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A dual-porosity model describing two-phase, incompressible, immiscible flows in a fractured reservoir is
considered. Indeed, relations among fracture mobilities, fracture capillary presure, matrix mobilities, and
matrix capillary presure of the model are mainly concerned. Roughly speaking, proper relations for these
functions are (1) Fracture mobilities go to zero slower than matrix mobilities as fracture and matrix
saturations go to their limits, (2) Fracture mobilities times derivative of fracture capillary presure and
matrix mobilities times derivative of matrix capillary presure are both integrable functions. Galerkin’s
method is used to study this problem. Under above two conditions, convergence of discretized solutions
obtained by Galerkin’s method is shown by using compactness and monotonicity methods. Uniqueness of
solution is studied by a duality argument. Copyright © 2000 John Wiley & Sons, Ltd.
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1. Introduction

A dual-porosity model [5, 11] describing two-phase, incompressible, immiscible
flow in fractured reservoirs is considered. The model considered physically corres-
ponds to a waterflooding or unsaturated groundwater flow in a fractured reservoir.
Flow in a fractured reservoir behaves as if the reservoir consisted of two superimposed
continua, a continuous fracture system and a discontinuous system of matrix blocks.
The fracture system has a low storativity and high conductivity while the majority of
the fluids reside in matrix blocks of low conductivity; and different time scales for
saturation evolution appear in fracture system and matrix blocks. If ¢ is the ratio
between the size of one matrix block to the size of the whole reservoir, then the time
scale for saturation evolution in the block will be of order ¢~ 2. If global pressure is
used, equations for the fracture system can be written as [5, 11, 137], for xe Q, ¢t > 0,

3, — vx<KAw<S)Vx<P _J)—K A(ASEQ)(S) vxPc(S)> — 4 (L1)
- VX(K(A(S)VJ:P - AW(S)VXJW - AO(S)VxJa)) = 0 (12)
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778 Li-Ming Yeh

Q c R is the reservoir; @ the fracture porosity; S e [0, 1] the water saturation;
K the absolute permeability of the fracture system; and P the global pressure.
A, = A, (S), « = w, o, 1s the phase mobility and is a monotone function. A := A,, + A,.
When S approaches 0, A,,(S) goes to 0; while S approaches 1, A,(S) is close to 0.
P. represents the capillary pressure function and dP./dS < 0. J,, « = w, o, is a given
function, which depends on density of a-phase, position, and gravity. ¢,, is the water
matrix source. If ¢, = 0, then (1.1)-(1.2) are equations for two-phase flows in non-
fractured reservoirs.

The equation for the matrix block Q, = R* suspended topologically over x € Q is
given by, for xe Q,ye Q. t >0,

(8 40(8) o
P05 +V, ( T Vype( )> (1.3)

where each lower case symbol denotes the quantity on Q. corresponding to that
denoted by an upper case symbol in the fracture system equations (see Fig. 1).
The water matrix source is

—1
qw(x, t) = J ¢os(x, y,t)dy forxeQ, t>0 (1.4)
Q.

|

where |Q,| is the volume of Q.. Boundary of Q includes two parts: Yy, Y.
Y NY, =0,0Q = Y, UY,. Boundary conditions for fracture system are

S = Sb for x EYl,
P=P, for xe Y,

< W(S)V (P J ) Wv P ( )>n =0 for XeYz,
KASIV.P — Ay(S)Vedyy — Ay(S)VJ, )7 = 0 for xeYs,

where 7 is the unit vector outward normal to 0€, and for each matrix block require
B.C. p.(s)(x, y, 1) =P(S)(x,t) forxeQ, yedQ,, t>0 (1.6)
Initial equilibrium gives

S(x,0) = So(x) for xeQ,
L {S(x, Y,0) =s0(x) for xeQ, yeQ, (1.7)
Qx
(!:,y)

Fig. 1. Domains for fracture system Q and matrix block Q.
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By (1.6), p.(so)(x) = P.(So)(x), x € Q. Also note functions S, P, q,, are defined on frac-
ture system depending on Xx, t; while s is defined on matrix blocks and depending on
X, y, t. The second-order derivative term for s in (1.3) only takes derivative with respect
to y variable. More physical background of this model can be found in [5, 11, 13].

For non-fractured reservoir case (i.e. q,, = 0), existence of solution had been exten-
sively studied. We refer readers to [3, 4, 8, 12, 15] and references therein. But for
fractured reservoir case, many questions still need to be answered. Numerical simula-
tions for (1.1)-(1.7) had been conducted in [ 11, 13]. Different time scales for saturation
evolution in fracture system and matrix blocks can be observed from numerical results
in [13]. Convergence analysis of a numerical scheme for (1.1)-(1.7) for ‘very small’
matrix block case can be found in [10]. Existence results of (1.1)-(1.7) but for
linearized matrix phase mobilities 4,, « = w, 0 and for ‘very small’ matrix block cases
were shown in [6, 9]. An existence result for a model close to (1.1)-(1.3) but with
different fracture—matrix interface condition (1.6) was considered in [7]. In this work,
we will consider the general model (1.1)-(1.7). Actually, we address the relations
among fracture mobilities, fracture capillary presure, matrix mobilities, and matrix
capillary presure for (1.1)-(1.7). Galerkin’s method and monotonicity method will be
used to study this problem. Time-discretization for (1.1) and (1.3) is backward Euler
method. Resulting equations, counting for the interaction between matrix blocks and
fracture system, are non-linear and they are expressed by a variational formulation.
We first prove the discretized method is solvable, and then show a subsequence of the
solutions for the discretized method converges to a weak solution of (1.1)-(1.7). To
obtain convergence of discretized solutions of the differential equations, relations
between mobilities and capillary presures in (1.1)-(1.7) are (1) A,,A,(S) goes to
0 slower than 4,,4,(s) as S, s approach their limits respectively, (2) A,,A,|dP./dS| and
Aw/oldp./ds| are integrable functions (see A7, 8 below). Then we consider the unique-
ness of (1.1)-(1.7), which will be analysed by a duality argument.

The following sections are organized as: In section 2, we state our problems, which
include four subsections section 2.1-section 2.4. In section 2.1, we give notation and
assumption; In section 2.2, we introduce a discretized scheme and a regularized system
for (1.1)-(1.7), and we claim a subsequence of solutions of the discretized scheme
converges to a solution of the regularized problem of (1.1)-(1.7); In section 2.3, we
claim a subsequence of solutions of the regularized problem in section 2.2 converges to
a solution of a weak solution of (1.1)-(1.7); In section 2.4, we state a uniqueness result
for (1.1)-(1.7). In section 3., 4., 5., we prove the results claimed in section 2.2, 2.3, 2.4,
respectively.

