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A dual-porosity model describing two-phase, incompressible, immiscible #ows in a fractured reservoir is
considered. Indeed, relations among fracture mobilities, fracture capillary presure, matrix mobilities, and
matrix capillary presure of the model are mainly concerned. Roughly speaking, proper relations for these
functions are (1) Fracture mobilities go to zero slower than matrix mobilities as fracture and matrix
saturations go to their limits, (2) Fracture mobilities times derivative of fracture capillary presure and
matrix mobilities times derivative of matrix capillary presure are both integrable functions. Galerkin's
method is used to study this problem. Under above two conditions, convergence of discretized solutions
obtained by Galerkin's method is shown by using compactness and monotonicity methods. Uniqueness of
solution is studied by a duality argument. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. Introduction

A dual-porosity model [5, 11] describing two-phase, incompressible, immiscible
#ow in fractured reservoirs is considered. The model considered physically corres-
ponds to a water#ooding or unsaturated groundwater #ow in a fractured reservoir.
Flow in a fractured reservoir behaves as if the reservoir consisted of two superimposed
continua, a continuous fracture system and a discontinuous system of matrix blocks.
The fracture system has a low storativity and high conductivity while the majority of
the #uids reside in matrix blocks of low conductivity; and di!erent time scales for
saturation evolution appear in fracture system and matrix blocks. If e is the ratio
between the size of one matrix block to the size of the whole reservoir, then the time
scale for saturation evolution in the block will be of order e~2. If global pressure is
used, equations for the fracture system can be written as [5, 11, 13], for x3), t'0,
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Fig. 1. Domains for fracture system ) and matrix block )
x

)LR3 is the reservoir; ' the fracture porosity; S3[0, 1] the water saturation;
K the absolute permeability of the fracture system; and P the global pressure.
"a""a (S), a"w, o, is the phase mobility and is a monotone function. " :""

w
#"

o
.

When S approaches 0, "
w
(S) goes to 0; while S approaches 1, "

o
(S) is close to 0.

P
#
represents the capillary pressure function and dP

#
/dS(0. Ja , a"w, o, is a given

function, which depends on density of a-phase, position, and gravity. q
8

is the water
matrix source. If q

8
"0, then (1.1)} (1.2) are equations for two-phase #ows in non-

fractured reservoirs.
The equation for the matrix block )

x
LR3 suspended topologically over x3) is

given by, for x3), y3)
x
, t'0,
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where each lower case symbol denotes the quantity on )
x

corresponding to that
denoted by an upper case symbol in the fracture system equations (see Fig. 1).

The water matrix source is
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where nl is the unit vector outward normal to R), and for each matrix block require

B.C. p
#
(s)(x, y, t)"P

#
(S)(x, t) for x3), y3R)

x
, t'0 (1.6)

Initial equilibrium gives

I.C. G
S (x, 0)"S

0
(x) for x3),

s (x, y, 0)"s
0
(x) for x3), y3)

x

(1.7)
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By (1.6), p
#
(s
0
)(x)"P

#
(S

0
)(x), x3). Also note functions S, P, q

8
are de"ned on frac-

ture system depending on x, t; while s is de"ned on matrix blocks and depending on
x, y, t. The second-order derivative term for s in (1.3) only takes derivative with respect
to y variable. More physical background of this model can be found in [5, 11, 13].

For non-fractured reservoir case (i.e. q
8
"0), existence of solution had been exten-

sively studied. We refer readers to [3, 4, 8, 12, 15] and references therein. But for
fractured reservoir case, many questions still need to be answered. Numerical simula-
tions for (1.1)} (1.7) had been conducted in [11, 13]. Di!erent time scales for saturation
evolution in fracture system and matrix blocks can be observed from numerical results
in [13]. Convergence analysis of a numerical scheme for (1.1)} (1.7) for &very small'
matrix block case can be found in [10]. Existence results of (1.1)} (1.7) but for
linearized matrix phase mobilities ja , a"w, o and for &very small' matrix block cases
were shown in [6, 9]. An existence result for a model close to (1.1)} (1.3) but with
di!erent fracture}matrix interface condition (1.6) was considered in [7]. In this work,
we will consider the general model (1.1)} (1.7). Actually, we address the relations
among fracture mobilities, fracture capillary presure, matrix mobilities, and matrix
capillary presure for (1.1)} (1.7). Galerkin's method and monotonicity method will be
used to study this problem. Time-discretization for (1.1) and (1.3) is backward Euler
method. Resulting equations, counting for the interaction between matrix blocks and
fracture system, are non-linear and they are expressed by a variational formulation.
We "rst prove the discretized method is solvable, and then show a subsequence of the
solutions for the discretized method converges to a weak solution of (1.1)} (1.7). To
obtain convergence of discretized solutions of the di!erential equations, relations
between mobilities and capillary presures in (1.1)}(1.7) are (1) "

w
"

o
(S) goes to

0 slower than j
w
j
o
(s) as S, s approach their limits respectively, (2) "

w
"

o
DdP

#
/dSD and

j
w
j
o
Ddp

#
/dsD are integrable functions (see A7, 8 below). Then we consider the unique-

ness of (1.1)} (1.7), which will be analysed by a duality argument.
The following sections are organized as: In section 2, we state our problems, which

include four subsections section 2.1}section 2.4. In section 2.1, we give notation and
assumption; In section 2.2, we introduce a discretized scheme and a regularized system
for (1.1)} (1.7), and we claim a subsequence of solutions of the discretized scheme
converges to a solution of the regularized problem of (1.1)} (1.7); In section 2.3, we
claim a subsequence of solutions of the regularized problem in section 2.2 converges to
a solution of a weak solution of (1.1)} (1.7); In section 2.4, we state a uniqueness result
for (1.1)}(1.7). In section 3., 4., 5., we prove the results claimed in section 2.2, 2.3, 2.4,
respectively.

2. Statement of the problem

2.1. Notation and assumption

Let )LR3 be open, bounded, and connected with Lipschitz boundary. For every
x3), )

x
is a bounded region contained in R3. Identify the product space

%
x|))x

:"Q as a subset of R6. We require Q be a measurable subset of R6. We
will assume all matrix blocks are identical. So Q")]B, where B is a bounded
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measurable subset in R3 and its boundary, RB, is piecewise C1. Set )t :")][0, t];
Qt :"Q][0, t]; RM Q :")]RB; RM Qt :")]RB][0, t]; and Bt

i
:"B

i
][0, t], i"1, 2.

Cm([a, b]) is the space of functions with all the continuous derivatives of order)m
on [a, b]. For r*1 and m3N, ¸r(E), Hm(E), =m,r (E), ¸r(), Hm(B)), ¸r(), ¸r(RB)),
¸r(0, ¹;X), H1(0, ¹;X) are Sobolev spaces [1] where ELQt is a measurable set and
X is a Banach space. X* denotes the dual space of X. H :"Mf3H1()) : f DB

1
"0N;

W :"Mg3¸2(Q) : +
y
g3¸2(Q)N with norm

DEgDEW :"(EgE2
L2(Q)

#E+
y
gE2

L2(Q)
)1@2

Note W is contained in ¸2(), H1(B)). Let T
x
be usual trace map of H1(B) into ¸2(RB),

and de"ne the distributed trace T :WP¸2(), ¸2(RB)) by Tg (x, y)"(T
x
g (x)) (y).

W
0
:"Mg3W :Tg"0N; Z :"H]H]W

0
.
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where f (x)1
y
is constant in B with value f (x). For a function g, Xg is a characteristic
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Let P~1
#

, p~1
#

be the inverse functions of P
#
, p

#
, respectively. s

.*/
and 1!s

.!9
are the

residual matrix water and oil saturations, and assume p~1
#

(P
#
(0.5))3(s

.*/
, s

.!9
)L(0, 1).

