
KA$ HLER STRUCTURES AND WEIGHTED ACTIONS ON

THE COMPLEX TORUS

MENG-KIAT CHUAH

A

Let T be the compact real torus, and TC its complexification. Fix an integral weight α, and consider the α-
weighted T-action on TC. If ω is a T-invariant Ka$ hler form on TC, it corresponds to a pre-quantum line
bundle L over TC. Let Hω be the square-integrable holomorphic sections of L. The weighted T-action lifts
to a unitary T-representation on the Hilbert space Hω, and the multiplicity of its irreducible sub-
representations is considered. It is shown that this is controlled by the image of the moment map, as well
as the principle that ‘quantization commutes with reduction’.

1. Introduction

Let T be the compact real n-torus, and TC its complexification. Then T acts natur-

ally on TC, as subgroup of TC. In [3], we study T-invariant Ka$ hler structures on TC, and

the corresponding geometric quantization. The present paper follows a suggestion of

V. Guillemin, and considers the more general T-actions with weights.

We write T¯Rn}Zn and TC ¯Cn}Zn as in [3], where

TC ¯²z¯x­o®1[y] :x `Rn, [y] `Rn}Zn ¯T ´. (1.1)

Let N be the Lie algebra of T. The notation (1.1) automatically identifies N, N*, Rn, Rn*

with one another.

Consider now a weight α¯ (α
"
,…,α

n
) in the integral lattice Zn ZRn ¯ N*. We

define the α-weighted T-action on TC by

T¬TC MNTC, ([t
j
])¬(x

j
­o®1[y

j
])PN (x

j
­o®1[y

j
­α

j
t
j
]), (1.2)

where t
j
,x

j
, y

j
`R for all j¯ 1,… , n. In particular, if α

j
¯ 1 for all j, then (1.2) is just

the standard action of subgroup T on TC. We shall always deal with Ka$ hler structures

on TC that are invariant under this standard action, and we call them T-in�ariant. Let

Dα be the diagonal matrix with entries α
"
,…,α

n
along the diagonal. We shall see that

a T-invariant Ka$ hler form is necessarily invariant under the weighted action (1.2),

and has the expression ω¯o®1¦¦a F. In fact, the weighted action preserving ω is

Hamiltonian, with moment map Φ :TC MN N* given by

Φ(z)¯ "

#
Dα[F «(x)¯

1

2 0αj

¦F

¦x
j

(x)1
for all z¯x­o®1[y] `TC.

Since ω¯o®1¦¦a F, it has to be exact, and is in particular integral. We obtain a

pre-quantum line bundle L over TC [5, 6]. The Chern class of L is the cohomology

class [ω]¯ 0, so L is a trivial bundle. It is equipped with a connection ~ whose
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curvature is ω, as well as an invariant Hermitian structure (,). We say that a smooth

section s of L is holomorphic if ~
v
s¯ 0 for every anti-holomorphic vector field �. Let

H(L) denote the space of all holomorphic sections. The weighted action (1.2) leads to

a T-representation on H(L). Let dV be the Haar measure on TC. To obtain a unitary

representation out of H(L), let Hω be the space of all holomorphic sections s that

satisfy

&
TC

(s, s) dV!¢. (1.3)

Then Hω is a unitary T-representation space. Its infinitesimal N-representation is

written as ξ[s `Hω, for ξ ` N, s `Hω. The irreducible subrepresentations of Hω are

1-dimensional, and each is a subspace of

(Hω)λ ¯²s `Hω :ξ[s¯ (λ, ξ ) s for all ξ ` N´,

for some λ `Zn Z N*. A basic question in geometric quantization is to compute the

multiplicity of irreducible representations in Hω.

Let Ω be the image of the moment map. If the weight α in (1.2) contains no zero

entry, then the multiplicity problem is solved by an easy generalization of [3], as

follows.

T 1.1. If α has no zero entry, then the unitary representation Hω is

multiplicity-free. It contains (Hω)λ if and only if λ `Ω and λ
j
}α

j
`Z for all j.

We shall prove Theorem 1.1 in §2. Given a unitary representation of a Lie group,

we call it a model if it contains every irreducible representation once. This terminology

is due to I. M. Gelfand and A. Zelevinski [4]. From Theorem 1.1, Corollary 1.1

follows.

C 1.1. Hω is a model of T if and only if the moment map is surjecti�e and

α
j
¯³1 for all j.

