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SUMMARY

A depth-averaged two-dimensional model has been developed in the curvilinear co-ordinate system for
free-surface flow problems. The non-linear convective terms of the momentum equations are discretized
based on the explicit–finite–analytic method with second-order accuracy in space and first-order
accuracy in time. The other terms of the momentum equations, as well as the mass conservation
equation, are discretized by the finite difference method. The discretized governing equations are solved
in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new
model has been applied to various flow situations, even for the cases with the presence of sub-critical and
supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the
experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000
John Wiley & Sons, Ltd.

KEY WORDS: boundary condition; curvilinear co-ordinate system; depth-averaged two-dimensional
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1. INTRODUCTION

A review of the literature shows that many depth-averaged numerical models have been
developed and applied to free-surface flow problems. Although a depth-averaged model may
suffer from some limitations on physical interpretation, e.g. invalid governing equations in the
vicinity of the bore with sharp curvature, the computed results may still be used with
confidence for typical engineering applications [1].

For convection-dominated open-channel flows, such as flow affected by the tidal current,
circulated flow, surge, dam-break flow, or flow through abruptly varied channel sections,
numerical difficulties and unsatisfactory simulated flow patterns may occur due to inadequate
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treatment of the non-linear convective terms. This fact is responsible for the genesis of a new
generation of models, either by utilizing finite difference discretization of higher-order accuracy
or by isolating the convective terms and discretizing them by different methods [2]. Chapman
and Kuo [3] adopted the spatially third-order-accurate QUICK finite difference scheme to
overcome the numerical problems associated with the use of upwind (first-order) and central
(second-order) finite difference for the convective terms. However, the high-order-accurate
schemes are usually computationally expensive. Ye and McCorquodale [4] discretized the
convective terms by Roe’s [5] scheme, as well as power-law scheme [6], based on the finite
volume method. Roe’s scheme has the advantage of computational efficiency; however, it
produces better accuracy in predicting flow patterns than those from the Power-law scheme
only when grids are not aligned with the currents. Benque et al. [2] used the method of
characteristics for the convective terms, however, with the convection being treated separately
in each spatial direction. Thus, two sequential one-dimensional calculations for convection of
each direction were executed for a two-dimensional flow. In their paper, flow configurations in
a circular basin and in a channel with the projection of spur–dike were shown. In this paper,
the explicit–finite–analytic (EFA) method [7] is used to calculate the convective terms, while
the other terms in the momentum equations are discretized by the finite difference method.
The basic idea and also the merit of the EFA method is the incorporation of a local analytic
solution in the numerical solution of a linear or linearized hyperbolic equation. The EFA
method is similar to the method of characteristics because both methods bear the same
characteristic line defined by the local flow velocity, referred to as the world line [8] in the
method of characteristics. However, the EFA method has the advantage of simplicity and is
numerically formulated from the concept of a mathematically exact solution of the equation.

Moreover, owing to the physical character of the transmission of the convection, special
treatments are usually incorporated into many schemes to account for the relevant direction of
transmission. For instance, (1) splitting technique: accomplished by splitting the coefficient
matrices into the sub-matrices relating to positive or negative eigenvalues respectively (such as
that adopted by Gabutti [9]); and (2) upwind difference: accomplished by switching the
differentiating direction according to the relevant velocity components. These are usually the
treatments taken. In the EFA method, it is straightforward to take the transmission character
of the convection into account by the local analytic formulation of convection effect. From
this point of view, the EFA method is suitable for dealing with the convective terms

In addition to the aforementioned models, Fennema and Chaudhry [10] used the Beam and
Warming implicit finite difference scheme to discretize the two-dimensional unsteady free-
surface equations. Molls et al. [11] used both the alternating direct implicit (ADI) and the
MacCormack explicit schemes to simulate the two-dimensional flow near a spur–dike. It is
necessary to add artificial viscosity for numerical stability in the Molls’ models. Note that both
Fennema and Chaudhry’s and Molls et al.’s models partially transformed the governing
equations from the physical domain to the computational domain with the adoption of
orthogonal Cartesian co-ordinate grids. Moreover, Fraccarollo and Toro [12] adopted the
weighted average flux method, which is a conservative shock-capturing method of Godunov
type, to simulate a dam-break problem with the governing equations located in the Cartesian
co-ordinate system. It can be seen that most of the existing two-dimensional models describe
their governing equations in the Cartesian co-ordinate system, and a few of them are expressed
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in the form of partial transformation. In this paper, the generalized governing equations are
expressed in the non-orthogonal curvilinear co-ordinate system by full transformation [13], and
the body-fitting grid systems are used to accurately define the geometry of the physical
domain.