De"ne time di!erence operator by Rhf(t) :"(f(t#h)!f(t))/h; R`
0

:"R`XM0N; + rep-
resents +

x
.

Next we make the following assumptions:
A1. ), Q, B, B

1
, B

2
are de"ned at the beginning of this subsection and B

1
O0.

A2. '(x), K(x), /(x), k(x)3[e
0
, e

1
] for x3).

A3. "
w

(resp. "
o
) : [0, 1]P[0, 1] is continuous and strictly increasing (resp. decreas-

ing); "
w
(0)""

o
(1)"0; j

w
(resp. j

o
) : [s

.*/
, s

.!9
]P[0, 1] is continuous and

strictly increasing (resp. decreasing); j
w
(s
.*/

)"j
o
(s
.!9

)"0; 0(e
2
)minM"

w
(1),

j
w
(s
.!9

), "
o
(0), j

o
(s
.*/

)N; e
2
)inf

z|*0,1+
"(z); e

2
)inf

z|*s.*/,s.!9 +
j (z).

A4. P
#
: (0, 1]PR`

0
and p

#
: (s

.*/
, s

.!9
)PR`

0
are onto and C1 functions;

dP
#
/dS, dp

#
/ds)!e

3
(0; P

#
(1)"p

#
(s
.!9

)"0.
A5. P

"
, P

#
(S

"
), J

w
, J

o
3¸2(0, ¹; H1())); R

t
P

#
(S

b
)3¸1()T).

A6. P
#
(S

0
)3¸1()); p

#
(s
0
(x))"P

#
(S

0
(x)), x3).

A7. j
w
j
o
(p~1

#
(P

#
(z))))e

4
"

w
"

o
(z) for z3 (0, 1].

A8. "
w
"

o
DdP

#
/dSD(z)3¸1((0, 1]); j

w
j
o
Ddp

#
/dsD(z)3¸1((s

.*/
, s

.!9
]),

where e
i
, i"0, 1, 2, 3, 4 are some positive constants.
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respectively. Under A3,4,7, 8, "
w
"

o
DdP

#
/dSD(z) may go to 0 or R as z closes to 0 or 1.

So fracture water saturation may have singular behaviours as it closes to its limits.
Similar situation as fracture saturation also happens in matrix saturation.

2.2. Discretized problem

We "rst "nd approximation functions of "a , ja , P#
, p

#
, S

0
, s

0
, S

"
, P

"
; then derive

a discretized scheme and a regularized system for (1.1)}(1.7). Let d be a small positive
number. By A4, [ PY

#
(d), PY

#
(1!d)]L(s

.*/
, s

.!9
). We extend "a, ja, a"w, o, to R con-

tinuously and constantly. By A3, we may "nd continuous monotone functions
"da, jda, a"w, o, in R such that
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By A4, we "nd C1 and decreasing functions Pd
#
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#
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#
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#
(Pd

#
(z)) is linear in (!R, d)X(1!d,R) and has inverse PY d,~1

#
(2.5)

One way to get Pd
#
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#
is as follows: Let Pd

#
in (!R, d) be the tangent line of P

#
at d and in

(1!d,R) be the tangent line of P
#
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#
in (!R, PY

#
(d)) be the tangent line

of p
#
at PY

#
(d) and in ( PY

#
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#
at PY
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are smooth functions Gd
0
, Gd

"
such that

G
Gd

0
P!P

#
(S

0
)"!p

#
(s
0
) in ¸1()),

Gd
"
P!P

#
(S

"
) in ¸2()T),

as dP0` (2.6)

and

EGd
"
E
L=(0,T;LÇ())), ERtGd

"
E
LÇ()T)

, EGd
"
E
LÈ(0,T;HÇ())) are bounded independently of d
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0
(x)!Gd

"
(x, 0)3H (2.7)
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m

:"mh, and I
m
:"(t

m~1
, t

m
]. For a Banach

space X, let

I
h
(X) :"M f3¸=(0, ¹;X) : f is piecewise constant in time on each

subinterval I
m
LIN (2.8)
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If f3I
h
(X), f D

Im
"f (t

m
) for m)M. We approximate for t3I

m
, a"w, o

;d,h
"

(x, t) :"
1

h P
Im
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P
"
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By A5, one can show that, for a"w, o,

G
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#
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"
)
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"
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"
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in ¸2(0, ¹;H1())) as hP0` (2.10)

Next, we write down a discretized scheme for (1.1)} (1.7) with "xed d. Assume
Me

1, i
N=
i/1
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2, i

N=
i/1

be bases of H and W
0
, respectively; and, for each i, e

2, i
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G
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y
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i
e
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e
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DR1 Q"0
(2.11)

for some constant c
i
. Let Hl, Wl

0
denote the linear span of Me

1, i
Nl
i/1

, Me
2, i

Nl
i/1

respectively. Zl :"Hl]Hl]Wl

0
. Because of (2.7)

2
, we can "nd ;d,l

0
such that
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0
!p~1

#
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#
(!Gd

0
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#
(!Gd

"
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0
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0

. The discretized scheme is to "nd (Sd,l, ;d,l, Pd,l, sd,l ) such that
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"
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0
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0

(2.13)
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"
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m
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M
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M
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where

(;d,l!;d,h
"

, Pd,l!Ph
"
, sd,l!L;d,l) (t

m
)"

l

+
i/1

(m
1, i

e
1, i

, m
2, i

e
1, i

, m
3, i

e
2, i

)3Zl

(2.15)

Sd,l(t
m
)"PY d,~1

#
(;d,l(t

m
)) (2.16)

m1
1, i

"P)
'R~hSd,l(t

m
)e

1,i
#P)

K"3 d
w
(Sd,l(t

m
))+(Pd,l(t

m
)!Jh

w
)+e

1, i

!P)
K

"d
w
"d

o
"d

(Sd,l(t
m
))

dpd
#

ds
(;d,l(t

m
))+;d,l(t

m
)+e

1, i

#PQ
/
DBD
R~hsd,l(t

m
)Le

1, i
(2.17)
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m1
2, i

"bM (d)P)
K("3 d(Sd,l(t

m
))+Pd,l(t

m
)!"3 d

w
(Sd,l(t

m
))+Jh

w
!"3 d
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m
))+Jh

o
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"PQ
/
DBD
R~hsd,l(t

m
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2, i
!PQ
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w
jd
o
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(sd,l(t

m
))

dpd
#

ds
(sd,l(t

m
))+

y
sd,l(t

m
)+

y
e
2, i

(2.19)

where bM (d) in (2.18) is a constant satisfying

bM (d)'1# sup
z|(0,1)

2D"dD2(z)
"d

w
"d

o
(z) D(dpd

#
/ds)( PY d

#
(z))D

and "d, "da, "3 d, "3 da are de"ned in (2.3)} (2.4). (2.16)} (2.19) is obtained from (1.1)} (1.3)
by using backward Euler method to approximate time derivatives of (1.1) and (1.3),
and then by using regularized functions, integration by parts, and boundary condi-
tions to obtain the variational formulation of the time}discretized equations. Here we
introduce a new variable ;d,l, which is related to Sd,l by (2.16) and is equal to sd,l on
the boundary of matrix blocks.