The main purpose of this paper is to consider the more complicated situation

where the weight α in (1.2) contains zero entries. In this case, the multiplicity of (Hω)λ

is no longer determined by the image of the moment map alone. To handle this

problem, we introduce symplectic reduction, a process first explored by J. Marsden

and A. Weinstein [7]. In the study of Hamiltonian group actions on symplectic

manifolds, two of the central aspects are geometric quantization and symplectic

reduction. A unifying theme between them is given by V. Guillemin and S. Sternberg

[5] and is often called ‘quantization commutes with reduction’. A summary of recent

developments of such concepts can be found in [8]. We shall see that it helps to solve

our multiplicity problem.

We now perform symplectic reduction. Suppose that λ is in the image Ω of the

moment map Φ. Then T acts on Φ−"(λ), and we call Bλ ¯Φ−"(λ)}T the reduced space.

Let
ı :Φ−"(λ):NTC, π :Φ−"(λ)MNBλ

respectively denote the natural inclusion and quotient. Then Bλ is equipped with a

symplectic structure ωλ, such that π*ωλ ¯ ı*ω. This process is called symplectic

reduction, and ωλ is called the reduced symplectic form. We study certain properties

of the reduced space (Bλ,ωλ) in §3.
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Let k be the number of non-zero entries of the weight α, where 1%k% n. We may

rearrange the indices and assume that α¯ (α
"
,…,α

k
, 0,… , 0), where α

"
,…,α

k
are

non-zero. Recall that ω¯o®1¦¦a F. Since F can be regarded as a strictly convex

function on Rn (see [3]), the subset XZRn defined by

X¯²x `Rn :
1

2

¦F

¦x
j

(x)¯
λ
j

α
j

for j¯ 1,… ,k´

is a smooth submanifold of dimension (n®k). Let Tn−kZT be the real subtorus,

spanned by the last (n®k) coordinates. Then X¬Tn−k imbeds into TC, via

 :X¬Tn−k:NRn¬T¯TC.

In §3, we prove the following theorem.

T 1.2. The reduced space (Bλ,ωλ) is symplectomorphic to the symplectic

submanifold (X¬Tn−k, *ω).

By Theorem 1.2, we identify the reduced space Bλ with the symplectic submanifold

X¬Tn−k. Since ωλ is exact, we again have the pre-quantum line bundle over Bλ,

denoted Lλ. Here Lλ is trivial, because its Chern class is the cohomology class

[ωλ]¯ 0. It may be regarded as the restriction of L to Bλ, due to Theorem 1.2. The space

Bλ ZTC is not complex, so there is no intrinsic polarization for an immediate defi-

nition of ‘holomorphic ’ sections H(Lλ). We shall define H(Lλ) among the smooth

sections of Lλ in §4. This coincides with the usual holomorphic sections in cases where

Bλ happens to be complex.

The Haar measure of TC restricts to a measure on Bλ ¯X¬Tn−k, still denoted by

dV. We again use the Hermitian structure on Lλ to define an L#-structure on H(Lλ),

and let H
(ωλ)

denote the square-integrable sections in H(Lλ). In other words, H
(ωλ)

consists of all s `H(Lλ) in which

&
Bλ

(s, s) dV!¢.

In §4, we prove that geometric quantization commutes with reduction, as stated

in Theorem 1.3.

T 1.3. H
(ωλ)

is a Hilbert space, and (Hω)λ FH
(ωλ)

.

Clearly, Theorem 1.1 is a special case of Theorem 1.3: if the weight α has no zero

entry, then for all λ `Ω, the reduced space Bλ is just a point. Therefore H
(ωλ)

¯C, and

Theorem 1.3 implies that (Hω)λ occurs with multiplicity 1.

If the Hilbert spaces in Theorem 1.3 are infinite-dimensional, then of course the

isomorphism in question is trivial. In §5, we justify the significance of this theorem by

showing that their dimensions can be any of 0, 1, 2,…,¢.

2. Geometric quantization

Let ω be a T-invariant Ka$ hler form on the complex torus TC. By [3],

ω¯ dβ¯o®1¦¦a F, (2.1)

where β and F are T-invariant. We use the standard coordinates z¯x­o®1[y]
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introduced in equation (1.1). Here F, being T-invariant, depends on the x-variables

only. Since the weighted action defined in (1.2) acts along the [y]-variables, it

preserves F. Therefore, the weighted action also preserves ω.

Given ξ ` N¯Rn, let ξ ^ be the infinitesimal vector field on TC induced by the

weighted T-action. Hence

ξ ^ ¯3
j

α
j
ξ
j

¦
¦y

j

.