The aim of this paper is to propose a depth-averaged two-dimensional EFA model suitable
for free-surface flows. The general formulations of the governing equations of the free-surface
flows will be described first. Then the basic idea of the EFA method will be shown.
Introduction of the numerical algorithm of the proposed model and the treatment of the
boundary conditions will be shown in the following sections. Finally, applications and
verifications of the proposed EFA method are further demonstrated via sample problems.

2. GOVERNING EQUATIONS

Incompressible flows can be formulated by describing the conservative laws of mass and
momentum, and the resulting equations could be written in the tensor form as

Continuity equation:
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(all sub-ordinate indices=1, 2, 3) in which r is the density of fluid; P is the pressure; gmn and
gmn are contravariant and covariant metric tensors respectively; m is the dynamic viscosity of
fluid; F is the body force vector; t is the time; and r̃ is the position vector. The mark

����

represents the ensemble averaging procedure. In Equations (1)–(6), all repeated sub-ordinate
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indices in one term are dummy indices. Moreover, the Vi and 6 i are mean and fluctuating
contravariant velocity components respectively, tangent to the j i co-ordinate axis, and their
quantities are measured by the scale of dependent co-ordinate system. Therefore, in order to
obtain the physical quantities V(i ) and 6(i ), the Vi and 6 i are multiplied by the metric
coefficients as

V(i )=gii
0.5 ·Vi, 6(i )=gii

0.5 ·6 i (no summation over i ) (7)

With the general convention [V(1), V(2), V(3)]= (u, 6, w) and [6(1), 6(2), 6(3)]= (u %, 6%, w %) are
the physical mean and fluctuating velocity components in the (j, h, z) co-ordinate directions
respectively. One can obtain the two-dimensional depth-averaged shallow-water equations by
integrating Equations (1) and (2) along the water depth with the following assumptions:

1. The surface wind shear stress and the Coriolis acceleration are assumed to be negligible.
2. The channel bed slope is small, which leads to g13=g23=0, g13=g23=0, and the metric

tensors in the vertical direction equal one, i.e. g33=g33=1.
3. The vertical velocity component w is negligible. Hence, the momentum equation in the

vertical direction simplifies into the equation of hydrostatic pressure distribution, such that
the pressure P could be replaced by water depth.

4. The power-law velocity distribution over the depth is assumed in both the j- and h-
directions:

u=
N+1

N
ū
�d

h
�1/N

, 6=
N+1

N
6̄
�d

h
�1/N

(8)

in which ū and 6̄ are depth-averaged velocities in the j- and h-directions respectively; d is
the distance from the channel bed; h is the water depth; and N=k
8/f, in which k is the
von Karman coefficient and f is the Darcy–Weisbach coefficient.

The effective stresses, as defined by Kuipers and Vreugdenhil [14], including laminar viscous,
turbulent Reynolds and dispersive stresses, are all considered in the proposed EFA model. It
may be noted that the dispersive stresses result from a concurrence of depth integration
procedures of non-linear convective terms and the existing non-uniform distribution of the
velocity profile over the depth. Yet these dispersive stresses are usually not taken into account
in the existing models, such as those of Tingsanchali and Maheswaran [15], Bhallamudi and
Chaudhry [16] and Fraccarollo and Toro, under the assumption of uniform velocity distribu-
tion over the depth. In the proposed EFA model, the power-law velocity distribution over the
depth has been assumed; hence the dispersive stresses were considered. On the other hand, the
Boussinesq’s [17] eddy viscosity concept is adopted for the expression of the turbulent
Reynolds stresses

6 i6 j�����
=nt(V , j

i +V ,i
j ) (9)

and the eddy viscosity can be determined as
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nt=
ku�h

6
(10)

in which u� is the shear velocity [18].
The bed frictions in the j- and h-directions are determined in accordance with the following:

tbj=
rg
C2 Vj · �V �, Vj= ū+ 6̄g11

−0.5g22
−0.5g12 (11a)

tbh=
rg
C2 Vh · �V �, Vh= 6̄+ ūg11

−0.5g22
−0.5g12 (11b)

and

�V �= [ū2+ 6̄2+2ū6̄g11
−0.5g22

−0.5g12]0.5 (12)

in which g is the gravitational acceleration; C is the Chezy coefficient; Vj and Vh are the
factual magnitudes of velocity components in the j- and h-directions respectively (note that
they are slightly different from ū and 6̄ as they are located in the non-orthogonal co-ordinate
system); and �V � is the magnitude of the velocity vector. Derivation of the depth-averaged
two-dimensional shallow-water equations in the general curvilinear co-ordinate system is
involved and hence not dealt here. Only the final forms of the depth-averaged continuity and
momentum equations are listed in Appendix A. These equations can be rewritten in the
compact forms as following:

Continuity equation:

(h
(t

+g11
−0.5g22

−0.5 ( [g22
0.5 · ūh ]
(j

+g11
−0.5g22

−0.5 ( [g11
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+C1 · ūh+C2 · 6̄h=0 (13)

Momentum equations:

DV(i )
Dt

=Sd+Sp+Sf+St+Sc, i=1, 2 (14)

in which

DV(i )
Dt

=
(V(i )
(t

+gii
0.5 ·VmV ,m

i (summation over m) (15)

in which C1 and C2 are metric coefficients, D/Dt is the total derivative with respect to time, Sd

is the dispersion term resulting from the depth integration of the non-linear convective
accelerations, Sp is the propagation term associated with the hydrostatic pressure, Sf is the
friction term resulting from the solid boundaries, St is the turbulence term, and Sc is the
collection of residuals including the laminar viscosity term.
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3. CO-ORDINATE AND GRID SYSTEM

To properly define the irregular boundaries, especially those of the natural rivers, body-fitted
grid systems are preferable to the Cartesian grid systems in the finite difference method. It may
be noted that the calculated flux adjacent to a corner might be incorrect when the computation
is executed in a Cartesian grid system [15,19]. The use of a body-fitted grid system has the
advantage of avoiding this kind of error. Two different approaches, partial and full transfor-
mations of the governing equations to the general co-ordinate systems, facilitate the equations
to be solved on the body-fitted grid systems. By partial transformation, it is only a mapping
between two different co-ordinate systems, leaving the dependent velocity components in the
original x- and y-directions. This approach has the advantage of relative simplicity, however,
it may lead to increased numerical diffusion due to large skew angles between the velocity
components and the faces of the computational cell [13] or large discrepancies between the
directions of velocity components and co-ordinate axes. Alternatively, by full transformation,
the dependent velocity components direct along the curvilinear co-ordinate axes, i.e. along the
j- and h-directions, rather than along the x- and y- directions, avoiding the above discrepancy
problem. Hence, in this paper, full transformation is adopted to derive the two-dimensional
depth-averaged shallow-water equations in the general curvilinear co-ordinate system, as it is
suitable for carrying out the computation in the body-fitted grid systems.

On the other hand, though grid generation methods attempt to maintain mutually perpen-
dicular co-ordinate axes, numerically established structural grid systems do not guarantee their
orthogonality, especially in the place where the geometry is complex or has sharp curvature. If
orthogonal governing equations are solved on a non-orthogonal grid system, numerical errors
may occur due to the inconsistency. Therefore, adoption of non-orthogonal governing equa-
tions is suitable for flow with complex boundaries. It may be recalled that the governing
equations (13) and (14) are written in the general curvilinear co-ordinate system by full
transformation, and conserve the inner dot products g12 and g12 to take account of the effect
of using non-orthogonal grids.

4. EXPLICIT–FINITE–ANALYTIC METHOD

The EFA method finds the local analytic solutions of convection part of momentum equations
on each nodal point within a local element. The basic concept of the EFA method can be
explained by solving the two-dimensional first-order linear hyperbolic equation without source
terms written in the Cartesian co-ordinate system

ft+ufx+6fy=0 (16)

in which u and 6 are velocities in the x- and y-directions respectively and are regarded as
constants. If the initial condition is properly specified, Equation (16) can be solved analytically.
Under the initial condition f(x, y, 0)=8(x, y), the analytic solution, after marching a time
step Dt from the initiation, can be expressed as
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f(x0, y0, Dt)=8(x0−uDt, y0−6Dt) (17)

in which (x0, y0) is the location on which f is to be solved, and x=x0−uDt and y=y0−6Dt
define a characteristic line projecting from the initial plane to the position (x0, y0) at Dt time
plane. For purely convective phenomena, it can be recognized that the adoption of the upwind
direction is intuitive and straightforward. For example, as u and 6 are both positive in the
conventional co-ordinate system (Figure 1), the flow comes from the southwest, inducing that
the characteristic line projects from the southwest to the northeast and intersects the initial
plane at a point southwest of (x0, y0). Similarly, different combinations of the signs of u and
6 represent the different directions of convection, and the directions can be automatically
adjusted by Equation (17) to obtain the correct convective information.