For "xed d, we will show in section 3 that a zero of (2.14)}(2.19) exists. Furthermore,
we show a subsequence of the solutions of (2.12)}(2.19) converges to a solution of the
following problem:

Theorem 2.1. ;nder A1-6 and (2.3)} (2.7), for each d, there exist Sd,;d, Pd, sd such that
for all (f

1
, f

2
, g)3¸2(0, ¹;Z),

'R
t
Sd#PB

/

DBD
R
t
sddy3¸2(0, ¹;H*), /R

t
sd3¸2(0, ¹;W*

0
) (2.20)

;d"PY
#
(Sd ), (;d!p~1

c
(!Gd

"
), Pd!P

"
, sd!L;d )3¸2(0, ¹;Z) (2.21)

d)Sd)1!d, PY
#
(d))sd)PY

#
(1!d) (2.22)

P)T

'R
t
Sdf

1
#P)T

KA"3 dw (Sd)+(Pd!J
w
)!

"
w
"

o
"

(Sd)+P
#
(Sd)B +f

1

"!PQT

/

DBD
R
t
sdLf

1
(2.23)

P)T

K"3 d (Sd)+Pd+f
2
!P)T

K("3 d
w
(Sd)+J

w
#"3 d

o
(Sd)+J

o
)+f

2
"0 (2.24)

PQT

/
DBD
R
t
sdg!PQT

k

DBD
j
w
j
o

j
(sd)+

y
p
#
(sd)+

y
g"0 (2.25)

;d (x, 0)"p
#
~1(!Gd

0
), sd (x, y, 0)"Lp~1

#
(!Gd

0
) (2.26)

A Dual-porosity Model 783

Math. Meth. Appl. Sci., 23, 777}802 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



2.3. Continuous problem

By A8, we may de"ne

G
R : [0, 1]PR, R(z) :"!:z

1@2
("

w
"

o
/")(dP

#
/dS) (m) dm

D : [s
.*/

, s
.!9

]PR, D(z) :"!:zPY
#(1@2)

(j
w
j
o
/j)( dp

#
/ds) (m) dm

(2.27)

In this section, we claim that a subsequence of solutions of the regularized system
(2.20)} (2.26) converges to a weak solution of (1.1)}(1.7) as dP0`. In fact, the limit of
the subsequence of (2.20)} (2.26) is a solution of the following problem:

Theorem 2.2. ;nder A1-8, there exist S, ;, P, s such that for (f
1
, f

2
, g)3¸2(0, ¹;Z),

'R
t
S#PB

/
DBD
R
t
s dy3¸2(0, ¹;H*), /R

t
s3¸2(0, ¹;W*

0
) (2.28)

;"PY
#
(S), (R(S)!R(S

b
), P!P

"
, D(s)!LD(;))3¸2(0, ¹;Z) (2.29)

0)S)1, s
.*/

)s)s
.!9

(2.30)

P)T

'R
t
S f

1
#P)T

K("
w
(S)+(P!J

w
)#+R(S))+f

1
"!PQT

/

DBD
R
t
s Lf

1
(2.31)

P)T

K"(S)+P+f
2
!P)T

K("
w
(S)+J

w
#"

o
(S)+J

o
)+f

2
"0 (2.32)

PQT

/
DBD
R
t
s g#PQT

k

DBD
+
y
D(s)+

y
g"0 (2.33)

Moreover, for f3¸2(0, ¹;H)WH1()T), g3¸2(0, ¹;W
0
)WH1(0, ¹;¸2(Q)), f (¹)"

g(¹)"0

P)T

'R
t
Sf#PQT

/
DBD
R
t
s(Lf#g)"!P)T

'(S!S
0
)R

t
f!PQT

/
DBD

(s!s
0
)R

t
(Lf#g)

(2.34)

Proof of this result will be given in section 4.

2.4. ;niqueness

Next, we consider the uniqueness of (2.28)} (2.34) for the case that "
w
"

o
D(dP

c
/dS) D

and j
w
j
o
D (dp

c
/ds) D are bounded above (which includes degenerate case). Domain

considered will be a nonsmooth domain.

De5nition 2.1. Boundary R)"B
1
XB

2
of the bounded domain ) belongs to class

Hm
*
, m*1, if (1) in the vicinity of each boundary point x NB1

1
WB1

2
there exists a homeo-

morphic transformation x@(x)"(x@
1
(x), x@

2
(x), x@

3
(x))3Cm, Ddx@/dxD*M'0 (dx@/dx is

the Jacobian of the transformation) such that x3B
i
, x@

3
(B

i
)"0, x@

3
())'0, i"1, 2, i.e.,

B
i

can be locally straightened, (2) in the vicinity of each point x3B1
1
WB1

2
there

exists a transformation x@"x@(x) with the same properties mapping it at the neighbour of
the edge(vertex) of a cube in variable x@.
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Besides A1+8 in section 2.1, let us also assume, for a"w, o,

A9. R(z)"D( PY
#
(z)) for z3[0, 1],

A10. "
w
"

o
D (dP

#
/dS) D(z)3¸=((0, 1]), j

w
j
o
D (dp

#
/ds) D(z)3¸=((s

.*/
, s

.!9
]), Ja3¸=(0,¹;

=1,=()))

A11. D"a(z1)!"a(z2)D)e
5
J(R(z

1
)!R(z

2
))(z

1
!z

2
) for z

1
, z

2
3[0, 1],

A12. R)3H3
*
, B is smooth.

Theorem 2.3. ;nder A1}12, solution of (2.28)} (2.34) satisfying P3¸=(0, ¹;=1,=())) is
unique.

Proof of this result will be given in section 5.

3. Convergence of discretized problem

Throughout this section, d is "xed. We shall show that a solution of (2.12)} (2.19)
exists, and a subsequence of solutions of (2.12)}(2.19) converges to a solution of the
regularized system (2.20)}(2.26). These are results claimed in section 2.2. De"ne
a non-negative function #) :RPR`

0
by

#) (z) :"P
z

0

( PY d,~1
#

(z)!PY d,~1
#

(m)) dm.

Since PY d,~1
#

is a strictly increasing function (see (2.5)), as Remark 1.2 [2], we have

G
#) (z)!#) (z

0
))( PY d,~1

#
(z)!PY d,~1

#
(z

0
))z for any z, z

0
3R

D PY d,~1
c

(z)D)e#) (z)#supDmD)1@eD P
Y d,~1
#

(m)D for any positive constant e
(3.1)

Lemma 3.1. ;nder A1-6 and (2.3)} (2.7), (2.12)} (2.19) is solvable for all d, l, h, and
solution ;d,l, Pd,l, sd,l satis,es

sup
0)t)T

(E#) (;d,l)E
LÇ())

#Esd,lE2
LÈ(Q)

)#(E+;d,lE2
LÈ()T)

#E+Pd,lE2
LÈ()T)

#E+
y
sd,lE2

LÈ(QT)
))c

0
(3.2)

where c
0

is a constant independent of l, h.