In (2.1), β¯ "

#
3

j
¦F}¦x

j
dy

j
. Hence the moment map Φ :TC MN N* of the weighted

action is given by

(Φ(z), ξ )¯ (β, ξ ^)

¯ 0"#3
j

¦F

¦x
j

(x) dy
j
,3

k

α
k
ξ
k

¦
¦y

k

1
¯3

j

"

#
α
j
ξ
j

¦F

¦x
j

(x),

for all z `TC and ξ ` N (see [1, Theorem 4.2.10]). Therefore, the moment map is

Φ(z)¯
1

2 0αj

¦F

¦x
j

(x)1.
As discussed in §1, ω corresponds to a pre-quantum line bundle L [5, 6], whose

holomorphic sections are denoted by H(L). By [3], there exists a non-vanishing T-

invariant holomorphic section s
!

satisfying

(s
!
, s

!
)¯ e−F. (2.2)

For the rest of this section, we assume that in the weighted T-action (1.2), α has

no zero entry. The weighted action lifts to a T-representation on H(L). Each

irreducible subrepresentation is one-dimensional, and is of the form C(ec[zs
!
) for some

c `Zn. Since s
!
is T-invariant, the corresponding infinitesimal N-representation is given

by

ξ[(ec[zs
!
)¯ (ξ[ec[z) s

!

¯
d

dt )
!

exp 03
j

c
j
(x

j
­o®1[y

j
­α

j
tξ

j
])1 s

!

¯3
j

c
j
α
j
ξ
j
ec[zs

!
(2.3)

for all ξ ` N. Therefore, if we define

H(L)λ ¯²s `H(L) : ξ[s¯ (λ, ξ ) s for all ξ ` N´,

then (2.3) says that

H(L)λ ¯C(ec[zs
!
)5 λ

j
¯ c

j
α
j
; j¯ 1,… , n. (2.4)

We consider the unitary T-representation Hω consisting of holomorphic sections

which converge under the integral (1.3). Let

(Hω)λ ¯H(L)λfHω.

We want to consider the multiplicity of (Hω)λ in Hω, and prove Theorem 1.1.
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Proof of Theorem 1.1. By (2.4), we only need to consider the cases with λ
j
}α

j
`Z

for all j. For such cases, let c
j
¯ λ

j
}α

j
`Z. Consider s¯ ec[zs

!
`H(L)λ, where s

!
is the

holomorphic section in (2.2). Define G `C¢(Rn) by G(x)¯F(x)®2c[x. Then

&
TC

(ec[zs
!
, ec[zs

!
) dV¯&

TC

e#c[xe−F dV¯&
TC

e−G dV. (2.5)

Since F and G have the same Hessian and F is strictly convex, so is G. According to

Proposition 3.3 of [3], the integral (2.5) converges if and only if G has a global

minimum. This is equivalent to 2c being contained in the image of the gradient

function F «. Recall that Dα is the diagonal matrix with entries α
"
,…,α

n
, so that the

moment map is Φ¯ "

#
Dα[F «. It follows that

ec[zs
!
`Hω 5 0 ` Image(G«)

5 2c ` Image(F «)

5 c ` Image("
#
F «)

5Dα c ` Image("
#
Dα[F «)

5 λ ` Image(Φ).

By (2.4), C(ec[zs
!
)¯H(L)λ, which completes the proof of Theorem 1.1. *

Since F `C¢(Rn) is a strictly convex function [3], the image of "

#
F « is a convex set

in Rn. Thus the image of the moment map Φ¯ "

#
Dα[F « is convex, and it includes all

λ `Zn exactly when Φ is surjective. Therefore, by Theorem 1.1, (Hω)λ 1 0 for all λ `Zn

if and only if Φ is surjective and α
j
¯³1 for all j. This proves Corollary 1.1.

3. Symplectic reduction

Let ω be a T-invariant Ka$ hler form on TC, preserved by the α-weighted T-action

(1.2). From now on, we consider the more interesting case where α has zero entries,

which is the main purpose of this paper. The square-integrable holomorphic sections

Hω now have a more complicated multiplicity problem. It turns out that symplectic

reduction [7] can handle this problem. In this section, we describe the process of

symplectic reduction, and prove Theorem 1.2.