As for the momentum equations of open-channel flows, non-linearity of the convective
terms makes it impossible to obtain an analytic solution for the entire flow field. In this paper,
the non-linear convection terms are locally linearized by simply substituting the constant
representative velocities for the convective velocities, called the characteristic velocities here-
after, e.g. u and 6 in Equation (16), so that the local analytic solutions may be determined on
the individual discretized nodal points as described above. Although the convective velocities
vary with space and time, the constant characteristic velocities could be used for representing
the average convective feature in a local cell element during a small time step. The remaining
problem is to determine the appropriate characteristic velocities for each local cell element.

As for the non-homogeneous equation, e.g. Equation (14), the right-hand side terms could
be simply differentiated with known variables and integrated over the time step. The results are
treated as the source terms and added to the convective quantity in the right-hand side of the
Equation (17). This is the overall algorithm of Dai’s [7] EFA method to determine the solution
explicitly. His model was applied to cavity flows without free surface. In this paper, an iterative
procedure is used to update the known variables, the source terms and the characteristic
velocities.

Figure 1. Definition sketch of characteristics line for EFA method.
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5. NUMERICAL ALGORITHM

In the proposed model, the convective parts of the momentum equations are solved by the
EFA method, but the remainders, as well as the continuity equation, are solved by the finite
difference method. The flow velocities and water depth to be solved are located on staggered
nodal points as shown in Figure 2. An iterative procedure is taken to make the flow variables
reach convergence simultaneously during each time step. The discretized governing equations
are as follows:

hi, j
n+1=hi, j

n +
! u · [g11

−0.5g22
−0.5 · [9jDj(g22

0.5 · ūh)+9hDh(g11
0.5 · 6̄h)]+C1 · ūh+C2 · 6̄h ]i, j

n+1*

+ (1−u) · [g11
−0.5g22

−0.5 · [9jDj(g22
0.5 · ūh)+9hDh(g11

0.5 · 6̄h)]+C1 · ūh+C2 · 6̄h ]}i, j
n

"
·Dt

(18)

ū i−1, j
n+1 = ūcon+

! u · [Sd+Sp+Sf+St+Sc]i−1, j
n+1*

+ (1−u) · [Sd+Sp+Sf+St+Sc]i−1, j
n

"
·Dt (19)

6̄ i, j−1
n+1 = 6̄con+

! u · [Sd+Sp+Sf+St+Sc]i, j−1
n+1*

+ (1−u) · [Sd+Sp+Sf+St+Sc]i, j−1
n

"
·Dt (20)

in which 9jDj and 9hDh indicate the central differences in the j- and h-directions respectively;
subscripts i and j define the grid points; subscript ‘con’ defines the location from which flow
information is transferred to the current computed point by convection; superscripts n and
n+1 indicate the previous and present time levels respectively; superscript n+1* indicates the
newly updated quantities from the previous iteration. It may be noted that variables marked
with superscript n+1* are equivalent to those marked with n for the first iteration of each
time step and are updated subsequently by the newly calculated quantities of the current time.
Besides, owing to the time dependence, variables marked with n and n+1* are weighted by a
factor u to substitute for integration over a time step. To determine the convective information
of ūcon and 6̄con, it requires appropriate characteristic velocities, i.e. u and 6 in Equation (17),

Figure 2. Computational grids.
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to trace back to the location at which the characteristic line intersects the previous time
level. By numerical experience, the newly calculated velocities are appropriate to be the
characteristic velocities. For example, the characteristic velocities (u, 6)= (ū i−1, j

n+1*, 6̄ i−1, j
n+1*) are

used to determine ūcon in Equation (19) for the characteristic line passing through the
point (i−1, j ) at the current time level. Similarly, the characteristic velocities (u, 6)=
(ū i, j−1

n+1*, 6̄ i, j−1
n+1*) are adopted for the determination of 6̄con in Equation (20). On the other

hand, the initial condition 8(x, y) at the n time step can be established by a bilinear
method for irregular two-dimensional meshes [20] with the known variables at four vertices
of the cell involving the location ‘con’.

Note that the characteristic velocities are in the directions consistent with the curvilinear
co-ordinate axes. To define the location at which the characteristic line intersects the
previous time level, i.e. (x0−uDt, y0−6Dt), the characteristic velocities are transformed to
the Cartesian co-ordinate system. The characteristic velocities in the Cartesian and curvilin-
ear co-ordinate systems have the following relationships:

ūcar= ūcur ·g11
−0.5 (x
(j

+ 6̄cur ·g22
−0.5 (x
(h

(21)

6̄car= ūcur ·g11
−0.5 (y
(j

+ 6̄cur ·g22
−0.5 (y
(h

(22)

where subscripts ‘car’ and ‘cur’ denote the velocities in the Cartesian and curvilinear co-or-
dinate systems respectively. Then ūcon and 6̄con can be determined by Equation (17).