2. Statement of the problem
2.1. Notation and assumption

Let Q = R3 be open, bounded, and connected with Lipschitz boundary. For every
xeQ Q. is a bounded region contained in R3. Identify the product space
M, .oQ,:= 2 as a subset of R®. We require 2 be a measurable subset of R°. We

will assume all matrix blocks are identical. So 2 = Q x %4, where % is a bounded
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measurable subset in R* and its boundary, 04, is piecewise C'. Set Q':= Q x [0, t];
2= 9x[0,t];02:= Qx0%; 02":= Qx0# x[0,t]; and Yi:=Y,;x[0,¢],i=1,2.

C"([a, b]) is the space of functions with all the continuous derivatives of order < m
on [a,b]. For r > 1 and me N, L'(E), H"(E), W™"(E), L'(Q, H™(%4)), L"(Q, L'(0%)),
L0, T;X), H'(0, T;X) are Sobolev spaces [1] where E = 2' is a measurable set and
X is a Banach space. X* denotes the dual space of X. #:= {{e H'(Q):{|y, = 0};
W :={neL*2):V,neL*2)} with norm

Wl = (i) + 1V, Z20) '

Note % is contained in L*(Q, H'(#)). Let 7, be usual trace map of H'(%)into L*(04),
and define the distributed trace 7 : % — L*(Q, L*©@%4)) by T n(x, y) = (Zxn(x))(y).
Woi={neW :Tn=0} L :=HXHXW,.

Define % : # — L*(Q, H'(#)) by

LLx,y)=L{x)1,, xe€Q, ye# (2.1)

where { (x)1, is constant in # with value {(x). For a function 5, Z, is a characteristic
function satisfying

1 for n(x,y,t) >0

2.2
0 otherwise 22)

g{n(xs Vs t) = {

Let P, !, p. ! be the inverse functions of P, p., respectively. sy, and 1 — s, are the

residual matrix water and oil saturations, and assume p; '(P.(0.5)) € (Smins Smax) < (0, 1).

Define time difference operator by 8"¢(t): = ({(t + h) — {(t))/h; R := RT U {0}; V rep-

resents V..

Next we make the following assumptions:

Al. Q 92, %,Y,,Y, are defined at the beginning of this subsection and Y; # 0.

A2, O(x), K(x), ¢(x), k(x) € [¢g, 1] for x € Q.

A3. A, (resp. A,): [0, 1] - [0, 1] is continuous and strictly increasing (resp. decreas-
ing); A, (0)=A,(1)=0; 4, (resp. Ay): [Smin Smax] — [0, 1] is continuous and
strictly increasing (resp. decreasing); A, (Smin) = 4o(Smax) = 0; 0 < &, < min{A,,(1),
lw(smax)’ /\0(0), )‘o(smin)}; &2 < infze[O,l]A(z); &2 < infze[smin,s,m,x]l(z)'

A4. P.:(0,1]> Ry and  p.:(Smim Smay) = Mg are onto and C' functions;
ch/dS’ dpc/ds < —&3<0; Pc(l) = pc(smax) =0.

AS. Py, P(Sy), Jo, J, € L*(0, T; H{(Q)); 0,P(S;) € LY(Q").

A6. P.(So) € L'(Q);  pe(so(x)) = Pe(So(x)), x € Q.

A7. Ay2o(pe H(Py(2)) < e4A,, A, (2) for z € (0, 17.

A8. A, A,|dP/dS|(z) € L'(0, 11); AwAoldpe/ds|(2) € L' ((Smins Smax])s

where ¢;,i = 0,1,2,3,4 are some positive constants.
Deﬁne/f)\c . [Oa 1] - [Smins Smax] by
By [PPE) forze.1]
Smin for z=0

then P, is a continuous and strictly increasing function. Let P, ! be the inverse
function of P,. A7,8 are restrictions for functions A,, 1,(o = w, 0), P, p.. Basically, A7
means A, A,(z) goes to 0 slower than A,,2,(¢) as z, ¢( = P,(z)) approach their limits

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)



A Dual-porosity Model 781

respectively. Under A3,4,7,8, A,,A,|dP./dS|(z) may go to 0 or oo as zclosesto 0 or 1.
So fracture water saturation may have singular behaviours as it closes to its limits.
Similar situation as fracture saturation also happens in matrix saturation.

2.2. Discretized problem

We first find approximation functions of A,, 4,, P., pe, So, S0, Sp» Pp; then derive
a discretized scheme and a regularized system for (1.1)-(1.7). Let ¢ be a small positive
number. By A4, [ P(5), P.(1 — 6)] < (Smins Smax)- We extend A,, A, & = w, 0, to R con-
tinuously and constantly. By A3, we may find continuous monotone functions
A2, 28 0. =w, 0, in R such that

0 < 61(5) < infze*ﬂ{Ag(Z)s /12(2)}’ Supze‘.R{Az(Z)s )“Z(Z)} < 1 (2 3)
Al(2) = Ay(2) and A(P(2) = 2,(P.(2) if ze[d,1 —4] '
Then we define, for o = w, o,
A= A5, + A, Wi=00+ 1 (2.4
Al(z):= A(0.5(z — 6/0.5 — 9)) As:= A% + A? '

By A4, we find C! and decreasing functions P2, p? defined in R such that

dpP’|  |dp? dpy| |dp?
ds ds (Z)}, Supzeﬂi{ds ds

Pl(z) = Py(z) and pl(P.(2) = p(P.(2)) il z€[5,1— ]

0 <8—23 < influy {‘ (2), (2),

(Z)} < ¢3(0) <0

P?, p2 have inverse functions P>~ !, p>~'in R
\P2(2): = p> '(P(2)) is linear in (— o0, d)u(1 —4, cv) and has inverse P2~ ?

(2.5)

One way to get P2, plis as follows: Let P2 in (— o0, J) be the tangent line of P, at 6 and in
(1 -4, oo) be the tangent line of P, at 1 — §; while p? in (— oo, P,(5)) be the tangent line
of p. at P,(0) and in (P,(1 — J), o0) be the tangent line of p, at P,(1 — J). By A5,6, there
are smooth functions G5, G such that

N
B
and
Gl L0 7:2.2 @ 0GRl Lr@rys | Ghll a0, 73170y are bounded independently of &
G3(x) — Gi(x, 0) € # 27
d<infiy year{P: (= Go), Po (=G}, supg.pear {Pe ' (—GY), Po ' (= GY)} <10

Let I:=0, T]. f MeN,h:=T/M,t,:=mh, and I,,:= (t,,— 1, t,,]. For a Banach
space X, let

I(X):={fe L*(0, T; X): f is piecewise constant in time on each
subinterval I,, = I} (2.8)

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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If fe I,(X), flr, =f(t,) for m < M. We approximate for t € I,,, @ = w,0

1 1 1
Up"x, 1):=— | pc (=G0 dr, Pi(x, 1):=7 | Py(1)dz, Ji(x, 1):=+ | J,(v)dt
h)r hp, h)i,
2.9
By AS5, one can show that, for o« = w, o,
Uy - pe '(—GY)
P! - P, in L*0, T;H'(Q)) ash—-0" (2.10)