The torus T has dimension n. Let k be the number of non-zero entries of the

weight α, where 1%k% n. We may arrange the indices so that the first k entries

α
"
,…,α

k
are non-zero. We identify Rk with the subspace of Rn spanned by the first

k variables. Intuitively, we can think of it as being ‘horizontal ’. In this way, the

horizontal k-dimensional affine subspaces H vZRn are defined by

H v¯Rk­�¯²(x
"
,… ,x

k
, 0,… , 0) :x

j
`R´­�, � `Rn. (3.1)

Similarly, we may regard Rn−kZRn as the subspace spanned by the last (n®k)-

coordinates, and define the ‘vertical ’ affine (n®k)-subspaces V c ZRn by

V c ¯ c­Rn−k¯ c­²(0,… , 0,x
k+"

,… ,x
n
) :x

j
`R´, c `Rn. (3.2)

Recall that ω has potential function F. Let Ω be the image of the moment map,

and let Dα be the diagonal matrix with entries α
"
,…,α

n
. Fix λ `Ω, and consider

X¯ ("
#
Dα[F «)−" (λ)¯²x `Rn :

1

2

¦F

¦x
j

(x)¯
λ
j

α
j

for j¯ 1,… ,k´. (3.3)
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The space X will play an important role in our study of symplectic reduction.

If we let Xa denote the closure of X in Rn, then the boundary of X is defined by

¦X¯Xa cX. The following proposition gives some properties of X.

P 3.1. The space X¯ ("
#
Dα[F «)−"(λ) is a closed, unbounded (n®k)-

dimensional submanifold of Rn, and ¦X¯W. For each � `Rn, the horizontal affine

k-space H v intersects X at most once.

Proof. Since F `C¢(Rn) is strictly convex [3], "

#
F « maps Rn diffeomorphically

onto a domain UZRn. Then Dα maps U onto the image Ω of the moment map. Since

Dα is a diagonal matrix whose last (n®k) entries vanish, λ `Ω may be written as λ¯
(λ

"
,…, λ

k
, 0,… , 0).

Let c¯ (λ
"
}α

"
,…, λ

k
}α

k
, 0,… , 0), and let V c ZRn be the vertical affine (n®k)-

space defined in (3.2). Then D−"
α (λ)fU¯V cfU is (n®k)-dimensional. However, "

#
F «

is a diffeomorphism between X and V cfU, so X is an (n®k)-dimensional manifold.

Since V cfU is closed in U, we conclude from the diffeomorphism "

#
F « that X is

closed in Rn. Since V cfU is not compact, neither is X. Hence X, being non-compact

and closed in Rn, is unbounded. Also, X equals its closure Xa simply because X is

closed, so the boundary ¦X is empty.

For � `Rn, let H v be the horizontal affine k-space defined in (3.1). It remains to

show that X intersects each H v at most once. Suppose that, for some � `Rn, there exist

distinct p, q `XfH v. Let SZH vZRn be the straight line joining p and q. Let

f `C¢(S ) be the restriction of F to S. Since p, q `X, equation (3.3) says that

¦F

¦x
j

(p)¯
¦F

¦x
j

(q)¯ 2
λ
j

α
j

for all j¯ 1,… ,k. This means that f «(t) has the same value at p and q, where t is a

linear variable on S. This is a contradiction, because f should be strictly convex on

S. Hence, for all � `Rn, XfH v contains at most one point. This proves the

proposition. *

Since T is abelian, the moment map Φ¯ "

#
Dα[F « is T-invariant. By Proposition

3.1, Φ−"(λ) is a real (2n®k)-submanifold of TC given by

Φ−"(λ)¯X¬T¯²x­o®1[y] :x `X ´. (3.4)

Let ı be the natural inclusion of Φ−"(λ) into TC. The torus T acts on Φ−"(λ), and

we let Bλ ¯Φ−"(λ)}T be the quotient space. Let π be the quotient map from Φ−"(λ)

onto Bλ. There exists a symplectic form ωλ on Bλ, satisfying π*ωλ ¯ ı*ω. The

construction of the symplectic manifold (Bλ,ωλ) is called symplectic reduction.

Proof of Theorem 1.2. When T acts on Φ−"(λ), the weight α has k non-zero

entries. We have arranged the indices so that T acts only along the first k-variables

of [y]. Therefore, equation (3.4) says that Bλ is diffeomorphic to the product manifold

X¬Tn−k, where Tn−k denotes the subtorus of T spanned by the last (n®k) variables.

To prove the theorem, it remains to check the assertion on symplectic forms.

Consider the following diffeomorphism σ followed by two inclusions  and ı,

Bλ MN
σ

X¬Tn−k:N


Φ−"(λ):N
ı

TC.
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Let π be the quotient map from Φ−"(λ) to Bλ. By the definition of ωλ, ı*ω¯π*ωλ.

Therefore, since π[[σ is the identity function on Bλ,

σ*[*[ı*ω¯σ*[*[π*ωλ ¯ωλ.

This shows that the diffeomorphism σ identifies ωλ with the pullback of ω to X¬Tn−k.

Hence Theorem 1.2 holds. *

The realization of Bλ as X¬Tn−k has the defect that the real submanifold X¬
Tn−kZTC is generally not complex. This is because the tangent bundle of X¬Tn−k

may not be preserved by the almost complex structure of TC.