For free-surface flows, the direction of disturbance propagation depends on whether the
flow is sub-critical or supercritical. For sub-critical flows, disturbance propagates both in
the upstream and downstream directions. On the other hand, for supercritical flows, distur-
bance propagates either upstream or downstream depending on the flowing direction.
Therefore, the source terms, including Sd, Sp and Sc, in the momentum equations in the
proposed model are differentiated using central difference for sub-critical flow, and upwind
difference for supercritical flow.

The right-hand side of Equations (18)–(20) may be calculated explicitly with known
variables, consequently obtaining the new flow situation at the present time level explicitly.
The algorithm can be summarized as follows:

1. Compute ū n+1 and 6̄n+1 by Equations (19) and (20) respectively on the staggered nodal
points.

2. Compute hn+1 by Equation (18) on the main nodal points with newly calculated velocities
from step 1.

3. Update the characteristic velocities and use the newly calculated variables to repeat steps
1–3 until the convergent criteria are met.

4. March to the next time step and repeat steps 1–4 until the steady state or the end of
simulation period is reached.
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The proposed model can be applied to both for steady and unsteady free-surface flows. When
a steady flow is simulated, time marching is repeated as that for unsteady flow until the flow
variables at successive time steps have negligible difference.

6. NUMERICAL ACCURACY AND STABILITY OF THE MODEL

The analysis of truncation error by Taylor’s series expansion shows that the accuracy of the
proposed model is second-order in space and first-order in time [7]. However, as the upwind
difference, which is first-order accurate in space, is adopted for source terms in the momentum
equations to account for the nature of flow 6iz. supercritical flow as described earlier, the
overall accuracy in space will be dominated by the upwind difference.

Similar to other explicit numerical models, the Courant–Friedrichs–Lewy (CFL) condition
is the constraint of choosing the marching time step. The CFL condition is given by

Crj=
(�ū �+c) ·Dt

Dj ·g11
0.5 51 (23)

Crh=
(�6̄ �+c) ·Dt

Dh ·g22
0.5 51 (24)

where c is the wave celerity of the free-surface flow, and is defined as 
gh ; Cr is the Courant
number. When the determination of the time step is based on these two inequalities, the
characteristic lines associated with Equations (19) and (20) can be ensured to pass through the
local element as shown in Figure 1.

7. BOUNDARY CONDITIONS

It has been noted that the only general technique available for dealing with the boundary
conditions is the method of characteristics [21]. For two-dimensional flows, it prefers to locate
the upstream and downstream boundaries at sections where cross-stream flux is insignificant so
that almost unidirectional (in the j-direction) flow enters or leaves the simulated region.
Under such a situation, the characteristic equations describing the propagation of disturbances
mainly along the streamline direction can be used for approximating the boundary conditions.
There are three of the characteristic equations individually processing the characteristic
velocity vectors of (ū+c, 6̄), (ū−c, 6̄) and (ū, 6̄). The three characteristics may direct toward
upstream or downstream, depending on the flow pattern. As an illustration, for flow with
positive ū, (ū+c, 6̄) and (ū, 6̄) direct downstream, yet (ū−c, 6̄) directs upstream in the
sub-critical flow regime; whereas all of them direct downstream in the supercritical flow
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regime. Therefore, it necessitates different alternatives to deal with the boundary conditions
under different flow situations.

For sub-critical flow cases, two boundary conditions related to discharge hydrographs per
unit width qj(t) and qh(t) in the j- and h-directions respectively are specified at the upstream
boundary because two of the three characteristic lines related to velocity vectors (ū+c, 6̄) and
(ū, 6̄) are obtained from the outside of the computational region. Thus, the water depth can be
approximated by the characteristic equation as

c
h

dh
dt

−
dū
dt

+g22
−0.5c

(6̄

(h
= −g(S0j−Sfj) (25)

in which d/dt denotes characteristic lines projecting along with velocity vector (ū−c, 6̄). Note
that S0j and Sfj are the bed and friction slopes along the j-direction respectively. Similarly,
one boundary condition related to h(t) is required at the downstream boundary as the
characteristic line related to (ū−c, 6̄) is obtained from outside. Thus, the remaining two
unknowns, i.e. qj and 6̄, can be approximated by the characteristic equations as

dqj

dt
+ (c− ū)

dh
dt

=gh(S0j−Sfj)−g22
−0.5ch

(6̄

(h
(26)

d6̄

dt
+g22

−0.5g
(h
(h

=g(S0h−Sfh) (27)

in which d/dt and d/dt denote characteristic lines projecting along with velocity vectors
(ū+c, 6̄) and (ū, 6̄) respectively; S0h and Sfh are bed and friction slopes along the h-direction
respectively. On the other hand, three boundary conditions are required at the upstream
boundary for supercritical flow cases because all the three characteristic lines are from outside,
and Equations (25)–(27) are used to approximate the flow pattern at the downstream
boundary.