Proof. The solvability of (2.12)} (2.19) is derived by induction. (Sd,l,;d,l, sd,l ) (0) is
known by (2.13). Assume (Sd,l,;d,l, sd,l) (t

m~1
) is known. By assumptions, Ed,l,h of

(2.14) is continuous. (2.10) and (2.15)}(2.19) imply

Ed,l,h(m
1,1

, . . , m1,l, m2,1
,2, m

3,l
)(m

1,1
, . . , m1,l, m2,1,2, m

3,l
)

*P)
'R~hSd,l(;d,l!;d,h

"
)(t

m
)

#c
1APQ

Dsd,lD2
h

#P)
D+;d,lD2#P)

D+Pd,lD2#PQD+y
sd,lD2B(tm)!c

2
(3.3)
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where c
1
, c

2
are positive constants. By (3.1)

1
,

'
h

(#) (;d,l(t
m
))!#) (;d,l(t

m~1
))))'R~hSd,l(;d,l!;d,h

"
) (t

m
)#'R~hSd,l;d,h

"
(t
m
)

(3.4)

(3.3)} (3.4) and (3.1)
2

imply

Ed,l,h(m
1,1

, . . , m1,l, m2,1,2, m
3,l

)(m
1,1

, . . , m1,l, m2,1,2, m
3,l

)

*c
3AP)

#) (;d,l)
h

#PQ
Dsd,lD2

h
#P)

D+;d,lD2#P)
D+Pd,lD2#PQD+y

sd,lD2B(tm)!c
4

(3.5)

Right-hand side of (3.5) is strictly positive if norm of (m
1,1

,2, m
3,l

) is large enough. So
Ed,l,h of (2.14) has a zero [16] for t"t

m
. By induction, we see (2.12)} (2.19) is solvable.

Assume (;d,l!;d,h
"

, Pd,l!Ph
b
, sd,l!L;d,l)"+l

i/1
(m

1, i
e
1, i

, m
2, i

e
1, i

, m
3, i

e
2, i

) is
a zero of (2.14). Then

Ed,l,h(m
1,1

, . . , m1,l, m2,1
,2, m

3,l
)(m

1,1
, . . , m1,l, m2,1,2, m

3,l
)"0. (3.6)

Integrating (3.6) over [0, t
m
], we obtain by (2.10),

P
tm

0
P)

'R~hSd,l (;d,l!;d,h
"

)#P
tm

0
PQ

/

DBD
R~hsd,l(sd,l!L;d,h

"
)

#c
5AP

tm

0
P)

D+;d,lD2#P
tm

0
P)

D+Pd,lD2#P
tm

0
PQD+y

sd,lD2B)c
6

(3.7)

where c
5
, c

6
are constants independent of l, h. By (3.1)

1

'
h

(#) (;d,l(t))!#) (;d,l(t!h))))'R~hSd,l(;d,l!;d,h
"

) (t)#'R~hSd,l;d,h
"

(t)

(3.8)

Integrating (3.8) over )][0, t
m
], we obtain

1

h P
tm

tm~h
P)

'#) (;d,l))P
tm

0
P)

'R~hSd,l(;d,l!;d,h
"

)#P)
'#) (;d,l(0))

!P
tm~h

0
P)

'(Sd,l!Sd,l(0))Rh;d,h
"

#

1

h P
tm

tm~h
P)

'(Sd,l!Sd,l(0));d,h
"

(3.9)

where Sd,l(t)"Sd,l(0) for !h(t(0. A similar idea as (3.9), we have

1

h P
tm

tm~h
PQ

/

DBD
Dsd,lD2

2
)P

tm

0
PQ

/

DBD
R~hsd,l (sd,l!L;d,h

"
)#PQ

/

DBD
Dsd,l(0)D2

2

!P
tm~h

0
PQ

/
DBD

(sd,l!sd,l (0))LRh;d,h
"

#

1

h P
tm

tm~h
PQ

/
DBD

(sd,l!sd,l(0))L;d,h
"

(3.10)
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where sd,l(t)"sd,l(0) for !h(t(0. Since p~1
#

(!Gd
"
) is smooth,

ERh;d,h
"

E
LÇ(0,T;L=()))VLÈ()T)

and E;d,h
"

E
L=()T)

are bounded by a constant independent
of h. (3.7), (3.9)}(3.10), (3.1)

2
, and discrete Gronwall's inequality imply (3.2). K

From now on, (Sd,l, Ud,l, Pd,l, sd,l) will be a solution of (2.12)} (2.19). By (2.17)}(2.19),
one can see

0"P)
'R~hSd,l(t

m
)f

1
#P)

K"3 d
w
(Sd,l(t

m
))+(Pd,l(t

m
)!Jh

w
)+f

1

!P)
K

"d
w
"d

o
"d

(Sd,l(t
m
))

dpd
#

ds
(;d,l(t

m
))+;d,l(t

m
)+f

1
#PQ

/

DBD
R~hsd,l(t

m
)Lf

1
(3.11)

0"P)
K"3 d(Sd,l(t

m
))+Pd,l(t

m
)+f

2
!P)

K("3 d
w
(Sd,l(t

m
))+Jh

w
#"3 d

o
(Sd,l(t

m
))+Jh

o
)+f

2

(3.12)

0"PQ
/

DBD
R~hsd,l(t

m
)g!PQ

k

DBD
jd
w
jd
o

jd
(sd,l(t

m
))

dpd
#

ds
(sd,l(t

m
))+

y
sd,l(t

m
)+

y
g (3.13)

for (f
1
, f

2
, g)3Zl.

Lemma 3.2. For any small e ('0), solutions of (2.12)} (2.19) satisfy

P
T

e P)
'(Sd,l(x, t)!Sd,l(x, t!e))(;d,l(x, t)!;d,l(x, t!e)))ce

where c is a constant independent of l, h, e.

Proof. For "xed k, we add (3.11), (3.13) for m"j#1,2, j#k, test the resulting
equations by

f
1,j

:"f
1
"h2kR~kh(;d,l!;d,h

"
)(t

j`k
), g

j
:"g"h2kR~kh(sd,l!L;d,l)(t

j`k
)

then sum equations for j"1,2, M!k to obtain (note t
m
"mh)

M~k
+
j/1
GP)'(Sd,l(t

j`k
)!Sd,l(t

j
)) (;d,l(t

j`k
)!;d,l(t

j
))#PQ

/

DBD
Dsd,l(t

j`k
)!sd,l(t

j
)D2H

"

M~k
+
j/1
GP)'(kh)2R~khSd,l(t

j`k
)R~kh;d,h

"
(t
j`k

)

#PQ
/
DBD

(kh)2R~khsd,l(t
j`k

)R~khL;d,h
"

(t
j`k

)H
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#

M~k
+
j/1

j`k
+

m/j`1
G!P)

KA"3 dw (Sd,l)+(Pd,l!Jh
w
)

!

"d
w
"d

o
"d

(Sd,l)
dpd

#
ds

(;d,l )+;d,lB (t
m
)+f

1,j

#PQ
k

DBD
jd
w
jd
o

jd
dpd

#
ds

(sd,l)+
y
sd,l(t

m
)+

y
g
jH (3.14)

By Lemma 3.1. and rearranging the indices j, m, the right-hand side of (3.14) is
bounded by ck. So

P
T

kh
P)'(Sd,l(t)!Sd,l(t!kh))(;d,l(t)!;d,l(t!kh)))ckh (3.15)

Since ;d,l is a step function in time, we see that this estimate is also satis"ed if we
replace kh by any positive constant e. Therefore we complete the proof of this lemma.

K

If d3N, p :"¹/d, Ip
i
:"[(i!1)p, ip), de"ne Ap :¸1([0, ¹))P¸1(0, ¹)) by

Ap(f)(t) :"
1

p P
Ipi

f (q) dq for t3Ip
i

(3.16)

Lemma 3.3. As pP0`, Ap(;d,l ) converges to ;d,l strongly in ¸2()T) and uniformly
in l, h.

Proof. De"ne, for each l, h,

Gl,h (e, M) :"Gt3(e, ¹) : E;d,lE
HÇ())

(t)#E;d,lE
HÇ())

(t!e)

#

1

e P)
'e2R~eSd,l(x, t)R~e;d,l(x, t) dx'MH (3.17)

By Lemmas 3.1 and 3.2 and (3.17), :Gl,h(e,M)
Mdt)c, where c is independent of l, h. So

DGl,h(e, M) D)c/M, for all l, h (3.18)

Next, we claim: If t3 (e, ¹)!Gl,h(e, M), then

E;d,l() , t)!;d,l() , t!e)E
LÈ())

)bM(e) (3.19)

with a continuous function bM (independent of l, h) satisfying bM(0)"0.