Jh T,

Next, we write down a discretized scheme for (1.1)-(1.7) with fixed J. Assume
{ey.i}iZ1, {€,.:}i=1 be bases of # and ¥, respectively; and, for each i, e, ; satisfies

{ - Aye2,i = Ci€y;

(2.11)
€3,il50 =0

for some constant ¢; Let #”, % denote the linear span of {e; }i=y, {€,.:}i=1
respectively. Z' = A x H' x W. Because of (2.7),, we can find U2’ such that
Uy — pe '(— G2(0)) is the L? projection of p; }( — G2) — ps '( — G3(0)) on #”. Let
sg’ = LU?’. The discretized scheme is to find (S°/, U%’, P*, s°) such that

(U™ — UR", P — Py, s™ — 2U™) e I(Z), (2.12)
§°(0) =

and if (§°/, U%, s*) (t,, 1) is known, then (U* — Up", P — P, s*" — LU*) (t,,) is
a zero of the mapping &>%": R3 — R’ defined by

ga'/’h(@,l,,,y in a8 83155 65,0)
= (é_l,laua é_l,/” 52,19“’ 6_2,(3 5_3,1’“a 5_3,/’) (214)

_

PIOUM(0), UM(0)=UY, s™(0) =)’ (2.13)

where

(Ua!/_UlO;’ha Pé’/_Phs ! gUéf ([ Z(él i€1,i5 52 i€1,i, 53 i€2, )E g{

i=1

2.15)
SP(t) =PL U (t,0)) (2.16)
2= f DO IS (1, )¢, + f KA (S(1,))V(P*(t,) — TV,
ASA° d
- [ R 50 B v Ve,
(Pb h 4,7,
+L@a (tn) Ley : 2.17)

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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= (o) f KA (S (t))VP* () — Ao(S* (L) V% — AJ(S*/(1,))VI2)Ve,
(2.18)

¢ . k 2222 dp? ,
é3,i:j @a "% () €2, i — @ 7 (s‘;’/(tm))a(s"’/(tm))VyS‘;’/(tm)VyeLi
2| 2
(2.19)

where f(5) in (2.18) is a constant satisfying

_ 2ANP(z)
o) 1 —
POI= 1+ sup e dpl/ds) (P2 )

and A°, A2, A°, A? are defined in (2.3)-(2.4). (2.16)-(2.19) is obtained from (1.1)-(1.3)
by using backward Euler method to approximate time derivatives of (1.1) and (1.3),
and then by using regularized functions, integration by parts, and boundary condi-
tions to obtain the variational formulation of the time-discretized equations. Here we
introduce a new variable U, which is related to $°/ by (2.16) and is equal to s>’ on
the boundary of matrix blocks.

For fixed ¢, we will show in section 3 that a zero of (2.14)-(2.19) exists. Furthermore,
we show a subsequence of the solutions of (2.12)-(2.19) converges to a solution of the
following problem:

Theorem 2.1. Under A1-6 and (2.3)-(2.7), for each 6, there exist S°, U°, P°, s° such that
for all (Cla CZ, 7]) € L2(07 T:g),

3,S° + j |§| S dy e LXO, T; %), ¢d,s° e L0, T; W) (2.20)
”

U =P(S), (U°—p: (= Gh), P =Py, s = LU°)e L0, T;2)  (2.21)

—_

0<8°<1 -9, PO <5 <Pl —0) (2.22)

J .Sy + J K</~\‘3V(S‘5)V(P‘5 —Ju) - Dl (Sé)VPc(Sa)> Vi,
QT QT A

—_ (’Zs J ¢
- f N s (2.23)
J KA (SHVPVE, — f KAL(SOVI, + AYSHIVI IV, =0 (2.24)
Qr QT
¢ kK ddo 5 no
Lm 0 — L| 7 5 GV =0 (2.25)
U0 0) =p. (= GO 5"(x.7.0) = Zp; (~GY) (2.26)

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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2.3. Continuous problem
By A8, we may define
#:[0,1] - R, R2):= — |1 p(AWA/A)(dP/dS) (&) dE
{9 DSmins Smax] = Ry 2(2):1= = [5,12) oo/ dpe/ds) (€) dE

In this section, we claim that a subsequence of solutions of the regularized system
(2.20)-(2.26) converges to a weak solution of (1.1)-(1.7) as 6 — 0™ In fact, the limit of
the subsequence of (2.20)-(2.26) is a solution of the following problem:

(2.27)

Theorem 2.2. Under A1-8, there exist S, U, P, s such that for ({1, {5, n) € L*0, T;%),

®o,S + J é' O, dye LA0, T; #%), ¢d,s e L*0, T; W) (2.28)
U="P.S), (AS)—ASy.P— Py, I(s) — L%(U)) € L*0, T; Z) (2.29)
0 < S < 1’ Smin SRS Smax (230)
O,S {, + f KALS)V(P — J,) + VAS)VE, = — I%I ds 20 (231)
Jor o o
KA(S)VPV(, — J KA (S)VJ,, + A, (S)VI)VE, = 0 (2.32)
Jor Qr
[ asnt | K vamvg =0 (2.33)
Lo T )i T '

Moreover, for (e L*0, T; #)nH"Q"), neL*0, T;#y)nH 0, T;L*2)), {(T)=
n(T) =0

» _ ?
[, @ost+ | Sostween=—| as—sgi-| Ci—siin
(2.34)

Proof of this result will be given in section 4.

2.4. Uniqueness

Next, we consider the uniqueness of (2.28)-(2.34) for the case that A,,A,|(dP./dS)|
and /,4,|(dp./ds)| are bounded above (which includes degenerate case). Domain
considered will be a nonsmooth domain.

Definition 2.1. Boundary 0Q =Y, UY, of the bounded domain Q belongs to class
Hy, m > 1, if (1) in the vicinity of each boundary point x ¢ Y, N Y, there exists a homeo-
morphic transformation x'(x) = (x}(x), x5(x), x5(x)) e C™, |dx'/dx| = M > 0 (dx'/dx is
the Jacobian of the transformation) such that x € Y;, x5(Y;) = 0, x5(Q) > 0,i = 1,2, i.e.,
Y; can be locally straightened, (2) in the vicinity of each point x e Y;NY, there
exists a transformation x' = X'(x) with the same properties mapping it at the neighbour of
the edge(vertex) of a cube in variable x'.

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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Besides A1-8 in section 2.1, let us also assume, for o = w, o,

A9. R(z) = Q(T’\c(z)) for ze [0, 1],
A10. A,A|(dP./dS)|(z) € L™((0,1]), ZwAol(dpe/ds)|(z) € L*((Smin» Smax])s J 2 € L0, T}
W Q)
A1l Ay z)) — Ayz2)l < 35\/(%(21) — R(z22))(z1 — 2) for z4, 2, € [0, 1],
A12. 0Q e H2, % is smooth.

Theorem 2.3. Under A1-12, solution of (2.28)-(2.34) satisfying P € L*(0, T; W' *(Q)) is
unique.

Proof of this result will be given in section 5.