The algorithm for solving the open boundary conditions is similar to that for computing
flow variables at the interior grid points. No-slip condition and null normal flux are specified
at the solid walls, and the water surface elevations along the walls are extrapolated from those
at the nearby interior points.

8. APPLICATIONS

To demonstrate the applicability of the proposed EFA model, different flow examples are
simulated. Sub-critical and supercritical flows may exist simultaneously in different locations
or in sequence in time, such as the hydraulic jump and dam-break wave with a sharp
discontinuity of the water surfaces. Such complex flow patterns make many of the existing
schemes fail. In this paper, several test cases possessing this feature of mixed flow types are
simulated to demonstrate the capability of the proposed model. The numerical results from the
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proposed model are verified by the already existing experimental data, and are compared with
that from other models. All the simulations start with generating the grid systems and only the
resulting computational grids are shown. To ensure numerical stability for each test case,
Equations (23) and (24) are used to determine Dt for each time marching step.

8.1. Jet circulation in circular basin

The geometry of the circular basin with diametrically opposite inlet and outlet [18] is shown in
Figure 3. The radius of the basin is 0.75 m; the inlet is of 0.08 m in width and length; the outlet
is 0.24 m in width and 0.1 m in length; and all have vertical side walls. The bottom is flat and
the Chezy frictional coefficient is set to be 45 m0.5 s−1. The inflow discharge is
0.01 m3 s−1 m−1, and a fixed depth of 0.09 m is specified at the outlet in the simulation. Jet
flow through the circular basin involves flow separation and circulation. This layout of the
basin is a suitable case to test the EFA model for its ability to handle the non-linearly
convective acceleration of the flow. The body-fitted grid system for numerical simulation is
also shown in Figure 3. It can be seen that the circular boundary is well defined by the
body-fitted co-ordinate system. The whole domain is discretized into (41×23) grid points. The
grid system cannot maintain orthogonality, especially at the interfaces of the inlet/outlet and
the circular basin. Therefore, the use of non-orthogonal governing equations for problem
solving is necessary.

The importance of the non-linearly convective accelerations and viscous terms for simulating
flows with separation and circulation has already been pointed out by Falconer [18] and Ponce
and Yabusaki [22] and has been verified by Benque et al. Recently, Borthwick and Akponasa

Figure 3. Computational grids for jet flow simulation.
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Figure 4. Velocity vectors of jet flow circulation obtained using EFA model.

Figure 5. Streamlines of jet flow.

[23] simulated flow patterns in basins with the similar shape as shown in Figure 3. The steady
velocity distributions for different inlet Reynolds numbers were given by Akponasa [23];
however, unreasonably exaggerated velocity vectors near the outlet could be seen in their paper
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[23]. Figure 4 shows the distribution of the velocity vectors by the proposed model. It can be
seen that no unreasonably exaggerated velocity vectors appear and the fluid flows outside the
basin smoothly. The separation and circulation of the flow in the basin can be clearly seen
from the corresponding streamline as shown in Figure 5. At the beginning of the jet flow
entering the basin, the momentum is largely maintained in the jet direction with a little lateral
spread. Because of the viscous effects, fluid on both sides of the jet in the basin is impelled and
the circulation intensity gradually increases. Figure 6 shows the final contours in the equi-
librium state. The minimum depth occurs around the upstream center part of the basin and the
maximum depth occurs around the downstream sides of the basin. The simulated results
demonstrate the capability of the EFA model for dealing with convection-dominated flows.

8.2. Hydraulic jump

Hydraulic engineers are concerned with the location and the conjugated water depths of a
hydraulic jump. Rahman and Chaudhry [24] have used two different numerical schemes,
MacCormack and two–four, to simulate the hydraulic jump for different Froude numbers.
They added the Boussinesq terms into St. Venant equations to account for the non-hydrostatic
pressure distribution in the region of steep gradients of depth and velocity, and then used the
resulting Boussinesq equations to simulate the hydraulic jump. Their simulated results agreed
well with the experiments conducted by Gharangik and Chaudhry [25]. They also found
the Boussinesq terms to be very small relative to other terms. This finding led to the con-
clusion that the inclusion of the Boussinesq terms is not important. Hence, although the

Figure 6. Contours of jet flow.
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depth-averaged model suffers from the shortcoming of invalidating governing equations in the
vicinity of the bore with sharp curvature of water surface, it can still be used with confidence
for practical applications.