We remark that there is a complex realization of Bλ, in terms of Reinhardt

domain, with ωλ being identified with the ‘ linear’ Ka$ hler structure ω
L
¯

o®1}23
j
dz

j
gdza

j
. However, this Ka$ hler realization will not be used below, and

we merely describe it in brief here. Recall that U is the image of the gradient

function "

#
F «. Consider the diffeomorphism

τ :TC MNU¬T, τ(x­o®1[y])¯ "

#
F «(x)­o®1[y].

By the definition (3.3) of X,

τ(X¬Tn−k)¯ (V cfU )¬Tn−kZV c¬Tn−k, (3.5)

where V c is the vertical affine space (3.2) corresponding to c¯ (λ
"
}α

"
,…, λ

k
}α

k
,0,… ,

0). Hence τ is a diffeomorphism from X¬Tn−k to R¯ (V cfU )¬Tn−k. In particular,

R is a Reinhardt domain in a complex torus V c¬Tn−k. Consider the standard Ka$ hler

structure on TC, ω
L
¯ (o®1}2)3

j
dz

j
gdza

j
. It satisfies

τ*ω
L
¯ τ*

o®1

2
3
j

dz
j
gdza

j

¯ τ*3
j

dx
j
gdy

j

¯3
j

d(τ*x
j
)gdy

j

¯
1

2
3
i,j

¦#F

¦x
i
¦x

j

dx
i
gdy

j

¯ω.

Hence, by (3.5), τ identifies ωλ with the pullback of ω
L

to R. In other words, τ is a

symplectomorphism between the pullback of ω to X¬Tn−k and the pullback of ω
L

to

R. Unfortunately, the Ka$ hler realization ω
L

does not reflect the geometry of the

original Ka$ hler form ω, and its quantization is not so interesting. Hence we will

always stick to the other realization, (X¬Tn−k,ωλ). From now on, we think of Bλ as

the symplectic submanifold X¬Tn−kZTC, and regard the reduced symplectic form

ωλ as the pullback of ω to Bλ.

4. Quantization commutes with reduction

Recall that T acts on TC by mapping (1.2), preserving ω¯o®1¦¦a F. We have

assumed the weight of this action to be α¯ (α
"
,… ,α

k
, 0… , 0), where α

"
,…,α

k
are

non-zero. In this way, every integral point in the image of the moment map is of the

form λ¯ (λ
"
,…, λ

k
, 0,… , 0) `Ω. In the previous section, we performed symplectic

reduction to λ, and obtained the reduced symplectic manifold (Bλ,ωλ).
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In this section, we apply geometric quantization to Bλ, and prove Theorem 1.3.

Using Theorem 1.2, we shall always identify Bλ with the real submanifold X¬Tn−kZ
TC. In this way, the reduced symplectic form ωλ is just the pullback of ω to Bλ. Since

ω is exact, so is ωλ. We let Lλ be the pre-quantum line bundle over Bλ, with Chern class

[ωλ]¯ 0. Hence Lλ is a trivial bundle, and in fact is the restriction of L to Bλ.

As remarked at the end of the previous section, the submanifold Bλ ZTC is not

complex. Therefore, there is no intrinsic polarization on the space of smooth sections

C¢(Lλ). To overcome this problem, consider

/¯²x­o®1[y] `TC :Hx intersects X ´, (4.1)

where Hx is the horizontal k-space introduced in (3.1). Clearly, /ZTC is open. In

fact, since T acts along the first k variables of [y], / is the smallest complex

submanifold of TC which contains Bλ and is preserved by the weighted T-action.

Therefore, we can define H(/,L)λ to be the holomorphic sections over / which

transform by the weight λ under the T-action. Consequently, among the smooth

sections C¢(Lλ) over Bλ, we can define

H(Lλ)¯²s `C¢(Lλ) :s extendable to H(/,L)λ´. (4.2)

In other words, H(Lλ) consists of all smooth sections of Lλ obtained from the

restriction of H(/,L)λ to Bλ.

We restrict the Haar measure dV to Bλ, and use the Hermitian structure of Lλ to

define an L#-structure on H(Lλ). Let H
(ωλ)

be the corresponding square-integrable

sections:

H
(ωλ)

¯ (s `H(Lλ) :&
Bλ

(s, s) dV!¢* . (4.3)

In this way, H
(ωλ)

is a complex inner product space.

P 4.1. H
(ωλ)

is a Hilbert space.

Proof. The only thing to check is completeness. We do this by constructing an

inner product space isomorphism between H
(ωλ)

and a Hilbert space.

