®)
Shuffle N/A M*pop_size N/A
()
Elitism Reservation N/A N/A M*pop_size/4
@
Shifting Priifer N/A N/A M*pop_size/4
Vector
©
Complete Random N/A M/A M*pop_size/4
®
Crossover M*(N-3)*pop_size | M*(N-3)*pop_size| (M*(N-3)*pop_size
& Mutation +M*pop_size + M*pop_size +M*pop_size)/4
(8)
Priifer Decoding M*NlogN*pop_size| M*NlogN*pop_sizee M*NlogN*pop_size
()
Total M*(N+NlogN-1)* M*(N+NlogN)* N+1
(@+BIH)+H(d)+ pop_size pop_size M( 4 +NlogN)*
(&)+(H)+(g)+(h) pop_size

where: M represents the maximum number of generations,

pop_size represents the population size.,
N represents the number of nodes, and
N/A means “Not Applicable”

elitism reservation, shifting Prifer vector, complete
random, crossover and mutation, and Prifer decoding.
We assume that every operation takes the same amount of
CPU time. Operational analysis is detailed in Table X. By
examining Table X, we notice that the MOHGA requires
the least number of operations.

Simulation Analysis

For small size problems; i.e., Problems 1 and 2, the
MOHGA takes more time than the SOGA, but less time
than the VEGA. For large size problems; i.e., Problems
3 to 7, the MOHGA takes the least time to generate
nondominated solutions. The comparison of the running
time of MOHGA, SOGA, and VEGA is shown in Fig. 3.
Fig. 3 illustrates that the rate of increase of the running
time of SOGA, and that of VEGA, is close to an expo-
nential function. For MOHGA, the rate of increase of the
running time is only 57.6% of that of SOGA, and that of
VEGA. By examining computational results, we have the
following observations: the SOGA takes the least time
for small size problems, but obtains the worst results; the
VEGA takes the most computing time; and the MOHGA
is much more efficient than the SOGA and the VEGA.

2)

3)

5000
g 4000 —— MOHGA
S 3000 . SOGA
g 2000 '
= 1000 VEGA

0
7 14 28 56
No. of Nodes

Fig. 3. Running time (complexity) analysis.

solutions than the SOGA and the VEGA. Also, by examining
Tables | through VII, we notice that the MOHGA always finds
the best solution in terms of cd8ol..) and the best solution in
terms of delay(Soly ). Therefore, the MOHGA is much more
effective than the SOGA and the VEGA.

C. Discussions

Three observations are worthy of discussing.
1) Both the reasons described in Section IlI-B. and simu-

lation results obtained from Problem 8 indicate that the
mix method is a reasonable approach. Further, the run-
ning time analysis and the quality analysis explain why
the MOHGA using the mix method is very efficient and
effective.

The subpopulation generated by using the stochastic uni-
versal sampling with crossover probabilify. and mu-
tation probabilityF,,, is one of the four subpopulations
considered in the mix method. The influencef®f and

P,, on the total population is reduced by three-fourths.
Therefore, the MOHGA is not sensitive to the changes
of P, andP,,. This assertion can also be verified by the
simulation results presented in Table IX. Sid¢éeandP,,,

can be assigned to any value in a given range, they can be
expressed as fuzzy numbers of a fuzzy knowledge-based
system. But to define a set of fuzzy rules of a fuzzy knowl-
edge-based system is a difficult task.

Costand delay vary from time to time due to user behavior,
increase of bandwidth, business strategy, etc. When de-
signing a network, a network designer usually derives
cost and delay by estimation. In CMNDP, cost and delay
can be expressed as fuzzy objective functions due to their
uncertainty. The CMNDP is transformed into a fuzzy
multiobjective decision making problem (FMODMP)
by including fuzzy objective functions into its problem
formulation. In [36], Buckly proposed a fuzzy genetic
algorithm, in which chromosomes are interpreted as fuzzy
numbers, to solve single objective fuzzy optimization
problems. For solving the FMODMP, the MOHGA can be
modified according to Buckly’s approach.

