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Abstract. In this paper we consider a matrix-free path following algorithm for nonlinear
parameter-dependent compact fixed point problems. We show that if these problems are discretized
so that certain collective compactness and strong convergence properties hold, then this algorithm
can follow smooth folds and capture simple bifurcations in a mesh-independent way.
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1. Introduction. The purpose of this paper is to extend the results in [4], [5],
and [19] on mesh-independent convergence of the GMRES [24] iterative method for
linear equations to a class of matrix-free methods for solution of parameter-dependent
nonlinear equations of the form

G(u, λ) = 0.(1.1)

In (1.1) G : X × R → X, where X is a Banach space.
We present an algorithm for numerical path following and detection of simple

bifurcations together with conditions on a sequence of approximate problems,

Gh(u, λ) = 0,(1.2)

(with G0 = G for consistency of notation) that imply that the performance of the
algorithm is independent of the level h of the discretization. Hence, for such problems,
methods, and discretizations, the difficulties raised in [26] and [27] will not arise.

In this section we set the notation and specify the kinds of singularities that we
will consider. This discussion, and that of algorithms for path following in section 2.1
and detection of simple bifurcation and branch switching in section 3, does not depend
on the discretization, and we use the notation G for both G0 and Gh for h > 0. When
we describe our assumptions on the discretization in section 4 and present an example
in section 5, the distinction between G0 and Gh becomes important and the notation
in those sections reflects that difference.

1.1. Notation and simple singularities. We let

Γ = {(u, λ) | G(u, λ) = 0, λ ∈ R}(1.3)
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1836 W. R. FERNG AND C. T. KELLEY

denote the solution path in X × R of pairs (u, λ) that satisfy (1.1), Gu denote the
Fréchet derivative with respect to u, and Gλ denote the derivative with respect to the
scalar λ.

Throughout this paper we make the following assumption.
Assumption 1.1. G is continuously Fréchet differentiable in (u, λ). Gu is a

Fredholm operator of index zero, and

I −Gu(u, λ), Gλ ∈ COM(X) for all (u, λ) ∈ X × R.(1.4)

Here COM denotes the space of compact operators.
For A ∈ L(X), the space of bounded operators on X, we let N (A) be the null

space of A and R(A) be the range of A. Assumption 1.1 implies that R(Gu(u, λ)) is
closed in X and the dimension of N (Gu(u, λ)) is the codimension of R(Gu(u, λ)).

Following [16], we say that a point (u, λ) ∈ Γ
• is a regular point if Gu(u, λ) is nonsingular;
• is a simple singularity if 0 is an eigenvalue of Gu with algebraic and geometric
multiplicity one,
– is a simple fold if it is a simple singularity and Gλ �∈ R(Gu), and
– is a simple bifurcation point if it is a simple singularity and Gλ ∈ R(Gu).

2. Algorithms for path following and branch switching. In this section we
describe the iterative methods for path following, detection of bifurcation, and branch
switching that we analyze in the subsequent sections and discuss some alternative ap-
proaches. Our approach is matrix-free, which means that we use no matrix storage or
matrix factorizations at all. However, the results that we prove on mesh-independent
well-conditioning of the linear equations that must be solved to compute the Newton
step in the corrector equation and the eigenvalue problems that are solved in detection
of bifurcation are applicable to other methods. The analysis of the performance of
the nonlinear corrector iteration, which depends on the conditioning of the linearized
problem, is also relevant to methods that solve the linear system for the step directly,
such as those discussed in [15] and [8]. While we focus on a variation of the approach
in [12] for detection of bifurcation, our results on mesh-independent well-conditioning
of eigenvalue problems apply equally well to the earlier methods described in [23] and
[28].

2.1. Path following and arclength continuation. For path following in the
absence of singularities the standard approach is a predictor-corrector method. The
methods differ in the manner in which u′(λ) = du/dλ is computed. Assume that
(u0, λ0) is a known solution point and we want to compute (u1, λ1) at a nearby
λ = λ1.