3. Convergence of discretized problem

Throughout this section, ¢ is fixed. We shall show that a solution of (2.12)-(2.19)
exists, and a subsequence of solutions of (2.12)-(2.19) converges to a solution of the
regularized system (2.20)-(2.26). These are results claimed in section 2.2. Define
a non-negative function ®:R —» RJ by

O | (P20~ PI @)ds
0
Since P2 7! is a strictly increasing function (see (2.5)), as Remark 1.2 [2], we have

{(:)(z) — 0O(z0) (P2 Y2) = P2 Uzo))z for any z, zoe R

P2 (z)| < eO(2) + supys < 1,/ P2 1(¢) for any positive constant &

(3.1)

Lemma 3.1. Under A1-6 and (2.3)-(2.7), (2.12)-(2.19) is solvable for all d,/, h, and
solution U%’, P*'  s°/ satisfies

sup (H(:)(UW)HU(Q) + 15”11 Z20)) + (HVUé’/HlZﬁ(QT) + VP’ || 22

0<t<T
+ V5?1 20m) < €o (3.2)
where ¢, is a constant independent of ¢, h.
Proof. The solvability of (2.12)-(2.19) is derived by induction. (S*/, U%’, s°/) (0) is

known by (2.13). Assume (S°/, U*’, s*’) (t,,—1) is known. By assumptions, &>" of
(2.14) is continuous. (2.10) and (2.15)-(2.19) imply

éaé’/!h(él,laua Einéatrens 53,/)(51,1,.4, 108215 -5 C3.0)

> | 0071w - Ut
Q

0,/12
+c1<J s + f VU®|? +J|VP"”|2 +J|Vysa’/|2>(tm)—cz (3.3)
2 h Q Q 2

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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where ¢y, ¢, are positive constants. By (3.1)4,

(OU(ty) — OU (t,— 1)) < PO "S™(U> — UR")(t,) + DO "S* UL (t,,)
(3.4)

= e

(3.3)-(3.4) and (3.1), imply
ga’/’h(fl,h..a Cinéats s &30 58 8ot s E50)

@ Ué,/’ 9,012 )
>c3<J' (h )+J |Sh| +J|VU6,/|2 _i_J‘ |VP0,/|2 +J|Vysa,/|2>(tm)_c4
Q 2 Q Q 2
(3.5)

Right-hand side of (3.5) is strictly positive if norm of (¢, 4, ..., &3, ,) is large enough. So
&%"" of (2.14) has a zero [16] for t = t,,. By induction, we see (2.12)-(2.19) is solvable.

Assume (U — Uy", P> — Py, "' — 2U) = 25;1(51,1'31,1‘: $.i€1.i,C3.i€2,) 18
a zero of (2.14). Then

(gas/’h(él,laua él,/’s 52,17 ceey 53,/)(61,15.4’ él,/’ 62,17 cees 63,/) = 0 (36)
Integrating (3.6) over [0, t,,], we obtain by (2.10),

t L
J J (I)a—hsé,/(Ué,/’ _ Ug,h) + J J ia—hsé,/’(sé,/ _ ;.(ng’h)
0lJo 0J2 |4l

tn tn tn A
+ csg J VU + J J IVP|* + J J IVys"’/|2> < ¢ (37)
0JQ 0JQ 0J2
where cs, ¢ are constants independent of 7, h. By (3.1);

(O™ (1) — OU™(t — h)) < DO "S>(U — Up")(r) + DO~ "S> U (1)
(3.8)

= S

Integrating (3.8) over Q x [0, t,,], we obtain

1 [t R b R
= f J POU™) < f f DO ISH(U — UL + f POU*(0))
t, Q Q Q

h m—h 0

t,—h ’ _ . 1
- J f oS — S(O)UL" + 1
0 Q h

where §%/(t) = §°/(0) for — h <t < 0. A similar idea as (3.9), we have

o VT o ()2
lf Jib | <f Jia—hsa,/(sa,/_g(]g,h)_i_f ¢ [s™(0)
hl-nls12 2 0J2 4 2Bl 2

_ e i(sé,/ _ Sé,/(o))gahUé,h +1 i i(sé,/ _ Sé,/(o))gUé,h
o Jol4l S AR NET )
(3.10)

f " J DS — SO)UL (39)

m—h
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where  s*(t) =5°/(0) for —h<t<0. Since p;'(—Gp) is smooth,
1"US ™ Lo, Ti=@porz@y  and US| L-@r are bounded by a constant independent
of h. (3.7), (3.9)-(3.10), (3.1),, and discrete Gronwall’s inequality imply (3.2). O

From now on, (5>, U?”, P°/, s*/) will be a solution of (2.12)-(2.19). By (2.17)-(2.19),
one can see

0= f ®O 1S (1) + j KA (S (1P (1) — T4V
Q Q

- L A oo, ))d"°(U'”( ))VU"”(tm>VC1+L|§,|a W) 2L, (1)

0= f KA (S (t))VP* (t)V, —J KA (™ (t))VJh + RS> (L) VIDV,
(3.12)

¢ - k A5 dp?
0=L@@ "t — P (5% (t) g (5™ )V, s (1) V1 (3.13)

for (Cy, Lo, m) e 27

Lemma 3.2. For any small ¢( > 0), solutions of (2.12)-(2.19) satisfy

T
J j D(S*(x, 1) — 8% (x, t — &))(U*(x, 1) — U>(x,t —¢)) < ce

where c is a constant independent of £, h, e.

Proof. For fixed k, we add (3.11), (3.13) for m=j + 1,...,j + k, test the resulting
equations by

(rgi= G = RPROTUY = U (taa), 2= = h2k0™ (™ — LU)(t540)

then sum equations for j = 1,..., M — k to obtain (note t,, = mh)
z [ o 60— oo -vo+ [ -]
M-k

=) {J D(kh)*0 S (t;41)0 UL (t;44)
Q

ji=1

_i_J‘ |;;|(kh)26 kh 0, l’ k )a kthé h( ]+k)}
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M-k jtk -

+ Y > {— f K(Ai,(S‘V)V(P‘”—J’;,)
j=1 m=j+1 Q

A2A° dp? :

——5 (8% °k (Ua’”)VU“’”>(tm)VC 1.

A° ds
k 23,2 dp?
LB 20 ds

By Lemma 3.1. and rearranging the indices j, m, the right-hand side of (3.14) is
bounded by ck. So

(sé")vysé"(rm)vym} (3.14)

T
J J O(S>(t) — S*'(t — kh))(U*'(t) — U%(t — kh)) < ckh (3.15)
kh JQ

Since U’ is a step function in time, we see that this estimate is also satisfied if we
replace kh by any positive constant e. Therefore we complete the proof of this lemma.

O
IfdeN, o:= T/d, I7:= [(i — 1), io), define .«#*: L'([0, T)) » L'(0, T)) by
A0)(t) ::% J {(t)dc fortel? (3.16)
I7

Lemma 3.3. 4s 6 —» 0", .&/°(U%’) converges to U®’ strongly in L*(Q") and uniformly
in?,h.