VI. CONCLUSION

3) Quality Analysis: For Problem 1, the MOHGA, which A Summary

finds 90% of all nondominated solutions, performs much betterThe MOHGA is based on the subpopulation concept.
than the SOGA and the VEGA. The same phenomena c@he elitism reservation strategy, the shifting Prifer vector,
be found for Problems 2 through 7, as illustrated in Tables the stochastic universal sampling, and the complete random
through VII. The MOHGA always finds more nondominateanethod are used to produce the next generation population. The
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MOHGA has been applied to CMNDP. By examining coman integer. Then’; can be expressed 8§, v2, v3, . .., Vn—2|,
putational and analytical results, we notice that the MOHGwWherev;, € {vz,vs,...,v,—2}. To prove the theorem, we will
finds most nondominated solutions and is much more effectigensider the following five cases:

and efficient than the SOGA and the VEGA. Case 1|vi| = |v1]
o Becausdu,| = |vi]; therefore,, = P. Since, for a given
B. Future Directions Prifer vector, the Priifer decoding procedure always produces
Here we would like to mention the following areas, whict& unique tree representation; hence, we can claimfthand
may merit further investigation. T'p; have the same topology.
1) Apply the MOHGA to other multiobjective optimization ~Case 2Jvx| > |vi| anduy| € {|va], |vs], .. ., [vn—2[}

problems, such as the facility layout problem, the wire=€t vlen 2Ndvien be the lowest eligible node df’ and P, re-

less channel assignment problem, the resource scheduﬁﬁQCt'VeW-

problem, etc. he following proof is derived via the Prifer decoding pro-
2) Develop an algorithm to determine the maximum (og=edure.

timal) number of nondominated solutions of a multiob-

jective optimization problem. In essence, this is a hard

problem. For small size problems, enumeration is pos-

sible. For large size problems, artificial intelligence tech-

niques; e.g., branch-and-bound, minimax, etc. can be con-

1) Inthe firstiteration, according to the first step of the pro-
cedure, the following statements hold true.
* Sincelv1| € {|va|,|vsl,-.., |vn—2|} and|uv,| €
{|U2|7 |U3|7 sy |Un—2|}! we have|vlen| = |U1en’|-
Therefore, aftefve,| and|viey | are removed from

sidered. P’ and P}, respectively,P” and P are reduced to
APPENDIX A the same set.
NONDOMINATED SOLUTIONS « After v; andv, are removed from” and Py, re-
spectively,P andP; are reduced to the same vector
A. Multiobjective Optimization Problem [v2,v3,. .., Un_2].
For a multiobjective optimization problem, the set of its fea- * The first edge of T'p, (vien,v1) and that of
sible decisionsX, is defined as follows: Tpr, (view, vr,) is different.
. 2) Inthe remaining iterations, sinééandF; are reduced to
X ={x|g;(x)<0,9; : " = R,j =1,2,...,m}, the same vector, an®’ and P, are reduced to the same
wherex = (x1, X2, .. .,X,) is ann-dimension variable; set, at the end of the first iteration, the decodingrois
g;(x) represents a constraint; the same as that df;.
m represents the number of constraints; = ; ;
rom 1) and 2), we can claim t and?’p; are different onl
R represents the set of real numbers. ) ) & P y

in the first edge.
The multiobjective optimization problem (MOP) can bén € 1Irst edge

Case 3.|ux| < |v1| and|vy| € {|v2|, lusl, ..., |vn_2
stated as follows: The proof|is t|he |sar|ne as! C|ase{£. V|V(|a ancIutLeIf[paEndTpl
minimize f1(x), f2(x), ..., fu(2) (A.1) are different only in the first edge.
rex Case 4uvi| > |v1| and|wv1| ¢ {|val, |vsl,. - ., [vn_2|}
where f;(z),i = 1,2,...,k is a vector-valued objective func- Let ., and v,y be the lowest eligible node o’ and P,
tion defined on am-dimension variablex. respectively. Two subcases are considered.

Case 4.1Jvlen| = |U1en’|
The proof is similar to Case 2. We conclude thiat andT'p,
A solution x* of (A.1) is said to be nondominated if thereare different only in the first edge.

B. Nondominated Solutions

exist no other feasible solutiomse X C R" such thatf;(x) < Case 4.2|vien| # |View|
fi(x*),foralli = 1,...,k. Thex* is also called Pareto optimal. The following proof is derived via the Prifer decoding proce-
dure.
APPENDIX B
SHIFTING PRUFER VECTOR 1) Inthe firstiteration, according to the first step of the pro-
. . cedure, the following statements hold true.
A. Shifting Priifer Vector e Sincelvi| > |uil,|vi] € {|val, v, - -, [vn_zl},
The shifting Prifer vector, introduced in this paper, is a ge- and |vx| € {|vz|,|val, ..., |vn—2|}, We have
netic operator. This operator replaces the leftmost element of a [tlen| = |view|. Therefore, aftetvie,| and |viey |
Prifer vector by a randomly selected nonleftmost element of the are removed fromP’ and P}, respectively,P’ is
same vector. changed to sefl1,2,...,n} — {|viea|} and P is
Theorem: If P is a Priifer vector and;, is obtained by the changedtosdtl,2,...,n}—{viw|}, respectively.
use of the shifting Prufer vector ai, andZ’p andZ’p; are the * After v; andv, are removed fromP and Py, re-
corresponding tree representationsfofand Py, respectively, spectively,P andP; are reduced to the same vector
thenT'p; differs fromT’p in at most two edges. [v2, U3, .., Un_2]
Proof: Let P be denoted api, va, vs, . . ., Un—2], Where » The first edge of Tp, (vien,v1) and that of