If the Jacobian Gu(u0, λ0) is nonsingular, then the implicit function theorem
insures the existence of a unique smooth arc of solutions (u(λ), λ), through (u0, λ0)
with u(λ0) = u0. Furthermore, with the smoothness assumption on G, it follows that
u′(λ) = d

dλu(λ) exists and differentiation of (1.1) with respect to λ gives the equation
for u′:

Gu(u0, λ0)u
′(λ0) = −Gλ(u0, λ0).(2.1)

The Euler predictor uses u′ directly and approximates u1 = u(λ1) with

u
(0)
1 = u0 + (λ1 − λ0)u

′(λ0).(2.2)
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CONTINUATION METHODS 1837

While the results in this paper can be applied to the solution of (2.1) by GMRES,
we choose to avoid the additional solve and approximate u′ with a difference. The
secant predictor is

u
(0)
1 = u0 +

λ1 − λ0

λ0 − λ−1
(u0 − u−1),(2.3)

where (u−1, λ−1) is a second solution pair with λ−1 < λ0.
The nonlinear iteration is an inexact Newton iteration [7] in which

uk+1
1 = uk1 + dk,

where dk satisfies the inexact Newton condition

‖Gu(u
k
1 , λ1)d

k +G(uk1 , λ1)‖ < ηk‖G(uk1 , λ1)‖.(2.4)

The inexact Newton condition can be viewed as a relative residual termination crite-
rion for an iterative linear solver applied to the equation for the Newton step

Gu(u
k
1 , λ1)d = −G(uk1 , λ1).

When GMRES is used as the linear iteration, as it is in this paper, the nonlinear
solver is referred to as Newton-GMRES.

The same procedure can be used if there are simple folds if the problem is ex-
panded by using pseudo-arclength continuation [14], [15]. Here we introduce a new
parameter s and solve

F (x, s) =

[
G(x)

N(x, s)

]
= 0,(2.5)

where x = (u, λ) and N(u, λ, s) = 0 is a normalization equation.
We will use the secant normalization

N(u, λ, s) = θ

(
u(s0)− u(s−1)

s0 − s−1

)T

(u(s)− u(s0))

+ (1− θ)

(
λ(s0)− λ(s−1)

s0 − s−1

)
(λ(s)− λ(s0))− (s− s0) = 0

(2.6)

when two points on the path are available and the norm-based normalization

N(u, λ, s) = θ‖u− u(s0)‖2 + (1− θ)|λ− λ(s0)|2 − (s− s0)
2(2.7)

begins the path following. Both normalizations are independent of the discretization.
This independence plays a role in the analysis that follows.

It is known [16] that arclength continuation turns simple folds in (u, λ) to regular
points in (u, λ, s).

3. Singular point detection and branch switching. Although a continua-
tion procedure incorporated with a pseudo-arclength normalization can circumvent
the computational difficulties caused by turning points and usually jump over bifur-
cation points, it is usually desirable and important to be able to detect and locate
the singularities in both cases. In the case where direct methods are used for linear
algebra a sign change in the determinant of F can be used to detect simple bifurcation
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1838 W. R. FERNG AND C. T. KELLEY

and a change in sign of dλ/ds to detect simple folds. We use a variation of the ap-
proach in [12], which requires only the largest (in magnitude) solution of a generalized
eigenvalue problem.

Suppose that (x(sa), sa) and (x(sb), sb) are two regular points and the path fol-
lowing procedure is going from sa to sb. Let A(sa) = Fx(x(sa), sa) and A(sb) =
Fx(x(sb), sb). Then both A(sa) and A(sb) are nonsingular. Recall that if (x(s), s)
is a bifurcation point on the solution path, then the null space N (Fx(x(s), s)) is
one-dimensional and there exists a nonzero vector v such that

Fx(x(s), s)v = 0.(3.1)

Applying the Lagrange interpolation to A(s) = Fx(x(s), s) we have

A(s) =
s− sb
sa − sb

A(sa) +
s− sa
sb − sa

A(sb) +
1

2
(s− sa)(s− sb)E(s),(3.2)

where the matrix E(s) denotes the perturbation matrix in the interpolation. Then
instead of solving the usually nonlinear eigenvalue problem (3.1) we make a linear
approximation, [

s− sb
sa − sb

A(sa) +
s− sa
sb − sa

A(sb)

]
w = 0,

which leads to a generalized eigenvalue problem

A(sa)w = σA(sb)w(3.3)

with

σ =
s− sa
s− sb

= 1 +
sb − sa
s− sb

.(3.4)

Therefore, an s value which causes the Jacobian Fx(x(s), s) to be singular can be
approximated by

ŝ = sb +
1

σ − 1
(sb − sa).(3.5)

Our approach differs from that in [12] in that the roles of sa and sb are inter-
changed. The method of [12] solves

A(sb)ŵ = σ̂A(sa)ŵ,(3.6)

where

σ̂ =
s− sb
s− sa

= 1− sb − sa
s− sa

.(3.7)

In the approach of [12], Fx(x, s) is factored at sa in order to compute dx/ds for the
predictor; that factorization is used again to precondition an Arnoldi iteration for
the corrector and used one last time in the formulation of the eigenvalue problem to
detect singularities. Since we do not factor Fx at all, the roles of sa and sb can be
interchanged.