From Proposition 3.1, XZRn is an (n®k)-submanifold which intersects every

horizontal affine k-space H v (3.1) at most once. Define

W¯²� `Rn−kZRn :H v intersects X ´. (4.4)

Then we get a diffeomorphism

ψ :XMNW, xPN (0,… , 0,x
k+"

,… ,x
n
). (4.5)

Let dV be the restriction of the Lebesgue measure of Rn−k to its open set W¯
ψ(X ), and dVλ the restriction of the Lebesgue measure of Rn to X. Also, let c

j
¯

λ
j
}α

j
`Z for j¯ 1,… ,k, and let c[x denote 3k

"
c
j
x
j
. Recall that F is the potential

function of ω. Since ψ is a diffeomorphism, it has a Jacobian Jψ `C¢(W ) between the

volume forms e#c[x−F(x) dVλ on X and dV on W. In other words,

e#c[x−F(x) dVλ ¯ψ*(Jψ dV ). (4.6)

Let WC ZTn−k
C be the Reinhardt domain

WC ¯²x­o®1[y] `Tn−k
C :x `W ´. (4.7)
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The function Jψ extends naturally to WC by Tn−k-invariance. Let B(WC, Jψ) be the

Bergman space of Jψ-weighted L#-holomorphic functions on the Reinhardt domain

WC. In other words, it is the Hilbert space defined by

B(WC, Jψ)¯ (h `C¢(WC) :h holomorphic, &
WC

hhaJψ dV!¢* .
We now check that the inner product space H

(ωλ)
is isomorphic to the weighted

Bergman space B(WC, Jψ), which implies that H
(ωλ)

is a Hilbert space.

From the definition (4.2) of H(Lλ), we have the natural restriction map

κ :H(/,L)λ MNH(Lλ).

Let s
!
be the T-invariant holomorphic section of (2.2), restricted to /. Pick s `H

(ωλ)
.

By the definition of H(Lλ), s is of the form s¯κ(hec[zs
!
), where h is a holomorphic

function on / and depends only on the variables z
k+"

,… , z
n

because the section

hec[zs
!
`H(/,L)λ needs to transform by λ. Define

L :H
(ωλ)

MNB(WC, Jψ), κ(hec[zs
!
)PN hr

WC
. (4.8)

We claim that L is an inner product space isomorphism.

Since h is independent of the first k variables, the function hha satisfies

(hha ) (q)¯ (hha ) (ψ(q)) (4.9)

for all q `X. We let s[s
"
and s[s

#
denote the norms of H

(ωλ)
and B(WC, Jψ) respectively.

For s¯κ(hec[zs
!
) `H

(ωλ)
,

sss#

"
¯&

X

hha e#c[x−F(x) dVλ by (2.2)

¯&
X

hhaψ*(Jψ dV ) by (4.6)

¯&
X

ψ*(hhaJψ dV ) by (4.9)

¯&
W

hhaJψ dV by (4.5)

¯&
WC

hhaJψ dV

¯ sL(s)s#

#
. by (4.8) (4.10)

Let Tk
C be the complex subtorus spanned by the first k variables. It follows from

the definitions (4.1), (4.4) and (4.7) that /¯Tk
C¬WC. Hence the operation hPN hr

WC

in (4.8) is bijective, because a holomorphic function h on / independent of z
"
,… , z

k

is equivalent to a holomorphic function on WC. Therefore, L is a bijection. Then (4.10)

says that L is an isomorphism of inner product spaces from H
(ωλ)

to B(WC, Jψ).

Therefore H
(ωλ)

is a Hilbert space. *

Recall that (Hω)λ ¯H(L)λfHω. Let c
j
¯ λ

j
}α

j
for j¯ 1,… ,k. From an argument

similar to the one leading to (2.4), we know that, if any c
j
is not an integer, then (Hω)λ
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vanishes. Assuming c
j
`Z from now on, our goal is to construct a natural Hilbert

space isomorphism (Hω)λ FH
(ωλ)

, and prove Theorem 1.3. In order to compare these

two Hilbert spaces, the next two propositions provide integrability conditions.

Let s
!
be the holomorphic section of equation (2.2). Given b¯ (b

k+"
,… , b

n
) `Zn−k,

we define a one-dimensional subspace

S
b
¯ (a exp 03k

"

c
j
z
j1 exp 03n

k+"

b
j
z
j1 s

!
:a `C*ZH(L)λ. (4.11)

Proposition 4.2 follows, from [3].

P 4.2 [3]. Let 01 s `S
b
. Then !