In Rahman and Chaudhry’s models, artificial viscosity is required to dampen the high-
frequency oscillations near the steep gradient. Moreover, additional parameters were intro-
duced into their models to regulate the amount of artificial viscosity. Using excessive artificial
viscosity may introduce numerical dispersion. Therefore, for different flow situations, the
magnitudes of these parameters need to be calibrated to reach a compromise between the
oscillations suppressing and numerical dispersion. From the practical point of view, this may
lead to some difficulties in application. In this paper, the hydraulic jump is simulated without
any artificial viscosity.

Before making the numerical simulation possible, further investigation on the hydraulic
jump is necessary. In the supercritical flow region, three boundary conditions are needed at the
upstream end. However, one additional internal boundary condition associated with the
hydraulic jump character is naturally induced at the interface of the two different flow regimes.
Therefore, there are four boundary conditions in the supercritical flow region, and this leads
to an overdetermined problem from the mathematical viewpoint. To solve this problem, the
water surface elevation at the downstream end of the supercritical flow region is calculated by
extrapolation from the corresponding values at adjacent upstream interior points. With this
treatment, the internal boundary condition for the supercritical flow region can be eliminated.
The location of the downstream end of the supercritical flow region could be defined as where
the Froude number is larger than one and that of its next grid point is less than one. During
each iterative procedure, Froude numbers at grid points are calculated for determining the
location of the hydraulic jump.

The experimental data of Gharangik and Chaudhry are used to verify the proposed model.
Data of four experimental results based on the inflow Froude number are listed in Table I. The
rectangular straight channel is of 9 m in length with flat bottom. The flow domain is
discretized into (61×7) grid points. The Chezy frictional coefficient was set at 30 m0.5 s−1. For
each case, the water depth and velocities in both j- and h-directions at the upstream boundary
and water depth at the downstream boundary were specified and remained unchanged. At the
beginning of the simulation, the initial flow condition throughout the channel was set as the
supercritical flow pattern like that at the upstream boundary. After the depth at the
downstream boundary rises, the transition of the supercritical flow to sub-critical flow starts at
the downstream end and then moves toward upstream until the equilibrium is achieved. The

Table I. Test conditions for hydraulic jump (after Gharangik and Chaudhry [25]).

Froude number Upstream Upstream Upstream depth Downstream depth
6 (m s−1)u (m s−1) (m)u/
gh (m)

7.0 3.831 0.0 0.031 0.265
3.255 0.0 0.024 0.1956.65

2.9 2.127 0.0 0.055 0.189
2.3 1.826 0.0 0.064 0.168
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comparisons between the numerical results and the experimental data according the depth
profile along the centerline of the channel are shown in Figures 7–10. Because of the straight
channel, there is no variation across the channel except the transitions to no-slip condition at
the wall. It can be seen in these figures that the proposed model well simulates both the
location and conjugate depths of the jump. No matter the magnitudes of the Froude number

Figure 7. Jump profile for Fr=7.0.

Figure 8. Jump profile for Fr=6.65.
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Figure 9. Jump profile for Fr=2.9.

Figure 10. Jump profile for Fr=2.3.

might be, numerical oscillation does not occur in each case. These test cases show that the
EFA model has the capability of dealing with flows with the presence of sub-critical and
supercritical regimes simultaneously or sequentially.
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8.3. Dam-break flow

It is common to regard the dam-break wave as an unsteady shallow water flow [8,26]. When
a dam breaches, a positive steep-front wave develops and propagates downstream, associated
with a negative wave propagating oppositely upstream of the dam. The flow is usually
sub-critical upstream of the dam site and is supercritical downstream. The numerical schemes
used for solving the problem will face severe challenges especially when they are applied to
cases with large initial water depth in the reservoir and small depth in the downstream channel.
Furthermore, the extreme condition of downstream dry bed may be the case so that it needs
a more robust model to deal with the problem.