We found in our experiments that our approach, using (3.3), gave a better approxi-
mation of the location of the singularity than one using (3.6). A heuristic explanation
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CONTINUATION METHODS 1839

of this, suggested by an anonymous referee, is when (3.3) and (3.4) are used, the
largest generalized eigenvalue in magnitude is desired. If, then, |σ| is large, a small
absolute error in the computation of σ would generate an even smaller error in the
computation of s. To see this let σ+ ε be the computed value of σ. By (3.5) the error
in s is

|sb − sa|
∣∣∣∣ 1

σ − 1
− 1

σ + ε− 1

∣∣∣∣ = |sb − sa||ε|
|σ − 1||σ + ε− 1| ≈

|sb − sa||ε|
σ2

� |ε|

if |σ| � 1. Conversely, if (3.6)–(3.7) are used, the generalized eigenvalue smallest in
magnitude is sought. If σ̂ + ε is the computed value, and |σ̂| is small, then the error
in ŝ is

|sb − sa||ε|
|1− σ̂||1− σ̂ + ε| ≈ |sb − sa||ε|

if |σ̂| � 1.
Equation (3.4) implies that a bifurcation point s closest to the interval [sa, sb]

corresponds to the largest eigenvalue in magnitude σ of (3.3). A negative σ signals
that there is a bifurcation point between sa and sb, 0 < σ < 1 indicates that there is
a bifurcation point close behind sa, and a “large” positive σ means that a bifurcation
point is approaching. When σ ≈ 1, it should be interpreted that no bifurcation point
is nearby.

Since (x(sb), sb) is a regular point and A(sb) is nonsingular, the generalized eigen-
value problem (3.3) can be solved via the equivalent linear eigenvalue problem

A(sb)
−1A(sa)w = σw,(3.8)

where only the largest eigenvalue and corresponding eigenvector are needed. We will
solve (3.8) with the Arnoldi method and prove that if sa and sb are not too near a
singular point, then the eigenvalue problem is well conditioned in a mesh-independent
way.

A simple fold point can be predicted in a similar way with s replaced by λ and
A(s) replaced by A(λ) = Gu(u(s), λ(s)).

At a simple bifurcation point two branches of solutions intersect nontangen-
tially. We next describe how the information obtained from the solution of the
eigenvalue problem can be used for branch switching. Suppose a bifurcation point
x0 = x(s0) = (u(s0), λ(s0)) on the primary branch is determined. Since the eigenvec-
tor w corresponding to the largest eigenvalue σ for the eigenvalue problem described
above is an approximation for a null vector of Fx(s0), thus [Gu(s0), Gλ(s0)]w ≈ 0.
Conversely, the tangent vector ẋ0 = dx/ds(s0), which is the solution of[

Gu(s0) Gλ(s0)

Nu(s0) Nλ(s0)

][
u̇(s0)

λ̇(s0)

]
=

[
0

−Ns(s0)

]
,(3.9)

is also a null vector of [Gu(s0), Gλ(s0)]. Since dim(N [Gu(s0), Gλ(s0)]) = 2 and w and
ẋ0 are linearly independent it is recommended in [12], where Gu is factored and dx/ds
is computed using (3.9), that N ([Gu(s0), Gλ(s0)]) be approximated by span{ẋ0, w}.
In the matrix-free case considered in this paper, we approximate the tangent vector
by a secant approximation

δx =
x(s0)− x(s−1)

s0 − s−1
.
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1840 W. R. FERNG AND C. T. KELLEY

We approximate the tangent direction of the new branch by orthogonalizing w against
δx:

ŵ = w − δTxw

δTx δx
δx, w̃ = ŵ/‖ŵ‖2.(3.10)

To obtain a regular point on the secondary branch, we solve the following augmented
nonlinear system

F2(x) =

[
G(x)

N2(x)

]
,(3.11)

where

N2(x) = w̃T (x− x0 − εw̃)(3.12)

and ε is a “switching factor.” This switching factor is problem dependent and should
be chosen large enough so that the solution of (3.11) does not fall back to the primary
branch [16]. The nonlinear equation (3.11) can be solved by Newton-type method
with initial iterate x0+εw̃. After moving onto the secondary branch, the continuation
procedure for path following on the secondary branch is identical to the one on the
primary branch.