Proof. Define, for each 7/, h,

G e, M) = {r €@ 1) U @) + Ul t — )

1 :
+ - [ D0 °S%(x, )d U (x, t) dx >%} (3.17)
Q
By Lemmas 3.1 and 3.2 and (3.17), j‘g/,//(s“//)% dt < ¢, where c is independent of 7, h. So
|9 e, M)| < /A, forall £,h (3.18)
Next, we claim: If t € (e, T) — 9"""(e, /), then
IU (1) = Ut = &)y < Bule) (3.19)

with a continuous function f , (independent of 7, h) satisfying f_,(0) = 0.

Proof of claim. If not, there is a positive constant ¢; such that, as ¢ » 0", for each
e there are t,, /,, U%(t,), U’ (t, — ¢) satisfying

[ Ua’/sHHl(Q)(ts) + | Ua.fEHH’(Q)(ts —e) <M

J D20 8% (x, t,)0 U (x, t,) dx < Me (3.20)
o

[U>"(t,) — U*"“(t, — &) 2@ = ¢1 > 0
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By (3.20),, there is a subsequence of {U®"(t,), U*"(t, — )} (same index for subsequ-
ence) such that the subsequence converges to { fi, f>} weakly in H'(Q) [14]. It implies
{U>"(t,), U’ (t, — ¢)} converges to {fi,f} strongly in L*Q) and pointwise almost
everywhere. Furthermore, by (3.20)3,

/1 —f2llL2@ = €1 >0 (3.21)
y (2.5), (3.20),, and Lebesque dominant theorem [17],

LQ(/P\c‘j’l(fl) — PO L)1 —fo) dx

= lim J D0 8%"(x, 1,)0 U’ (x, t,) dx = 0 (3.22)
=0T JQ
(3.22) implies f; = f, almost everywhere, which contradicts to (3.21). So the claim

is true.
(3.18)-(3.19) imply

T
J [U (-, 1) — U (-, t — &)| {2 dt = 0 (3.23)

uniformly in Z, h as ¢ - 0. By (3.16), (3.23),

2

dt

L2(Q)

T d
[ 1w s ar = ¥ |

i=1

! J (UM, 1) — U(-, 7)) de
o 4

« 0

d 1 t—(i—1)o
<y f f IUPC )= U, t—8)| 2y ddt
i=1JI]

t—io
2 (7" e o 2
S| | I 60 = U6t —8)]f dede — 0
g JoJe
uniformly in #, h as ¢ —0*. So we complete the proof of this lemma. O

Lemma 3.4. There are subsequences of U’  S*' converging to U°,S°( =P2~ 1(U?)

pointwise and in L*(QT) strongly.

Proof. By Lemma 3.1, |U%|| .2 (0. 7.0y < ¢, Which is independent of 7, h. So for all o,
[22°(U")|| 20, 71110 < constant (independent of Z, h). (3.24)

By Lemma 3.3, (3.24), and diagonal process, we can find a subsequence of U%’ con-
verging to U° in L*Q") strongly and pointwise. By (2.5) and convergence of U*/ in
L*Q"), we can also find a convergent subsequence for S°-. O

Define 2°: R — R by

z )Va‘ /1:5
95(2):=J W

J
P.a A

dp?
ds

() d¢ (3.25)
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Lemma 3.5. There exist subsequences of S°/, U%’, P*/, s*' (same indices for subsequen-
ces) such that, as { — oo, h—07,

U, 8% - U°, §° in LX(QT) strongly,
P2 8% U - P3,S° U° in L*0,T; H(Q)) weakly,
s s° in L*0,T; W) weakly,
OO 'S 1 [,(¢/1B) 0" - DO,S?
+ [4(¢/1B]) O,s° in L*0,T; #*) weakly, (3.26)
07 "% 5 9,8° in L*0,T; W) weakly,
s*(T) — s°(T) in L*(2) weakly,
s*(0) > Zpc '(— Go) = 5°(0) in L*(2) strongly,
G°(s*) - D°(s°) in L*0,T; W) weakly

Proof. By (2.13) and Lemmas 3.1, 3.4, there exist S°, U°, P’ s°, &, § such that, as
/-0, h—-0",

U, s - U° S in L*(Q") strongly,

P>’ 8%/ U - P°, S°, U° in L*0,T; H(Q)) weakly,

s, g (s’s /) -5°,9 in L%0,T; %) weakly, (3.27)
s*(T) - in L*(2) weakly,

57(0) - ,?pc’l( —GY) in LX2) strongly

Let #, %7 be finite-dimensional subspaces of #, %, respectively. If 2, , (aver-
age function as (2.9)) is defined to be 2, o(f) (x, y,t):= 1/h Lm f(x,y,v)dt, tel,, and
it 2, 1 :1(AH)—>I(H#") is the projection (see (2.8) for I,), then define a map
P LX0, T; H) - I(AH') by Py = Py 1o Py o Similarly, if 2, 1(Wo) = (W) is
the projection, then define %, : L*0, T; %) — 1,(W§) by P, = P, 12 P, . By (3.11),
(3.13), and Lemma 3.1,

[, w0 g | S oz + 2
. 2

< (Il eao, 7oy Tl 20, T02)
(3.28)

for {; € L*0, T; #),n e L*0, T; #5). (3.27)-(3.28) imply (3.26), and (3.26)s.
For each i > 1, and fe C'[0, T], we obtain from (3.13)

T—h b, )
o L J |£| s*0" Py o f)(0es.; @ V,2°(s>) P, o f) (Ve ;

_ ¢ b
- hL-hLM (D710 + Jlﬂl (0)/(0)es.; (3.29)
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Let £/ — 00, h— 0%, (2.13) and (3.27) imply

LA k
- [ Gsaste s | v, an0ve,
=[G mes | 5 - ahr e, (.30

Applying Green’s theorem for (3.30) in the ¢ variable yields, by (3.26)s,

k
| Gestrven s | S v,a50%,e

s ,;
= [ 6Dt | G200 (= G = SO0 Oess (331)

Since {e, ;};Z  is a basis of #, (3.31) implies § = s°(T), s°(0) = Lp; '( — G?) (that is,
(3.26)6.7), and for n e L*(0, T; %),

¢, k
Lo+ | — V,9Vy=0 (3.32)
J 8 T ) ) T

Finally we show 2°(s°) = Z. Since Z°(z) is an increasing function, for all /e N,
feL¥(2")

0< f ¢ (2°(s™) = 2° (/™ —f) (3.33)
|5
By A2 and (2.11), one can find ¢> € W, ¢°, p°', p° € W, satisfying, for all x € Q,
k N | k ¢
—V,[—=V 6’/> (% — gUa’/), —V< \Y 6> (P — 2U?
y(% ) =1 ] ) =i )
(Pwkw =0, <P6|a.% =
(3.34)
k ¢ k ¢
V(v p"”> =L g, V,<— v p5> -2 g,
y<|-93| g || 1% 2 (3.35)
P> los = 0, Plos =0
Note, by (3.34),
[ i@&( (5/’)S6/’ \[ i@&(gl]é,{)s&,/_l_f (@6(5,6/) gé(gUé/’)) d) gUé,/
Jor |8 o |9 o7 ||
O (0,0 o 0,0 k 4,/
—| (2°(s") — 2°(LU)V, 2 V,o” (3.36)
QT