Proof of claim. If not, there is a positive constant c
1

such that, as eP0`, for each
e there are te , le ,;d,le(te),;d,le(te!e) satisfying

E;d,leE
HÇ())

(te)#E;d,leE
HÇ())

(te!e))M

GP)'e2R~eSd,le(x, te)R~e;d,le(x, te) dx)Me (3.20)

E;d,le (te)!;d,le(te!e)E
LÈ())

*c
1
'0
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By (3.20)
1
, there is a subsequence of M;d,le (te),;d,le (te!e)N (same index for subsequ-

ence) such that the subsequence converges to M f
1
, f

2
N weakly in H1()) [14]. It implies

M;d,le (te),;d,le (te!e)N converges to M f
1
, f

2
N strongly in ¸2()) and pointwise almost

everywhere. Furthermore, by (3.20)
3
,

E f
1
!f

2
E
LÈ())

*c
1
'0 (3.21)

By (2.5), (3.20)
2
, and Lebesque dominant theorem [17],

P)
'( PY d,~1

#
( f

1
)!PY d,~1

#
( f

2
)) ( f

1
!f

2
) dx

" lim
e?0` P)

'e2R~eSd,le (x, te)R~e;d,le (x, te) dx"0 (3.22)

(3.22) implies f
1
"f

2
almost everywhere, which contradicts to (3.21). So the claim

is true.
(3.18)}(3.19) imply

P
T

e
E;d,l() , t)!;d,l() , t!e)E2

LÈ())
dtP0 (3.23)

uniformly in l, h as eP0`. By (3.16), (3.23),

P
T

0

E;d,l!Ap(;d,l)E2
LÈ())

dt"
d
+
i/1
P
Ipi
KK
1

p P
Ipi

(;d,l() , t)!;d,l() , q)) dq KK
2

LÈ())

dt

)

d
+
i/1
P
Ipi

1

p P
t~(i~1)p

t~ip
E;d,l() , t)!;d,l() , t!e)E2

LÈ())dedt

)

2

p P
p

0
P

T

e
E;d,l () , t)!;d,l() , t!e)E2

LÈ())
dtdeP0

uniformly in l, h as pP0`. So we complete the proof of this lemma. K

Lemma 3.4. ¹here are subsequences of ;d,l, Sd,l converging to ;d,Sd("PY d,~1
#

(;d))
pointwise and in ¸2()T) strongly.

Proof. By Lemma 3.1, E;d,lE
LÈ(0,T ;HÇ()))

)c, which is independent of l, h. So for all p,

EAp(;d,l )E
LÈ(0,T ;HÇ()))

)constant (independent of l, h). (3.24)

By Lemma 3.3, (3.24), and diagonal process, we can "nd a subsequence of ;d,l con-
verging to ;d in ¸2()T) strongly and pointwise. By (2.5) and convergence of ;d,l in
¸2()T), we can also "nd a convergent subsequence for Sd,l. K

De"ne Dd : RPR by

Dd (z) :"P
z

PY
#(1@2)

jd
w
jd
o

jd K
dpd

#
ds K (m) dm (3.25)
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Lemma 3.5. ¹here exist subsequences of Sd,l, ;d,l, Pd,l, sd,l (same indices for subsequen-
ces) such that, as lPR, hP0`,

G
;d,l, Sd,lP;d, Sd in ¸2()T) strongly,

Pd,l, Sd,l,;d,lPPd, Sd,;d in ¸2(0,¹;H1())) weakly,

sd,lPsd in ¸2(0,¹; W) weakly,

'R~hSd,l#:B(//DBD) R~hsd,lP'R
t
Sd

#:B (//DBD) R
t
sd in ¸2(0,¹;H*) weakly, (3.26)

R~hsd,lPR
t
sd in ¸2(0,¹; W*

0
) weakly,

sd,l(¹)Psd(¹) in ¸2(Q) weakly,

sd,l(0)PLp~1
#

(!Gd
0
)"sd(0) in ¸2(Q) strongly,

Dd(sd,l)PDd (sd) in ¸2(0,¹; W) weakly

Proof. By (2.13) and Lemmas 3.1, 3.4, there exist Sd,;d, Pd, sd, DI , sJ such that, as
lPR, hP0`,

G
;d,l, Sd,lP;d, Sd in ¸2()T) strongly,

Pd,l, Sd,l,;d,lPPd, Sd, ;d in ¸2(0,¹;H1())) weakly,

sd,l, Dd (sd,l)Psd, D3 in ¸2(0,¹; W) weakly,

sd,l(¹)PsJ in ¸2(Q) weakly,

sd,l(0)PLp~1
#

(!Gd
0
) in ¸2(Q) strongly

(3.27)

Let Hl, Wl

0
be "nite-dimensional subspaces of H, W

0
, respectively. If P

1,0
(aver-

age function as (2.9)) is de"ned to be P
1,0

( f ) (x, y, t) :"1/h :
Im

f (x, y, q) dq, t3I
m
, and

if P
1,1

: I
h
(H)PI

h
(Hl ) is the projection (see (2.8) for I

h
), then de"ne a map

P
1
:¸2(0, ¹;H)PI

h
(Hl ) by P

1
"P

1,13
P
1,0

. Similarly, if P
2,1

: I
h
(W

0
)PI

h
(Wl

0
) is

the projection, then de"ne P
2
:¸2(0, ¹;W

0
)PI

h
(Wl

0
) by P

2
"P

2,1 3
P
1,0

. By (3.11),
(3.13), and Lemma 3.1,

P)T

'R~hSd,lP
1
(f

1
)#PQT

/

DBD
R~hsd,l(LP

1
(f

1
)#P

2
(g))

)c(Ef
1
E
LÈ(0,T;H)

#EgE
LÈ(0,T;W

o)
)

(3.28)

for f
1
3¸2(0, ¹;H), g3¸2(0, ¹;W

0
). (3.27)}(3.28) imply (3.26)

4
and (3.26)

5
.

For each i*1, and f3C1[0, ¹], we obtain from (3.13)

!P
T~h

0
PQ

/

DBD
sd,lRhP

1,0
( f ) (t)e

2, i
#PQT

k

DBD
+
y
Dd (sd,l)P

1,0
( f ) (t)+

y
e
2, i

"!