In [12] the linear systems for computing tangent vectors (3.9) are solved with a
preconditioned Arnoldi iteration and the eigenvalues of the Hessenberg matrix pro-
duced in the Arnoldi iteration are used to predict singular points. Since a factorization
of A(sa) is used as the preconditioner in [12], the prediction comes with very little cost.
In our approach, Jacobians are not factored and the tangent vector is not computed,
instead, a secant vector is used as an approximation. The eigenvalue problem for
singularity prediction is performed separately using some iterative algorithm. This
leaves us the flexibility of choosing any robust iterative solver and the associated
preconditioner for the continuation procedure.

Other methods for singularity detection based on solution of eigenvalue problems
have been proposed in [28], [10], and [23].

4. Approximations and mesh independence. This is the only section in
which the properties of the discrete problems are explicitly addressed. We assume,
as is standard in the integral equations literature [1], [3], that the discretization used
in (1.2) has been constructed, by interpolation if necessary, so that Gh has the same
domain and range as G.

Recall [1] that a family of linear operators {Tα}α∈A is collectively compact if the
set

∪αT
α(B)(4.1)

is precompact in X. In (4.1) B is the unit ball in X. In the special case that the
indexing set A is an interval [0, h0], we will denote the index by h. We say that
Th → T strongly as h → 0 and write

Th s→ T

if Thu → Tu as h → 0 in the norm of X for all u ∈ X.
All of the results are based on the following result (Theorem 1.6 from [1]) and

some simple consequences.
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CONTINUATION METHODS 1841

Theorem 4.1. Let {Th} be a family of collectively compact operators on X that
converge strongly to T ∈ COM(X). Assume that I − T is nonsingular. Then there
is h0 > 0 such that I − Th is nonsingular for all h ≤ h0 and (I − Th)−1 converges
strongly to (I − T )−1.

A simple compactness argument implies uniform bounds for parameter dependent
families of collectively compact strongly convergent operators.
Corollary 4.2. Let a < b be given and assume that

{Th(s)}h≥0,s∈[a,b]

is a collectively compact family of operators such that Th(s)
s→ T 0(s) = T (s) for each

fixed s. Assume that {Th(s)} is uniformly Lipschitz continuous in s and that I−T (s)
is nonsingular for all s ∈ [a, b]. Then there are M,h0 > 0 such that

‖I − Th(s)‖ ≤ M and ‖(I − Th(s))−1‖ ≤ M

for all h ≤ h0 and s ∈ [a, b].
We let

Γh = {(u, λ) | Gh(u, λ) = 0, λ ∈ R}(4.2)

and let Γ = Γ0.
We assume that the following holds.
Assumption 4.1.
(1) Gh(u, λ)→ G(u, λ) for all (u, λ) ∈ X × R as h → 0.
(2) Gh is Lipschitz continuously Fréchet differentiable and the Lipschitz constants

of Gh
u and Gh

λ are independent of h.
(3) For all (u, λ) ∈ X × R

Gh
u(u, λ)

s→ Gu(u, λ) as h → 0.(4.3)

(4) There are δ0, h0 > 0 such that if

N (δ) = {(v, µ)|‖v − u‖+ |µ− λ| < δ for some (u, λ) ∈ Γ},(4.4)

then the families of operators

{I −Gh
u(v, µ)}{(v,µ)∈N (δ0),h∈[0,h0]} and {Gh

λ(v, µ)}{(v,µ)∈N (δ0),h∈[0,h0]}

are collectively compact.
We augment Gh = 0 with a mesh-independent Lipschitz continuously differen-

tiable arclength normalization N(u, λ, s) = 0 and define

Fh(x, s) =

[
Gh(x)

N(x, s)

]
= 0.(4.5)

Examples of normalizations N that do not depend on h are (2.6) and (2.7). We let

Γ(s) = {(u(s), λ(s)) | F (u, λ, s) = 0}.(4.6)

Consistently with the notation in the previous sections, we let uh(λ) and xh(s)
denote solutions to Gh(u, λ) = 0 and Fh(x, s) = 0.
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1842 W. R. FERNG AND C. T. KELLEY

4.1. The corrector equation and simple folds. At regular points when λ is
used as the continuation parameter the equation for the Newton step is

Gh
u(u, λ)z = −Gh(u, λ).