Several experiments conducted by Bellos et al. [27] were simulated by using this model.
Simulated results for only two cases are presented and compared with the experimental data,
along with the results from the MacCormack method. The channel with vertical walls is 21.2 m
in length and 1.4 m in width at both ends. The channel has a narrowest section in the middle
reach with the width of 0.6 m there. The gate is located at the narrowest section, i.e. 8.5 m
from the upstream end, and is removed instantaneously. The geometry of the experimental
channel as well as the computational grids (81×15) are shown in Figure 11. The Manning
coefficient is assumed as 0.012. Two cases with different bed slopes of 0.004 and 0.006
respectively were simulated. For both the cases, the initial water depth just behind the dam is
0.15 m, and the downstream channel is dry. During simulation, the water depth hydrographs
along the centerline of the channel were recorded at four spots, i.e. 0, 4.5, 11 and 18.5 m
respectively from the upstream end. Note that the former two spots are upstream of the dam
site. The total simulation time is 65 s after the dam break.

Figure 12(a)–(d) shows the comparisons of water depth hydrographs between the numerical
results and the experimental data at different measurement points for the case with bed slope
of 0.004. It can be seen in Figure 12(a) and (b) that, after a period of rapid drop of the water
surface, the water depth experiences a period of mild decrease or even remains unchanged.

Figure 11. Computational grids for dam-break simulation.
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Figure 12. Comparison between computational and experimental depth hydrographs for slope=0.004;
(a) X=0 m, (b) X=4.5 m, (c) X=11 m, (d) X=18.5 m.

This phenomenon is due to the converging–diverging variation of the channel cross-section. In
Figure 12(c) and (d), the simulated arrival time and wave front height are satisfactory as
compared with the measured data.

Similarly, Figure 13(a)–(d) shows the comparisons for the case with bed slope of 0.006.
Owing to the steeper slope, the fluid gets released to downstream channel more rapidly. From
Figure 13(a), the fluid at the upstream boundary is exhausted in about 40 s after the dam
break. Starting from the upstream end, the reservoir bed gradually becomes dry. The effect of
the cross-sectional variation can also be seen in Figure 13(a) and (b). For the depth
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hydrographs in the downstream channel, as can be seen from Figure 13(c) and (d), there exists
a little protuberance resulting from numerical treatment of the discontinuously leading edge
travelling on the dry bed. However, the overall results are satisfactory.

This application study demonstrates the capability of the EFA model to deal with the mixed
type of unsteady sub-critical and supercritical flows and the channel bed being alternatively
wet and dry.

Figure 12 (Continued)
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9. CONCLUSIONS

A depth-averaged explicit–finite–analytic (EFA) numerical model has been developed and
applied to two-dimensional free-surface flow problems. The governing equations are derived in
the general curvilinear co-ordinate system by full transformation. In addition, a body-fitted
grid system is generated in the proposed model for the purpose of properly specifying irregular
boundaries of the open channels. The non-linear convective terms of the momentum equations

Figure 13. Comparison between computational and experimental depth hydrographs for slope=0.006;
(a) X=0 m, (b) X=4.5 m, (c) X=11 m, (d) X=18.5 m.
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Figure 13 (Continued)

are discretized based on the EFA method. The EFA method has the advantage of simplicity
and is numerically formulated from concept of mathematical exact solution of equation. Three
examples with different degrees of numerical difficulties are illustrated in this paper to verify
the capability of the proposed model. They are the convection-dominated flow with strong
curvature of streamline, hydraulic jumps with the presence of sub-critical and supercritical flow
regimes simultaneously in different regions or in sequence in time, and unsteady dam-break
flows in the non-prismatic channel with alternatively wet and dry bed. Comparisons between
numerical results and experimental data show a reasonably good agreement.
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APPENDIX A. NON-ORTHOGONAL DEPTH-AVERAGED GOVERNING
EQUATIONS
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· [ū6̄ ]

+
1
2

g11
0.5 g22

−1�2g11 (g12

(h
−g11 (g22

(j
+g12 (g22

(h

�
· [6̄2]

+
1
h

g11
−0.5g22

−0.5 (

(j

�
g22

0.5 1
N(N+2)
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(6̄

(j
+g22

−0.5 · 6̄
(6̄

(h

+
1
2

g22
0.5g11

−1�2g22 (g12

(j
−g22 (g11

(h
+g12 (g11

(j

�
· [ū2]
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ū6̄
n

+
1
2

g22
−0.5�g22 (g22

(h
+2g12 (g12

(h
−g12 (g22

(j
−g22

−1 (g22

(h

�
·
� 1

N(N+2)
6̄2n

+
1
2

g11
−0.5�g22 (g22

(j
+2g12 (g12

(j
+g11 (g11

(j
−g22

−1 (g22

(j
−g11

−1 (g11

(j

�
·
� 1

N(N+2)
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in which summation takes over m, n, k, and s, and the velocities u, 6 and elevation z with
subscripts s and b represent the values at locations of water surface and channel bed
respectively.
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