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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By Green’s theorem, (2.15), (3.13), (3.34)-(3.35),
(0,0 0 0,0 k
—j(@@»—@@fvw)< v,0" )
o7 ||

k :
J i V Jé( d, /)qu)é,/
2

||
d) —h 6./, .0,/
— _a 50>/ N
LWI ¢
d) —h_0,/(, .0,/ 8,0 d) —h_ 0,/ 0,/
= — | 0" (@™ —p™) — | 07 p™
L 2| o |5
< - IJ IV, (o™ — o] - f 9 gohgps e (337)
|8 o Jor |4

(3.260); 5.6, (3.34)-(3.35), Holder inequality, and Green’s theorem imply

[ G 90 = () < timin [ 29,00 = g ) (339)
/= o0
('b ('b h&/ 0./
0 li 0~ 3.39
.LWIS R P R (3-39)

Taking limit supremum both sides of (3.33) and employing (3.27), (3.36)-(3.39), we
obtain

i 7] 5 J = o PN ) J ® 8 !

0< JT|Q|@(3U)S + f(@ @(gU))L@'EU 2|(@||V ((p %) .
¢ 5,0 ¢L () —f) + dIf

- LT@G LT 12| (340

Set n = ¢° in (3.32), by (3.26)s,

T+fl|¢|a, s°p +J i(@ LU — LU

= | 5wt =0 ] G 5
(3.41)

2%

(3.40)-(3.41) imply, for all fe L*2"),
% p
0< | 5T =2 =)
If f=s° — B, where f > 0 and j € L%2"), then
0< | (T = 26" = Bp)p
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Let f— 07, then we have, for all j e L¥27),

i ~_‘55 ~
O<LT|@|(@ ().

which implies 7 = 2°(s°). So we complete the proof of this lemma. O
Lemma 3.6. 6 < §° <1 — 6 and P,(6) < s° <P, (1 — ).

Proof. (2.10), (2.15)-(2.19), and Lemma 3.5 imply that for all {,, {, € L*(0, T; %),
ne L0, T; Wo),

U’ =P2(S),(U° — p; '(— G}), P’ — Py, s* — LU’ e L0, T; Z) (3.42)
r - AJ AJ dpé ¢

®,S° K( A2V(PP—J,)— =2 =2 (UOWVU? =—| =05
[ oosttue [ w(Rever - E wowue o - - S ose,

(3.43)

KA°VPV(, — f K(A2VJ,, + AVJ )V, =0 (3.44)
Jor Qr
[P k odpd 5o s

e . =0 3.45
L@ = |a i as Vv (343)
Ué(xa O) = p‘;l( - G?))v Sé(x’ Y, O) = gp‘;l( - G?)) (346)

where A%, A2, A%, A are functions of S° and A%, A2 are functions of s° for o = w, o.
By (2.5), (2.7),, and (3.42), max{U° — P2(1 — )0} € L0, T; #). Let (=, =
max{U° —P2(1 — 9),0} in (3.43)-(3.44) and let n = max{s’ —P?(1 — §),0} — L,

in (3.45), we see that, by (2.4), (2.7)3, and (3.46),

[, @ - o,

+c1< [, VU + [ P -0y e | |vys"|2%,,><0 (347)
or 2 27

where c; is a positive number and 2, 2+ ¢¢,(T), %, are characteristic functions
defined in (2.2). By (2.5)4, (3.47) implies S° < 1 — 8, s° <P2(1 — 6) = P,(1 — ). Sim-
ilarly, let {; = max{ — U’ +P2(0),0} in (3.43) and let n = max{—s’ +PJ(9),0} — L,
in (3.45), we have S° > 9, 5° > P2(5) =P, (). O

Theorem 2.1 is a direct result of (2.3)-(2.5) and Lemmas 3.5, 3.6.

4. Convergence of continuous problem
In this section, we are going to show that a subsequence of solutions of the
regularized systems (2.20)-(2.26) converges to a weak solution of (1.1)-(1.7)as § - 0.

Idea of proof for above claim is almost same as that in section 3. By A4, let us give
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some notations:

I':(—0o0,0]-(0,1] F(z):zPC’l(—z),

7:(= 0, 01 = (Smins Smax] 9(2):=ps (—2),

@:(— o0, 0] > Ry O(z):= [Z(I(z) — (&) d&, @)
0:(— o0, 0] - Ry 0(z):= [Z(2(2) — (&) d&,

D (Smins Smax] = R D(2)1= [ FnaldPe/ds [(6) dE,

G’:= —P(S), g’ := — pds’), V’i=QU°),0°:= U(s°)
It is easy to see that G° — Gj e L*(0, T; #) by (2.21)-(2.22) of Theorem 2.1 and

{@(z) —0E) <@ =Tedz (o “2)
0(z) — 0(z0) < (7(2) — 7(20))z P ’ '
Define
P.(S%)
po._ pd —i(PC(S") + f <AX —%) P51(2) dé)
o . 1 & -G A, A, -1

PPy - ( Gt J (X —X> ) dé) o

P):=Py(S’) + P,

Pl y:i=—Gp+ P,

(2.23)-(2.24) and (4.3) imply, for ,, {, € L*(0, T; ),

P}, — P, P> — P}, e L0, T; ) (4.4)
J ®0,5°%C,, + f K(A, VP, —A2VJ,, +(A%—A,)VP)V(,, = — I%I 082 ¢,
Qr Qr 27
(4.5)
—f ®90,5%C, + J K(A, VP, — AVJ, + (A2 — A)VP)V(, = J i@,s",fﬁo
or ar |
(4.6)

where A2, A, « = w, o are functions of S°.