Theorem 4.1 and our collective compactness assumptions imply that if Gu(u, λ) is
nonsingular, so is Gh

u for sufficiently small h and G
h
u(u, λ)

−1 is strongly convergent to
Gu(u, λ)

−1. However, this convergence is not uniform and Theorem 4.1 is valid only
if we remain away from singular points.

One can treat simple folds as regular points by means of arclength continuation.
If we solve the augmented system, (2.5), and this system has only regular points, then
‖F−1

x ‖ is bounded on finite segments of Γ. If, moreover, the normalization N(u, λ, s)
does not depend on the discretization, as it will not if (2.6) or (2.7) are used, then
our assumptions imply that the finite-dimensional problems are as well conditioned
as the infinite-dimensional problems. We let κ(A) = ‖A‖‖A−1‖ denote the condition
number of an invertible operator A.
Theorem 4.3. Let Assumptions 1.1 and 4.1 hold. Let [sa, sb] be such that

Γ̂ = {Γ̂(s) : s ∈ [sa, sb]} ⊂ {Γ(s) : s ∈ [sa, sb]}

is a single smooth arc (in particular, nonempty) and Fx is nonsingular on Γ̂(s); then
there are δ1, K, and h0 such that κ(Fh

x (x, s)) ≤ K for all (x, s) ⊂ N (δ1) × [sa, sb]
and h ≤ h0.

Proof. Assumption 1.1 and the mesh independence of N imply that we may apply
Corollary 4.2 to Th(s) = Fh

x (x(s), s). Hence, there is h0 > 0 and M such that for all
h ≤ h0 and s ∈ [sa, sb]

‖Fh
x (x(s), s)‖ ≤ M and ‖Fh

x (x(s), s)
−1‖ ≤ M.

Let L be the (h-independent) Lipschitz constant of Fh
x . Then if ‖x− x(s)‖ ≤ δ ≤ δ0,

‖Fh
x (x, s)‖ ≤ M + Lδ.

Moreover,

‖I − Fh
x (x(s), s)

−1Fh
x (x, s)‖ ≤ MLδ,

and, hence, if MLδ < 1, the Banach lemma implies that Fh
x (x, s) is nonsingular and

‖Fh
x (x, s)

−1‖ ≤ M

1−MLδ
.(4.7)

So if δ1 < 1/(2ML) the proof is complete with K = 2M(M + Lδ1).
The bound, (4.7), part 4.1 of Assumption 4.1, and the Kantorovich theorem [13],

[17], [20], imply convergence of xh to x.
Corollary 4.4. Let Assumptions 1.1 and 4.1 hold. Let [sa, sb] be such that

{Γ̂(s) : s ∈ [sa, sb]} is a single smooth arc with at most simple fold singularities. Then
there is a unique solution arc for Fh,

Γ̂h(s) ⊂ N (δ)× [sa, sb],

and xh(s)→ x(s) as h → 0 uniformly for s ∈ [sa, sb].
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CONTINUATION METHODS 1843

So, for h sufficiently small, the secant predictor

(xh)(0)(s1) = xh(s0) +
s1 − s0
s0 − s−1

(
xh(s0)− xh(s−1)

)
,(4.8)

converges to x(0)(s1) as h → 0 uniformly in (s−1, s0, s1). Hence if the steps in arclength
{δns } are independent of h and the secant predictor is used, then the accuracy of the
initial iterate to the corrector equation is independent of h. By Theorem 4.3, the
condition of the linear equation for the Newton step is independent of h as well.
Therefore, the performance of the nonlinear iteration is independent of h.

As for the GMRES iteration that computes the Newton step, the methods from
[19], [4], and [5] may be extended to show that the GMRES iteration for the Newton
step converges r-superlinearly in a manner that is independent of h, x, and s. All
that one needs is an uniform clustering of the eigenvalues of Fh

x (x, s) on M(δ) that
is independent of x, s, and h. This follows directly from Theorem 4.7 in [1]. In the
results that follow, we count eigenvalues by multiplicity and order them by decreasing
distance from zero.
Theorem 4.5. Let {Th} be a family of collectively compact operators on X

that converge strongly to T ∈ COM(X). Let {λh
j }∞j=1 be the eigenvalues of Th and

{λj}∞j=1 be the eigenvalues of T . Let ρ > 0 and assume that |λj | < ρ for all j > M .
Then there is h0 > 0 such that if h ≤ h0, then∣∣λh

j

∣∣ < ρ and lim
h→0

λh
j = λj

for all 1 ≤ j ≤ M . Moreover, if λ1 has algebraic and geometric multiplicity of one,
then so does λh

1 for h ≤ h0. Moreover, there is a sequence of eigenfunctions {wh} of
Th corresponding to the eigenvalue λh

1 , so that wh → w, and an eigenfunction of T
corresponding to the eigenvalue λ1.