1

h P
T

T~h
PQ

/
DBD

sd,l(¹)P
1,0

( f ) (t)e
2, i

#PQ
/
DBD

sd,l(0) f (0)e
2, i

(3.29)
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Let lPR, hP0`, (2.13) and (3.27) imply

!PQT

/

DBD
sdR

t
f (t)e

2, i
#PQT

k

DBD
+

y
DI f (t)+

y
e
2, i

"!PQ
/

DBD
sJ f (¹)e

2, i
#PQ

/

DBD
Lp~1

#
(!Gd

0
) f (0)e

2, i
(3.30)

Applying Green's theorem for (3.30) in the t variable yields, by (3.26)
5
,

PQT

/
DBD
R
t
sd f (t)e

2, i
#PQT

k

DBD
+
y
D3 f (t)+

y
e
2, i

"!PQ
/

DBD
(sJ!sd(¹)) f (¹)e

2, i
#PQ

/

DBD
(Lp~1

#
(!Gd

0
)!sd(0)) f (0)e

2, i
(3.31)

Since Me
2, i

N=
i/1

is a basis ofW
0
, (3.31) implies sJ"sd(¹), sd (0)"Lp~1

#
(!Gd

0
) (that is,

(3.26)
6,7

), and for g3¸2(0, ¹;W
0
),

PQT

/
DBD
R
t
sdg#PQT

k

DBD
+
y
D3 +

y
g"0 (3.32)

Finally we show Dd(sd)"D3 . Since Dd (z) is an increasing function, for all l3N,
f3¸2(QT)

0)PQT

/

DBD
(Dd (sd,l)!Dd( f ))(sd,l!f ) (3.33)

By A2 and (2.11), one can "nd ud,l3Wl

0
, ud, od,l, od3W

0
satisfying, for all x3),

G
!+

yA
k

DBD
+

y
ud,lB"

/
DBD

(sd,l!L;d,l ), !+
yA

k

DBD
+
y
udB"

/
DBD

(sd!L;d),

ud,lDRB"0, udDRB"0G
(3.34)

G
+

yA
k

DBD
+

y
od,lB"

/

DBD
L;d,l, +

yA
k

DBD
+
y
odB"

/

DBD
L;d,

od,lDRB"0, odDRB"0
(3.35)G

Note, by (3.34),

PQT

/

DBD
Dd(sd,l)sd,l"PQT

/

DBD
Dd(L;d,l )sd,l#PQT

(Dd(sd,l )!Dd(L;d,l ))
/

DBD
L;d,l

!PQT

(Dd(sd,l)!Dd (L;d,l))+
y A

k

DBD
+
y
ud,lB (3.36)
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By Green's theorem, (2.15), (3.13), (3.34)}(3.35),

!PQT

(Dd (sd,l)!Dd(L;d,l))+
yA

k

DBD
+
y
ud,lB

"PQT

k

DBD
+
y
Dd(sd,l)+

y
ud,l

"!PQT

/

DBD
R~hsd,lud,l

"!PQT

/
DBD
R~hsd,l(ud,l!od,l)!PQT

/
DBD
R~hsd,lod,l

)!

1

2 PQ
k

DBD
D+

y
(ud,l!od,l)D2K

T

0

!PQT

/

DBD
R~hsd,lod,l (3.37)

(3.26)
1,5,6

, (3.34)} (3.35), Ho~ lder inequality, and Green's theorem imply

PQ
k

DBD
D+

y
(ud!od)D2(¹))lim inf

l?=
PQ

k

DBD
D+

y
(ud,l!od,l)D2(¹) (3.38)

PQT

/

DBD
R
t
sdod" lim

l?=
PQT

/

DBD
R~hsd,lod,l (3.39)

Taking limit supremum both sides of (3.33) and employing (3.27), (3.36)} (3.39), we
obtain

0)PQT

/

DBD
Dd(L;d)sd#PQT

(DI !Dd(L;d))
/

DBD
L;d!PQ

k

2DBD
D+

y
(ud!od)D2K

T

0

!PQT

/

DBD
R
t
sdod!PQT

/Dd( f )(sd!f )#/DI f
DBD

(3.40)

Set g"ud in (3.32), by (3.26)
5
,

0"PQ
k

2DBD
D+

y
(ud!od)D2K

T

0

#PQT

/

DBD
R
t
sdod#PQT

/

DBD
(DI !Dd(L;d))(sd!L;d)

(3.41)

(3.40)} (3.41) imply, for all f3¸2(QT),

0)PQT

/

DBD
(DI !Dd( f ))(sd!f )

If f"sd!bI oJ , where bI '0 and oJ 3¸2(QT), then

0)PQT

/
DBD

(DI !Dd(sd!bI oJ ))oJ
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Let bI P0`, then we have, for all oJ 3¸2(QT),

0)PQT

/

DBD
(DI !Dd(sd))oJ ,

which implies DI "Dd(sd). So we complete the proof of this lemma. K

Lemma 3.6. d)Sd)1!d and PY
#
(d))sd)PY

#
(1!d).

Proof. (2.10), (2.15)} (2.19), and Lemma 3.5 imply that for all f
1
, f

2
3¸2(0, ¹;H),

g3¸2(0, ¹;W
0
),

;d"PY d
#
(Sd), (;d!p~1

#
(!Gd

"
), Pd!P

"
, sd!L;d)3¸2(0, ¹;Z) (3.42)

P)T

'R
t
Sdf

1
#P)T

KA"3 dw+(Pd!J
w
)!

"d
w
"d

o
"d

dpd
#

ds
(;d)+;dB+f

1
"!PQT

/
DBD
R
t
sdLf

1

(3.43)

P)T

K"3 d+Pd+f
2
!P)T

K("3 d
w
+J

w
#"3 d

o
+J

o
)+f

2
"0 (3.44)

PQT

/
DBD
R
t
sdg!PQT

k

DBD
jd
w
jd
o

jd
dpd

#
ds

(sd)+
y
sd+

y
g"0 (3.45)

;d (x, 0)"p~1
#

(!Gd
0
), sd(x, y, 0)"Lp~1

#
(!Gd

0
) (3.46)

where "3 d, "3 da, "d, "da are functions of Sd and jd, jda are functions of sd for a"w, o.
By (2.5), (2.7)

3
, and (3.42), maxM;d!PY d

#
(1!d), 0N3¸2(0, ¹;H). Let f

1
"f

2
"

maxM;d!PY d
#
(1!d), 0N in (3.43) } (3.44) and let g"maxMsd!PY d

#
(1!d), 0N!Lf

1
in (3.45), we see that, by (2.4), (2.7)

3
, and (3.46),

P)T

'R
t
(Sd!(1!d))f

1

#c
1AP)T

D+;dD2XfÇ
#PQDsd!PY d

#
(1!d)D2Xg`LfÇ

(¹)#PQT

D+
y
sdD2XgB)0 (3.47)

where c
1

is a positive number and XfÇ
, Xg`LfÇ

(¹), Xg are characteristic functions
de"ned in (2.2). By (2.5)

4
, (3.47) implies Sd)1!d, sd)PY d

#
(1!d)"PY

#
(1!d). Sim-

ilarly, let f
1
"maxM!;d#PY d

#
(d), 0N in (3.43) and let g"maxM!sd#PY d

#
(d), 0N!Lf

1
in (3.45), we have Sd*d, sd*PY d

#
(d)"PY

#
(d). K

Theorem 2.1 is a direct result of (2.3)}(2.5) and Lemmas 3.5, 3.6.

4. Convergence of continuous problem

In this section, we are going to show that a subsequence of solutions of the
regularized systems (2.20)} (2.26) converges to a weak solution of (1.1)}(1.7) as dP0`.
Idea of proof for above claim is almost same as that in section 3. By A4, let us give
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some notations:

G
! : (!R, 0]P(0, 1] !(z) :"P~1

#
(!z),

c : (!R, 0]P(s
.*/

, s
.!9

] c(z) :"p~1
#

(!z),

# : (!R, 0]PR`
0

#(z) :":z
0
(!(z)!!(m)) dm,

h : (!R, 0]PR`
0

h (z) :":z
0
(c(z)!c (m)) dm,

D) : (s
.*/

, s
.!9

]PR D) (z) :":zPY
# (1@2)

Jj
w
j
o
Ddp

#
/ds D(m) dm,

Gd :"!P
#
(Sd), gd :"!p

#
(sd), <d :"D) (;d), vd :"D) (sd)

(4.1)

It is easy to see that Gd!Gd
b
3¸2(0, ¹;H) by (2.21)}(2.22) of Theorem 2.1 and

G
#(z)!#(z

0
))(!(z)!!(z

0
))z

h (z)!h (z
0
))(c(z)!c(z

0
))z

for any z, z
0
3 (!R, 0] (4.2)

De"ne

G
Pd

w
:"Pd!1

2 AP#
(Sd)#P

P
#(Sd)

0
A
"

o
"

!