v (1 =1,2,...n—2)isavertexand its value, denotedag, is Tp1, (View , vr) IS different.
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2) In the second iteration, let,., andv;.,s be the lowest
eligible node ofP’ and P/, respectively (Note thatsje,
andvg).,,r are the second lowest eligible nodes of the orig-
inal P’ and P/, respectively.) According to the first step
of the procedure, the following statements hold true.

* Since  |ug] > lvi], 1] ¢
{|02|7|U3|7---7|Un—2|}7 |Uk| €
{vals lvsls ..o lon—2[}, and |vien| = |view|
(shown in the first iteration), we have
|Uslen| S |Uslen’ |a |Uslen| = |U1en’ |a and
|sten’ | = |V1en|- Therefore, aftefvgen| and|vsien |
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are removed fron’ and P/, respectively,”’ and
P/ are reduced to the same set.

 After v, are removed from botl# and Py, P and
P, are reduced to the same vectoy, . . ., v,—2].

» The second edge of'p, (vsien,v2) and that of
Tp1, (Vslen , v2) is different.

3) Inthe remaining iterations, sinééandP; are reduced to
the same vector, ang’ and P| are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that @f;.

From 1), 2), and 3), we can claim th&p and7p; are dif-

are removed fron> and P’{, respectively,”” and  ferent only in the first edge and the second edge.

P/ are reduced to the same set.

From the conclusions obtained from the above five cases, we

* After v, are removed from bot” and P, P and  haye proved thdt'p, differs fromZ’p in at most two edgesC]

P, are reduced to the same vectoy, . . ., v,—2];
» The second edge dI'p, (Usien,v2), and that of
Tp1, (Vsten , U2), IS different.
3) Inthe remaining iterations, sinéeandP; are reduced to

B. Examples

Example 1: This example is used to illustrate the proof of

the same vector, an®’ and P are reduced to the samecase 4.2, For a 7-node network. assume Fhat [1,2,3,5,3]
set, at the end of the second iteration, the decoding of3ng P, = [3,2,3,5,3]. P’ and P! can be expressed as sets

is the same as that df;.

{1,2,3,4,5,6,7} and{1,2, 3,4, 5,6, 7}, respectively. Let,,

From 1), 2), and 3), we can claim th&p and7’p, are  gngy,, ., be the lowest eligible node @’ and P!, respectively.

different only in the first edge and the second edge.

Case 5|vg| > [vy] andloy| & {[vz], [vsl, ..., [vn_2l}
Let v, and vy, be the lowest eligible node @’ and P},
respectively. Two subcases are considered.

Case 5.1.|U1en| = |U1en/|
The proof is similar to Case 2. We conclude tliat and7’p,
are different only in the first edge.

Case 5-2-|Ulen| 75 |Ulen’|
The following proof is derived via the Prifer decoding proce-
dure.

1) In the first iteration, according to the first step of the pro-
cedure, the following statements hold true.

« sincelvr| < Jo|,or] & {lvzl;val; - lon—al},
and |vg| € {|val,|usl,---,|vn_2]}, we have
|len| = |vien |- Therefore, aftetvien| and |view |
are removed from? and P/, respectively,P’ is
changed to sefl,2,...,n} — {|v.a|} and Py is
changed to se{l,2,...,n} — {|view|}, respec-
tively.

» After v, andwv; are removed fron¥ and P, re-
spectively,P andP; are reduced to the same vector
[UQ, V3, .-, Un_g].

» The first edge of I'p,(vien,v1) and that of
Tp1, (View , vy ) is different.

2) In the second iteration, let,., andv,,.,s be the lowest
eligible node ofP’ and P/, respectively (Note thatsje,

1) In the first iteration of the Priifer decoding procedure,
since|v1| = 1 and|vg| = 3; therefore,|vie,| = 4 and
|t1en’| = 1. After node 4 and node 1 are removed fréth
andP/, respectivelyP’ is changed to sdftl, 2, 3, 5,6, 7}
and P/ is changed to sef2,3,4,5,6,7}, respectively.
After element 1 and element 3 are removed frdm
and Py, respectively,P and P, are reduced to the same
vector[2, 3, 5, 3]. The first edge off’p, (4, 1), and that of
Tp1,(1,3), is different.