TC
(s, s) dV con�erges if and only if

(c
"
,… , c

k
, b

k+"
,… , b

n
) is in the image of "

#
F «.

Recall that Ω is the image of the moment map. Following Proposition 4.2, it is

clear that

(Hω)λ 1 05 λ `Ω,
λ
j

α
j

`Z for j¯ 1,… ,k. (4.12)

Assume that λ `Ω, so that we have the reduced space Bλ. Let s `S
b
. In Proposition

4.2, we have given a necessary and sufficient condition for (s, s) dV to be integrable

over TC. We now restrict it to Bλ ZTC, but for simplicity, we still denote it by (s, s) dV.

The next proposition considers its integrability over Bλ.

P 4.3. Let 01 s `S
b
. Then !

Bλ
(s, s) dV con�erges if and only if

(c
"
,… , c

k
, b

k+"
,… , b

n
) is in the image of "

#
F «.

Proof. Let s `S
b
. Suppose that (c

"
,… , c

k
, b

k+"
,… , b

n
) is in the image of "

#
F «.

By Proposition 4.2, !
TC

(s, s) dV converges. Therefore, when restricted to Bλ ZTC,

!
Bλ

(s, s) dV also converges.

Therefore, it only remains to prove the converse. Suppose that !
Bλ

(s, s) dV

converges for all s `S
b
. Define G `C¢(Rn) by

G(x)¯F(x)®23
k

"

c
i
x
i
®2 3

n

k+"

b
j
x
j
. (4.13)

Since F and G have the same Hessian, G is strictly convex. Since (s
!
, s

!
)¯ e−F,

equations (4.11) and (4.13) imply that up to a positive constant, e−G ¯ (s, s). Hence

&
X

e−G dVλ ¯&
Bλ

(s, s) dV!¢, (4.14)

where dVλ is the restriction of the Lebesgue measure to XZRn. By Proposition 3.1,

X is unbounded and has no boundary. Thus (4.14) implies that e−G approaches 0 along

every direction of X, in the sense that, for any ε" 0, there exists a compact subset of

X such that e−G(x) ! ε for x outside this compact set. This means that e−G acquires a

maximum point in X. Equivalently, G has a minimum point p in X :

G(p)%G(x), x `X. (4.15)

Recall the notions of horizontal and vertical affine spaces, defined in equations

(3.1) and (3.2). Let Gr
V

p denote the restricted function on the vertical space Vp. We
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want to show that p is the global minimum of Gr
V

p. However, since Gr
V

p is strictly

convex, it suffices to show that p is a local minimum of Gr
V

p. By Proposition 3.1, X

intersects Hp exactly once, at p. Hence, for each � `Vp that is sufficiently near p,

XfH v¯²q
v
´ (4.16)

for some q
v
. By the definition of X (3.3) and the definition of G in equation (4.13),

¦G

¦x
j

(q
v
)¯ 0, j¯ 1,… ,k. (4.17)

Since the restriction of G to H v is strictly convex, equation (4.17) says that q
v
is the

global minimum of the restriction of G to H v. In particular, since � `H v, it gives

G(q
v
)%G(�). (4.18)

Since q
v
`X, equations (4.15) and (4.18) imply that G(p)%G(�) whenever � `Vp is

sufficiently near p. This proves that p is a local minimum of Gr
V

p. However, Gr
V

p

is strictly convex, so p is a global minimum of it. Therefore,

¦G

¦x
j

(p)¯ 0, j¯k­1,… , n. (4.19)

Set �¯ p in (4.16), so that q
v
¯ p. Then (4.17) becomes

¦G

¦x
j

(p)¯ 0, j¯ 1,… ,k. (4.20)

Using equations (4.19) and (4.20), we conclude that p is the global minimum of G, and

so 0 is in the image of G«. Then (4.13) implies that (c
"
,… , c

k
, b

k+"
,… , b

n
) is in the

image of "

#
F «. Hence the proposition holds. *

If s `H(L)λ, we let ρ(s) be its restriction to Bλ. By the definition (4.2) of H(Lλ),

ρ(s) `H(Lλ). Therefore, we have the restriction map

ρ :H(L)λ MNH(Lλ).