Lemma 4.1. Under A1-7, solutions of (2.20)—(2.26) satisfy (by notation of (4.1))

sup ( f oG + f Mo )> VP 2, +f,A0AW(S">|VPC(Sﬁ)|2

o<i<T ||
+ J )bo)~w(56)|vypc(sa)|2 + | Vé“l%Z(o,r;mmn + HvaHiZ(o,T;W) < Co
:ZT
where cq is a constant independent of 0.
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Proof. Set {, = P° — P, in (2.24), we obtain

”VP(;H%F(QT) < Co 4.7)
By (4.2),, for all t,e > 0 and x € Q,
O(G’(1) — O(G°(t — &) < (S°(1) — S°(t — &) G°(1) (4.8)

where G°(t) = G°(0) for — & < t < 0. We multiply (4.8) by ®/¢ and integrate over Q° to
obtain

lf J PO(G°) < j ®3*S°(G° — GY) + j DO(G°(0)

€ .-

_ J_J D(S° — S°(0))0°G? + % J J O(S° — S°(0)G? 4.9)

T

Similar to (4.9) by (4.2),, we obtain

[ [ Sowr<] S -zan« [ Lo

—JtSJ 4 (s° — 5°(0) LO°G) + — ! JI J i s — 5°(0).2G). (4.10)
2|9 é ¢J2 |12

0 T

Summing (4.9) and (4.10), letting ¢ — 0™, by (2.22) and (4.2), we have, for almost all
1€(0,7),

('b 1 (0 (l) 9
[Looweio + [ S 0w < [ aosie-an+ [ G osi - 6

+ C(HG?)HL’(Q)a HG?)HL”'(O,T;L1(Q))a HatGgHL’(Q"))' (411)

Setting {,, = P, — P, in (4.5), {, = PS — P’ , in (4.6), n = ¢° — £G’ in (2.25), and
summing the three equations, we obtain, by (4.7),

J ®OS(G° — G+ > f AL (S?)|VP* + J I%Ia’s (¢° — £G))
Qr a=w,0 JQ°

+ J )“w/lo(sa)lvyg(s'z < C(HKHL’“(Q)s HVPbHLz(QT)a HVG?)HLZ(QT), ) (4.12)
o

By (2.6)-(2.7), A5,6, and (4.11)-(4.12), we obtain

0(g
sup <J ®(G5) + f > + Z J S‘3 |VP6|2 J )vl,)uw(s‘s)|Vyg‘3|2 < ¢
o<i<t\Jo |A| a0 Jor it

4.13)
where ¢ is a constant independent of 6. By (4.3); and (4.13),
J AWA(S°)IVP(S))? = J AWAL(S’)IVP) — VP < ¢ (4.14)
Qr or
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By A7, (2.7), (2.21), and (4.13)-(4.14), one can easily see that IVl 20, -1+ @y @and
[0°|| L2(0. 7:4) are bounded independent of &. Therefore we complete the proof of this

lemma. Ol

Lemma 4.2. Under A1-7, for any fe Cg(Q) and sufficiently small ¢, solutions of
(2.20)—(2.26) satisfy

[/ [oreorsten -5 e = om0 < ool f o

where ¢y is independent of 6, ¢ and V° is defined in (4.1)e.

Proof. Proofis similar to that in Lemma 3.2. Let fe Cg(Q). In (2.23) and (2.25), we set

min(t+e,T)
amw:ﬂmf 60V (x, 7) dr
max(t,e)
min(t +¢,T)
MnMO:fMJ £07°( — LV (x, y, 1) de
max(t, &)

where V° and ¢° are defined in (4.1)s. By Theorem 2.1, ¢, € L*0, T;#) and
n e L*0, T; ;). By Fubini’s theorem,

J fd)f( )20 S0 (x, )0 “V°(x, 1) dx dt

+ij ;f(x 20 7°s°(x, y, )0 0 (x, y, 1) dy dx dt

= J ®3,5%(x, t){; dx dt + |2| 0,8°(x, y, ) (n + £¢y) dydxdt
QT

=— J K</~\‘fv(S‘5)V(P‘5 —J,) + V%(S5)>VC1 J D(s°)V,n (4.15)

k
I%’I
By Fubini’s theorem and Lemma 4.1, the right-hand side of (4.15) is bounded by

c1éll fllw+=) Where ¢, is independent of 6, &. So we complete the proof of this lemma.
O

By Lemma 4.2 and by performing similar argument as Lemmas 3.3 and 3.4, one can
obtain the following result:

Corollary 4.1 There is a subsequence of V° converging to V pointwise and in L*(Q")
strongly.
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Lemma 4.3. Under A1-8, there exist subsequences of solutions S°, U°, P°,s° of
(2.20)-(2.26) (same indices for subsequences) such that, as 6 -0,

P°>P in L*0,T; H'(Q)) weakly,

Se, U°, 2(U% — S, U, 2(U) in L"(Q") strongly, 1 <r <,
A(S°), D(U°) = A(S), Z(U) in L*0,T; H\(Q)) weakly,

s° > s in L*(27) weakly,

®0,S° + |, (@/1%) 0,5° - ®9,S + |, (@/|B)ds in L*0,T; #*) weakly,

0,8° = 0,5 in L*0,T; %) weakly,

s°(T) — s(T) in L*(2) weakly,

D(s°) — D(s) in L*0,T; %) weakly

Proof. By Theorem 2.1, Lemma 4.1, Corollary 4.1, (2.6)-(2.7), (2.21), A7,8, and (4.1),
we easily obtain subsequences of S°, U°, P°, s° such that, as § > 0",

P°>P in L2%0,T; HY(Q)) weakly,

§°, U°, 2(U% - S, U, 2(U) in L'(Q") strongly, 1 <r < o,
M%), D(U?) - R(S), (U) in LAO.T-H'(Q)) weakly,

s° s in LX(2%) weakly,

s°(T) — s* in L*(2) weakly,

9G(s°) - 7* in L*0,T; ") weakly

To show the following results:

DO,S° + [ ,(/|B]) 0:s” > DS + [, (/|1B) Ois  in L*0,T; A#*) weakly,
0,5° > 0, in L¥0,T; #gF) weakly,
s* = s(T),
D* = Y(s),
one can follow the argument in Lemma 3.5. One remark concerning the proof for

9* = 9(s) is that: By A8, one can extend the increasing function & to R continuously
and linearly with slope 1. Then, instead of (3.33), we consider

B o o s
0< [ 5@~ AN ~f) for fe L3

because of the boundedness in s° (see Lemma 3.6). Rest of its proof is similar as
Lemma 3.5. |

Proof of Theorem 2.2. (2.28)-(2.33) are direct results of Theorem 2.1, Lemma 4.3, and
(20)~(27). For { € LX0, T; #)n H'(Q"), n € L*0, T; W) nH'(0, T;LA(2)), {(T) = n(T) =

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 777-802 (2000)
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by Theorem 2.1 and integration by parts,

¢
o
Lpe,s ¢ +J 7 0 (L + 1)

¢
12|

By (2.6), Lemma 4.3, and Lebesque dominant theorem, we obtain (2.34). So we
complete the proof of Theorem 2.2.