"
w

" B (P~1
#

(m)) dmB
Pd

w,"
:"P

"
!1

2A!Gd
"
#P

~Gd
"

0
A
"

o
"

!

"
w

" B (P~1
#

(m)) dmB
Pd

o
:"P

#
(Sd)#Pd

w

Pd
o,"

:"!Gd
"
#Pd

w,"

(4.3)

(2.23)} (2.24) and (4.3) imply, for f
w
, f

o
3¸2(0, ¹;H),

Pd
w
!Pd

w,b
, Pd

o
!Pd

o,b
3¸2(0, ¹;H) (4.4)

P)T

'R
t
Sdf

w
#P)T

K("
w
+Pd

w
!"3 d

w
+J

w
#("3 d

w
!"

w
)+Pd)+f

w
"!PQT

/
DBD
R
t
sdLf

w

(4.5)

!P)T

'R
t
Sdf

o
#P)T

K("
o
+Pd

o
!"3 d

o
+J

o
#("3 d

o
!"

o
)+Pd)+f

o
"PQT

/
DBD
R
t
sdLf

o

(4.6)

where "3 da, "a, a"w, o are functions of Sd.

Lemma 4.1. ;nder A1+7, solutions of (2.20)} (2.26) satisfy (by notation of (4.1))

sup
0)t)T

AP)#(Gd)#PQ
h (gd)
DBD B#E+PdE2

LÈ()T)
#P)T

"
o
"

w
(Sd)D+P

#
(Sd)D2

#PQT

j
o
j
w
(sd)D+

y
p
#
(sd)D2#E<dE2

LÈ(0,T;HÇ()))
#EvdE2

LÈ(0,T;W)
)c

0

where c
0

is a constant independent of d.
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Proof. Set f
2
"Pd!P

"
in (2.24), we obtain

E+PdE2
LÈ()T)

)c
0

(4.7)

By (4.2)
1
, for all t, e'0 and x3),

#(Gd(t))!#(Gd (t!e)))(Sd(t)!Sd (t!e))Gd(t) (4.8)

where Gd(t)"Gd(0) for !e(t(0. We multiply (4.8) by '/e and integrate over )q to
obtain

1

e P
q

q~e P)
'#(Gd))P)q

'R~eSd(Gd!Gd
"
)#P)

'#(Gd (0))

!P
q~e

0
P)

'(Sd!Sd (0))ReGd
"
#

1

e P
q

q~e P)
'(Sd!Sd(0))Gd

"
(4.9)

Similar to (4.9) by (4.2)
2
, we obtain

1

eP
q

q~e PQ
/

DBD
h(gd))PQq

/

DBD
R~esd (gd!LGd

"
)#PQ

/

DBD
h (gd (0))

!P
q~e

0
PQ

/

DBD
(sd!sd(0))LReGd

b
#

1

e P
q

q~e PQ
/

DBD
(sd!sd(0))LGd

"
. (4.10)

Summing (4.9) and (4.10), letting eP0`, by (2.22) and (4.2), we have, for almost all
q3 (0, ¹),

P)
'#(Gd) (q)#PQ

/
DBD

h(gd) (q))P)q
'R

t
Sd(Gd!Gd

"
)#PQq

/
DBD
R
t
sd (gd!LGd

"
)

#c (EGd
0
E
LÇ())

, EGd
"
E
L=(0,T;LÇ()))

, ER
t
Gd

"
E
LÇ()T)

). (4.11)

Setting f
w
"Pd

w
!Pd

w,"
in (4.5), f

o
"Pd

o
!Pd

o,"
in (4.6), g"gd!LGd in (2.25), and

summing the three equations, we obtain, by (4.7),

P)q
'R

t
Sd (Gd!Gd

"
)# +

a/w,o
P)q

"a (Sd)D+PdaD2#PQq

/

DBD
R
t
sd(gd!LGd

"
)

#PQq
j
w
j
o
(sd)D+

y
gdD2)c(EKE

L=())
, E+P

b
E
LÈ()T)

, E+Gd
"
E
LÈ()T)

, q) (4.12)

By (2.6)} (2.7), A5,6, and (4.11)}(4.12), we obtain

sup
0)t)T

AP)#(Gd)#PQ
h(gd)
DBD B# +

a/w,o
P)T

"a(Sd)D+Pda D2#PQT

j
o
j
w
(sd)D+

y
gdD2)c

0

(4.13)

where c
0

is a constant independent of d. By (4.3)
3

and (4.13),

P)T

"
w
"

o
(Sd)D+P

#
(Sd)D2"P)T

"
w
"

o
(Sd)D+Pd

o
!+Pd

w
D2)c

0
(4.14)
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By A7, (2.7), (2.21), and (4.13)}(4.14), one can easily see that E<dE
LÈ(0,T;HÇ()))

and
EvdE

LÈ(0,T;W)
are bounded independent of d. Therefore we complete the proof of this

lemma. K

Lemma 4.2. ;nder A1+7, for any f3C=
0
()) and su.ciently small e, solutions of

(2.20)} (2.26) satisfy

P
T

e P)
' f (x) (Sd (x, q)!Sd(x, q!e))(<d(x, q)!<d(x, q!e)))c

1
eE f E

WÇ,=())

where c
1

is independent of d, e and <d is de,ned in (4.1)
6
.

Proof. Proof is similar to that in Lemma 3.2. Let f3C=
0
()). In (2.23) and (2.25), we set

f
1
(x, t) :"f (x) P

.*/(t`e,T)

.!9(t,e)
eR~e<d (x, q) dq

g(x, y, t) :"f (x)P
.*/(t`e,T)

.!9(t,e)
eR~e(vd!L<d) (x, y, q) dq

where <d and vd are de"ned in (4.1)
6
. By Theorem 2.1, f

1
3¸2(0, ¹;H) and

g3¸2(0, ¹;W
0
). By Fubini's theorem,

P
T

e P)
' f (x)e2R~eSd(x, q)R~e<d(x, q) dxdq

#P
T

e PQ
/

DBD
f (x)e2R~esd(x, y, q)R~evd(x, y, q) dydxdq

"P)T

'R
t
Sd(x, t)f

1
dxdt#PQT

/

DBD
R
t
sd(x, y, t) (g#Lf

1
) dydxdt

"!P)T

KA"3 dw(Sd)+(Pd!J
w
)#+R(Sd)B+f

1
!PQT

k

DBD
+

y
D(sd)+

y
g (4.15)

By Fubini's theorem and Lemma 4.1, the right-hand side of (4.15) is bounded by
c
1
eE f E

WÇ,=())
, where c

1
is independent of d, e. So we complete the proof of this lemma.