We apply ρ to the one-dimensional spaces S
b
of (4.11). Recall that c

j
¯ λ

j
}α

j
`Z, for

j¯ 1,… ,k. Let

I¯²(b
k+"

,… , b
n
) `Zn−k : (c

"
,… , c

k
, b

k+"
,… , b

n
) ` Image "

#
F «´. (4.21)

By Propositions 4.2 and 4.3,

S
b
Z (Hω)λ 5 ρ(S

b
)ZH

(ωλ)
5 b ` I. (4.22)

It follows from definition (4.11) that, if 01 s `S
b
, then s is non-vanishing, so

in particular its restriction ρ(s) is non-zero. Thus ρ is injective on each S
b
. Therefore,

since each S
b
is one-dimensional, we obtain a constant m

b
" 0 for each b ` I by

sss¯m
b
sρ(s)s, s `S

b
. (4.23)

Here s[s denotes the norms of both (Hω)λ and H
(ωλ)

. For b ` I, define ρh on S
b
by

ρh (s)¯m
b
ρ(s), s `S

b
. (4.24)

Proof of Theorem 1.3. If λ is not in the image Ω of the moment map, then there

is no reduced space Bλ or H
(ωλ)

. Also, (Hω)λ ¯ 0 by (4.12), and there is nothing to

prove. Therefore, we may assume that λ `Ω.
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Proposition 4.1 says that H
(ωλ)

is a Hilbert space. To complete the proof, we show

that ρh gives the desired Hilbert space isomorphism. It follows from (4.22), (4.23) and

(4.24) that
sρh (s)s¯ sss!¢ for s `S

b
, b ` I. (4.25)

Consider the standard subgroup action of Tn−k on TC, which lifts to a Tn−k-

representation on H(L). This restricts to a Tn−k-representation on H(L)λ, because the

standard Tn−k-action commutes with the weighted T-action defined in (1.2). Since

Tn−k preserves the L#-structure (1.3) on H(L)λ, we get a unitary representation

π
"
:Tn−kMNAut(Hω)λ.

Since Tn−k also acts on Bλ by acting on its toral component, we similarly get a

Tn−k-representation on H(Lλ). It preserves the L#-structure (4.3) on H(Lλ), so we get

a unitary representation
π
#
:Tn−kMNAutH

(ωλ)
.

By the definition (4.11) and property (4.22) of S
b
, the irreducible sub-

representations of π
"
,π

#
are given by ²S

b
´
b`I

and ²ρ(S
b
)´

b`I
respectively. Apply the

Peter–Weyl theorem [2, Chapter III] to these subrepresentations. It says that ²S
b
´
b`I

and ²ρ(S
b
)´

b`I
are collections of mutually orthogonal subspaces in (Hω)λ and H

(ωλ)

respectively, and their linear spans are dense in these Hilbert spaces. Let

SZ (Hω)λ, RZH
(ωλ)

be the dense subsets given by their linear spans. Since both ²S
b
´
b`I

and ²ρ(S
b
)´

b`I
are

collections of mutually orthogonal subspaces, definition (4.25) says that ρh is an

isometry from S to R.

If I is finite, then the Hilbert spaces are finite-dimensional, and S¯ (Hω)λ, R¯
H

(ωλ)
. Thus ρh is the required isomorphism. Suppose that I is infinite. Since ρh is an

isometry between the dense subsets S and R, it extends continuously to a Hilbert

space isomorphism ρh : (Hω)λ MNH
(ωλ)

. This proves Theorem 1.3. *

5. Open cones

In this section, we give some simple examples to show that the Hilbert spaces of

Theorem 1.3 can have any dimension. It suffices to consider a torus of dimension 2.

From the previous section, we see that the dimension of (Hω)λ is the cardinality of

the index set I of (4.21). Consider ω¯o®1¦¦a F, invariant under the T-action (1.2)

with weight α¯ (1, 0). Let λ¯ (0, 0) `R#. Then the set I of (4.21) becomes

I¯²b `Z : (0, b) ` Image "

#
F «´. (5.1)

We now show that rI r¯dim(Hω)λ can be any of 0, 1, 2,…,¢.

Let �
"
, �

#
`R# be a basis. Define G `C¢(R#) by

G(x)¯ exp(�
"
[x)­exp(�

#
[x),

where �
i
[x is the usual dot product. Then G is strictly convex. The image of "

#
G« is the

open cone consisting of all positive linear combinations of �
"
, �

#
. By adjusting �

"
and

�
#
, we get all the open cones of R# that emit from the origin.

In fact, if G is any strictly convex function and w `R#, then F(x)¯G(x)­w[x is

also strictly convex. Further, the images of "

#
F « and "

#
G« differ by an affine translation

of "

#
w. From this observation, we consider the strictly convex function

F(x)¯ exp(�
"
[x)­exp(�

#
[x)­w[x.
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By choosing different parameters �
"
, �

#
,w `R# for F, the image of "

#
F « can be any given

open cone CZR#. For every s¯ 0, 1, 2,… ,¢, we can always find an open cone C

whose intersection with the y-axis contains s integral points, so that I in (5.1) has

s elements.
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