In the second iteration of the Prifer decoding pro-
cedure, letvge, andvgey be the lowest eligible node
of P’ and P, respectively. Since? and P, are equal
to the same vectof2,3,5,3], P = {1,2,3,5,6,7},
and P{ = {2,3,4,5,6,7}; therefore,|usen] = 1 and
|vsiens| = 4. After node 1 and node 4 are removed from
P’ and P/, respectively,”’ and P| are both changed
to set{2,3,5,6,7}. After element 2 are removed from
both P and P, P and P, are both reduced to the same
vector [3, 5, 3]. The second edge &p,(1,2), and that
of Tpy, (4,2), is different.

2) Inthe remaining iterations, sinééandP; are reduced to
the same vector, anB’ and P| are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that @, .

From 1), 2), and 3), we notice th@lp and7p; are different

only in the first edge and the second edge.

andv.i. are the second lowest eligible nodes of the orig- Example 2: This example is used to illustrate the proof of
inal P’ and P/, respectively.) According to the first stepCaSe 5.2. For a 7-node network, assume that [3, 1, 2,4, 5]

of the procedure, the following statements hold true.

* Since |u < lvi], v ¢
{|U2|’|U3|""’|Uﬂ—2|}a |Uk| S
{lval, |val, - o lvn—2|}, and |vien| > |view|
(shown in the first iteration), we have
|Uslen| S |Uslen’ |7 |Uslen| = |U1en’ |u and

|Usten’ | = |V1en| Therefore, aftefvsien| and |[vsiew |

and P, = [1,1,2,4,5]. P/ and P| can be expressed as sets
{1,2,3,4,5,6,7} and{1,2, 3,4, 5,6, 7}, respectively. Let)e,
anduy., be the lowest eligible node @’ and P/, respectively.

1) In the first iteration of the Prifer decoding procedure,
since|vi| = 3 |ux| = 1; therefore,|vien| = 6 and
[vlen’ | = 3. After node 6 and node 3 are removed fréth
and P/, respectivelyP’ is changed to seftl, 2, 3,4, 5,7}
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TABLE XI Constrained weight matrix:
CPU TiME AND NUMBER OF SOLUTIONS W.r.t DIFFERENT (w1, w2) PAIRS
(wl, w2) CPU time (Sec)|  Average number of non-dominated g
solutions obtained -
0.3,0.7) 3788.52 1 3 3 -
(0.4, 0.6) 3787.63 12 S
(0.5,0.5) 3793.26 13
(0:6,0.4) 379235 Lis -3 3 3 -
(0.7,0.3) 3797.11 1 3 3 - - - _
- - - - 3 3 =
and P/ is changed to se{l,2.4,5,6,7}, respectively. Note that “-” represents 0.”
After element 3 and element 1 are removed frdm
and Py, respectively,P and P, are reduced to the same APPENDIX D
vector([l, 2,4, 5]. The first edge of'p, (6, 3), and that of WEIGHTING FUNCTION OF SOGA

Tp1,(3,1), is different.

2) In the second iteration of the Prufer decoding proc
dure, letvge, and vgey be the lowest eligible node
of P’ and P/, respectively. Since? and P, are equal
to the same vectofl,2,4,5], P = {1,2,3,4,5,7},
and P{ = {1,2,4,5,6,7}; therefore,|ugen] = 3 and
|vsien’| = 6. After node 3 and node 6 are removed fro
P’ and P/, respectively,P’ and P| are both changed

_In order to evaluate the effect of the weighting function of

OGA, we have simulated the SOGA with respect to different
combinations of cost weiglttv1) and delay weightw2). Five
different pairs of w1, w2) are assumed. A network of 56 nodes
is considered. Simulation results are presented in Table XI. By
I.ﬁzxamining Table XI, we have the following observations: for

all five test cases, their running time is very close; with =

- w2 = 0.5, the SOGA finds the largest number of nondominated

E)Oofhe};{zn% i;lo’;}én'zfgr :rlgmbg?r: rleglrjiggr?g \t/ﬁ g ‘I‘ZJI,:] Solutions. Table XI i_ndicatgs that the SOGA has the best perfor-
vector[2,4,5].7The second edge dFp, (3,1), and that mance when there is no bias between cost and delay.

of Tpy, (6, 1), is different.

3) Inthe remaining iterations, sinééandP; are reduced to REFERENCES
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