K

By Lemma 4.2 and by performing similar argument as Lemmas 3.3 and 3.4, one can
obtain the following result:

Corollary 4.1 ¹here is a subsequence of <d converging to < pointwise and in ¸2()T)
strongly.
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Lemma 4.3. ;nder A1+8, there exist subsequences of solutions Sd,;d, Pd, sd of
(2.20)} (2.26) (same indices for subsequences) such that, as dP0`,

G
PdPP in ¸2(0,¹;H1())) weakly,

Sd, ;d, D(;d)PS,;, D(;) in ¸r()T) strongly, 1)r(R,

R(Sd), D(;d)PR(S), D(;) in ¸2(0,¹;H1())) weakly,

sdPs in ¸2(QT) weakly,

'R
t
Sd#:

B
(//DBD) R

t
sdP'R

t
S#:

B
(//DBD) R

t
s in ¸2(0,¹;H*) weakly,

R
t
sdPL

t
s in ¸2(0,¹;W*

0
) weakly,

sd(¹)Ps (¹) in ¸2(Q) weakly,

D(sd)PD(s) in ¸2(0,¹; W) weakly

Proof. By Theorem 2.1, Lemma 4.1, Corollary 4.1, (2.6)}(2.7), (2.21), A7, 8, and (4.1),
we easily obtain subsequences of Sd,;d, Pd, sd such that, as dP0`,

G
PdPP in ¸2(0,¹;H1())) weakly,

Sd, ;d, D(;d)PS,;, D(;) in ¸r()T) strongly, 1)r(R,

R(Sd), D(;d)PR(S), D(;) in ¸2(0,¹;H1())) weakly,

sdPs in ¸2(QT) weakly,

sd(¹)Ps* in ¸2(Q) weakly,

D(sd)PD* in ¸2(0,¹;W) weakly

To show the following results:

G
'R

t
Sd#:

B
(//DB D) R

t
sdP'R

t
S#:

B
(//DBD) R

t
s in ¸2(0,¹; H*) weakly,

R
t
sdPR

t
s in ¸2(0,¹; W*

0
) weakly,

s*"s(¹),

D*"D(s),

one can follow the argument in Lemma 3.5. One remark concerning the proof for
D*"D(s) is that: By A8, one can extend the increasing function D to R continuously
and linearly with slope 1. Then, instead of (3.33), we consider

0)PQT

/

DBD
(D(sd)!D( f )) (sd!f ) for f3¸2(QT)

because of the boundedness in sd (see Lemma 3.6). Rest of its proof is similar as
Lemma 3.5. K

Proof of ¹heorem 2.2. (2.28)} (2.33) are direct results of Theorem 2.1, Lemma 4.3, and
(2.6)}(2.7). For f3¸2(0, ¹;H)WH1()T), g3¸2(0, ¹;W

0
)WH1(0, ¹;¸2(Q)), f (¹)"g(¹)"0,
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by Theorem 2.1 and integration by parts,

P)T

'R
t
Sdf#PQT

/

DBD
R
t
sd (Lf#g)

"P)T

'(P~1
#

(!Gd
0
)!Sd)R

t
f#PQT

/
DBD

(p~1
#

(!Gd
0
)!sd)R

t
(Lf#g)

By (2.6), Lemma 4.3, and Lebesque dominant theorem, we obtain (2.34). So we
complete the proof of Theorem 2.2.

5. Uniqueness

We now consider the uniqueness of (2.28)}(2.34). Assume S
i
, P

i
, s

i
, i"1, 2 are two

solutions of (2.28)} (2.34), A1+12 hold (see sections 2.1, 2.4), and f
1
, f

2
, g are smooth

functions satisfying

f
1
(¹)"g(¹)"0, f

1
DBT

1
"f

2
DBT

1
"gDR1 QT"0, +f

1
) nl DBT

2
"+f

2
) nl DBT

2
"0 (5.1)

By subtracting one solution from the other, (2.28)}(2.34), and integration by parts, we
have

!P)T

'(S
1
!S

2
)R

t
f
1
!P)T

(R(S
1
)!R(S

2
))+(K+f

1
)!P)T

(P
1
!P

2
)+(K"

w
(S

1
)+f

1
)

#P)T

K("
w
(S

1
)!"

w
(S

2
))+(P

2
!J

w
)+f

1
!PQT

/
DBD

(s
1
!s

2
)LL

t
f
1
"0 (5.2)

!P)T

(P
1
!P

2
)+(K"(S

1
)+f

2
)# +

a|Mw,oN
P)T

K("a(S1
)!"a(S2

))+(P
2
!Ja)+f

2
"0

(5.3)

!PQT

/

DBD
(s
1
!s

2
)R

t
g!PQT

k

DBD
(D(s

1
)!D(s

2
))*

y
g

#P)T

k

DBD
(D( PY

#
(S

1
))!D( PY

#
(S

2
))) PB*

y
g"0 (5.4)

By (5.2)} (5.4) and A9, we obtain

P)T

(S
1
!S

2
)A!'R

t
f
1
!Fl

1
+(K+f

1
)#F

2
+f

1
#F

3
+f

2
#

k

DBD
Fl

1PB*
y
gB

!P)T

(P
1
!P

2
)+(K"(S

1
)+f

2
#K"

w
(S

1
)+f

1
)

#PQT

(s
1
!s

2
)A!

/

DBD
R
t
(g#Lf

1
)!Fl

4

k

DBD
*
y
gB

"!P)T

(S
1
!S

2
)lA+(K+f

1
)!

k

DBD PB*
y
gB!PQT

(s
1
!s

2
)l

k

DBD
*
y
g (5.5)
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where Fl
1
"F

1
#l, Fl

4
"F

4
#l, and
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1
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1
)!R(S

2
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1
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1
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2
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2
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Next, we consider the following auxiliary problem for "xed l:
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Moreover,
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Proof. First let us consider smooth coe$cients case. That is, we assume ', K, /, k, "
w
,

", Fl
1
, F

2
, F

3
, Fl

4
are all smooth, and ', K, /, k, ", Fl

1
, Fl

4
are bounded above and

below by d
2

and d
1

as non-smooth coe$cients case. For p3[0, 1], de"ne a map
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]H

2
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3
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1
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4

k
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*
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g (5.16)

It is easy to check Gp is a bounded linear function and G0 (i.e. p"0) is one-to-one and
onto (see sections 4,5 of Chapter 5 of [4]).

Multiply (5.14) by (1/Fl
1
)R

t
f
1
, (5.15) by bf

2
where b('1) is a constant depending

on EDF
3
D2/Fl

1
'E

L=()T)
, and (5.16) by !(k//)*

y
g, then integrate (5.14)} (5.15) over

)q and (5.16) over Qq, then by integration by parts along with boundary and initial
conditions to obtain
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Summing (5.17)}(5.19), we have
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where c
1

is a constant depending on its parameters. By Gronwall's inequality, (5.20)
implies

sup
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where c
2

is a constant depending on its parameter. (5.14)}(5.16) and (5.21) imply that
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) (5.23)

where constant c
4

depends on smooth coe$cients of (5.10)}(5.12). By (5.23) and
method of continuity [14], we see G1 is also a one-to-one and onto map. So we show
the unique solvability of (5.10)}(5.12) for smooth coe$cients case. By uniform bound
(5.21)} (5.22) and passing to limit, one can "nd a unique solution of (5.10)}(5.12) for
non-smooth coe$cient case. Moreover, the solution satis"es (5.13). So we complete
the proof of this lemma. K

Proof of ¹heorem 2.3. Let f
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1
)!R(S

2
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(5.10)} (5.12), then we obtain the corresponding solution (fl
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, fl
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, gl) for each l by

(5.6)} (5.9), P
2
3¸=(0, ¹;=1,=())), A10+12, and Lemma 5.1. After substitution

tP¹!t for the solution (fl
1
, fl

2
, gl), then we plug it into (5.5) to obtain
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1
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y
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k

DBD
*
y
gl (5.24)

By Lemma 5.1, the right-hand side of (5.24) is bounded by cJl, where c is a constant
independent of l. Letting lP0`, the right-hand side of (5.24) goes to 0, which implies
the uniqueness of (2.28)} (2.34).
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