= | oi-ci-stor+ [ 00— 6 - Rt )

5. Uniqueness

We now consider the uniqueness of (2.28)—(2.34). Assume S;, P;, s;,i = 1,2 are two
solutions of (2.28)-(2.34), A1-12 hold (see sections 2.1, 2.4), and (4, {,, n are smooth
functions satisfying

{(T) =n(T) =0, (1|ﬂ = C2|ﬂ =1l =0, V- ﬁ|r; = VCz'ﬁH; =0 (51

By subtracting one solution from the other, (2.28)-(2.34), and integration by parts, we
have

—j (S, — 52001~ f T(%(Sl)—%(sz))va(vcl)—j (Py— PYV(KA(SVE)

QT

= [ KOs Asave -1V = [ L sazan -0 52

j (P~ PIVIKASVE) + T f K(AL(S1) — A(SIV(P,—J )V =0
ae{w, o0} (53)
k
-1 % — S0 - jﬂ@(@m)—@(sz»m
f S0) — APLS,) LAm=0 (54)
By (5.2)-(5.4) and A9, we obtain

k
J (81 —Sz)<—q)azC1 — FIVKVE) + FLVE + F3VEG + —|$| gTIVJ Ayﬂ)
Q" »

- f (P — PyV(KA(S)VEs + KAL(S)VE))

k
+ LT(Sl —Sz)<— gj'@z(n +Z0) — 971@ Am)

k k
- [ simsa(vwven - 5 [ )= [ s fan 69
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where 7 = #, + v, ) = 4, + v, and

{(9?( )= RSNNS1 —S5) if S #8,

-

otherwise

F e {(K(AW(S AW(S2))V( JW)/S1 =8, if S; # S,

2 0 otherwise
Fe {( aetw, o K(ALS1) — Ay(SIV(Pr—J,))/S1 — S, 1f S; # S5,

3 0 otherwise
g {( D(s,)(/(51 — 52) if sy # s,
Fyi= .

0 otherwise
Define

Hyi={{:Le H(Q)NLA0, T; HA(Q), L (0) = 0, {|yy = V- iily = 0}

Fy = {0 (e H@Q)AL™0, T; H\(Q)), {(0) = 0, {1 = 0}
Hyi={{:Le L0, Ts HHQ), (hy = VL-iilyy = 0}

799

(5.6)

(5.7)

(5.8)

(5.9)

Hy:= {0 € HY0, T:LA2)) A LX0, T: LXQ, H(#)). 1(0) = 0, ylar = 0}

Next, we consider the following auxiliary problem for fixed v:

Lemma 5.1. Assume F,, 73, A, € L*(Q"); 0 <d, < ®,K, ¢, k, A, 7\, 7, < d, < 0;
0QeH’; and # is smooth. For any (fi,f»f3) € L*(Q")x L? (QT)XLZ(,QT), there is

a unique (1, (5, 1) € #, x L*(0, T; H{(Q)) x A5 such that

k
©3,{y — FIVKVEY) + 7,V + F3VE, + @Zv‘[ W =f

— VKAV, + KAWVEG) =1,

¢ Lk

— 0 <z Ay =

0+ L) = T A =
Moreover,

)
sup([ VG + fwymz) J Ve + J sy
t<T Q Qr

; f d1|Ayn|2+f LIVEVE)P + j QP
‘QT QT :ZT

o T )

ol 1A
7R

w
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(5.12)
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Proof. First let us consider smooth coefficients case. That is, we assume @, K, ¢, k, A,,,
A, F!, F,, F3, F, are all smooth, and @, K, ¢, k, A, #7, #, are bounded above and
below by d, and d; as non-smooth coefficients case. For ¢ € [0, 1], define a map
G7 M X Ay x Ay = L2(QT) x LAQT) x L2(27) by 9°(4, (5, ) = (f1, f. f3) » where

ko

i = 00,8, — FIVKVEY) + FaVEs + 07V 0 77 J Ay (5.14)

f» = — V(KAV, + 0KA, V() (5.15)
o o k

=0— %0 — 0 — F,— A 5.16

f3 0|93| t€1+|g| M 4|g| | ( )

It is easy to check %° is a bounded linear function and %° (i.e. ¢ = 0) is one-to-one and
onto (see sections 4,5 of Chapter 5 of [4]).

Multiply (5.14) by (1/97)0,(4, (5.15) by {, where f( > 1) is a constant depending
on [|Z3?/F,®||L-@n, and (5.16) by — (k/$)A,n, then integrate (5.14)-(5.15) over
Q° and (5.16) over 27, then by integration by parts along with boundary and initial
conditions to obtain

D 2k "z 7
J‘ ;|atcll2 +JK|1|(T)+f ( 2 VCl +0'?3i, VC2>6,C1
Q’jl Q Qr Jl

2 F
k f
— A n%0o = ~—0 5.17
+O__[Qf 4 vl 1 L}‘ F) 1 ( )
8 J KAIVGI? + of J KAV VL, =ﬁf Hs (5.18)
oF oF or
K k |V, K7} k
—0 | — AnZLo,( +J Y T+J A ZZ_J A
JQT |@| y7 t51 2|%| P ( ) pe ¢|%| | y’7| Q‘¢f3 y’/l

(5.19)

Summing (5.17)-(5.19), we have

1
j|vcl|2(r>+ f Vo2 + B f VG + f Laar +j AP
Q 2 o8 o 71 o

|F* |75 2 Ifil? P |f5l?
<cql 1Ay ——, —— || or \% + + +
< 1<| w 7 Il Q@ Q[| {l o T} Qr|f2| o 7}

(5.20)
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where ¢, is a constant depending on its parameters. By Gronwall’s inequality, (5.20)
implies

I |
sup q VLI + j |Vyn|2>(r) T ﬁf VGl + j Laar+ j A
t<T Q 2 or QT /1 9T

Fa |7 il 2 [ AP
<ol A, ) o T +| - 521
2<| e I AR (521)

where ¢, is a constant depending on its parameter. (5.14)—(5.16) and (5.21) imply that

J LIVEVE)P + f oun?
or HT

2

37 2 gj 2 2 2
< 03<d2a HAWDQ Q |L*’(Q')> <J il + J Lf5)* + J sl > (5.22)
QT 2

7T o F o T
180, + 180, + Inlle, < callfillz@n + [1f2lL2@n + | f3llL2@n) (5.23)

where constant ¢, depends on smooth coefficients of (5.10)-(5.12). By (5.23) and
method of continuity [14], we see %' is also a one-to-one and onto map. So we show
the unique solvability of (5.10)—(5.12) for smooth coefficients case. By uniform bound
(5.21)-(5.22) and passing to limit, one can find a unique solution of (5.10)-(5.12) for
non-smooth coefficient case. Moreover, the solution satisfies (5.13). So we complete
the proof of this lemma. ]

Proof of Theorem 2.3. Let f; = R(S1) — %(S>), f>» = Py — P>, f3 = Z(s1) — Z(s,) in
(5.10)-(5.12), then we obtain the corresponding solution ({3, {5, %) for each v by
(5.6)-(5.9), P,eL™0, T;W"*(Q)), A10-12, and Lemma 5.1. After substitution
t > T —t for the solution ({3}, {3, "), then we plug it into (5.5) to obtain

[, (51 = S50 = #(52) + [ Py = P+ | (51— (@) = 2052

k k
=- LT(Sl - Sz)V<V(KVC‘1') ~ LAM) — LT(s1 — sz)v@ Ap® (524

By Lemma 5.1, the right-hand side of (5.24) is bounded by c\/;, where ¢ is a constant
independent of v. Letting v — 0™, the right-hand side of (5.24) goes to 0, which implies
the uniqueness of (2.28)-(2.34).
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