With this in hand, the eigenvalue clustering result can be obtained in the same
way that Theorem 4.3 was derived from Theorem 4.1. We begin with the analog of
Corollary 4.2.
Corollary 4.6. Let the assumptions of Theorems 4.3 and 4.5 hold. Let

{µh
j (x, s)}∞j=1 be the eigenvalues, counted by multiplicity, of I − Fx(x, s). Let ρ > 0

be given. There are h0,M > 0 such that if h ≤ h0, then∣∣µh
j (x(s), s)

∣∣ < ρ

for all s ∈ [sa, sb] and j > M .
Theorem 4.7. Let the assumptions of Theorems 4.3 and 4.5 hold. Let

{µh
j (x, s)}∞j=1 be the eigenvalues, counted by multiplicity, of I−Fx(x, s). Let ρ > 0 be

given. There are δ2, h0,M > 0 such that if h ≤ h0 and (x, s) ∈ N (δ2)× [sa, sb], then
h0,M > 0 such that if h ≤ h0, then∣∣µh

j (x, s)
∣∣ < ρ

for all j > M .
Before we state our r-superlinear convergence theorem we must set some more

notation. We write the equation for the Newton step for the corrector equation as

Fh
x (x, s)d

h = −F (x, s)h.(4.9)

We let dhk(x, s) denote the kth GMRES iteration and let r
h
k (x, s) the kth GMRES

residual. As is standard in nonlinear equations, dh0 = 0, and so rh0 = −Fh(x, s).
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1844 W. R. FERNG AND C. T. KELLEY

Aside from the dependence on the parameter s, which can be accounted for with a
compactness argument, the statement and proof of Theorem 4.8 are the same as those
of Theorem 1.1 of [5].
Theorem 4.8. Let Assumptions 1.1 and 4.1 hold. Let [sa, sb] be such that Γ̂ =

{Γ̂(s) : s ∈ [sa, sb]} is a single smooth arc and Fx is nonsingular on Γ̂(s). Then for
all ρ ∈ (0, 1) there are M, δ3, h1 > 0 such that∥∥rhk (x, s)∥∥ ≤ Mρk

∥∥Fh(x, s)
∥∥(4.10)

for all (x, s) ⊂ N (δ3)× [sa, sb] and h ≤ h1.
Theorem 4.8 states that any desired rate of linear convergence can be obtained

in a mesh-independent way and hence, for (x, s) fixed, the convergence of the linear
iteration is r-superlinear in a mesh-independent way.

Theorems 4.3 and 4.8 are related in that both imply mesh-independent conver-
gence of the nonlinear Newton or inexact Newton iteration. Theorem 4.3 implies that
the rate of quadratic convergence for Newton’s method is independent of h. Theo-
rem 4.8 implies that the number of GMRES iterations needed to reduce the relative
residual in an inexact Newton method to a given tolerance can be bounded indepen-
dently of h and s and that, therefore, the cost of a nonlinear iteration in terms of
linear iterations is also independent of h. Similar conclusions about mesh indepen-
dence results for inexact Newton methods have been made in other situations; see
[18], for example.

4.2. Simple bifurcation. Now consider a path Γ̂0 ⊂ Γ,

Γ̂0 = {Γ(s) : s ∈ [sa, sb]}

which has a single simple bifurcation at s = sc ∈ (sa, sb). We let Γ̂1 be the branch
of solutions that intersects Γ̂0 at (x(sc), sc). We will denote solutions on Γ̂1 by y and
the arclength parameter on Γ̂1 by t. Hence, for t ∈ [ta, tb],

F (y(t), t) = 0.

We let (y(tc), tc) be the bifurcation point on Γ̂1. Hence y(tc) = x(sc).
For any δ > 0, the results in section 4.1 hold for the paths

Γ̂−
0 = {Γ̂0(s) : s ∈ [sa, sc − δ]}, Γ̂+

0 = {Γ̂0(s) : s ∈ [sc + δ, sb]},
Γ̂−

1 = {Γ̂1(t) : t ∈ [ta, tc − δ]}, and Γ̂+
1 = {Γ̂1(t) : t ∈ [tc + δ, tb]}.

We define Γ̂h
0 in a similar way. Since x

h(s)→ x(s) uniformly for s ∈ [sa, sc − δ]∪
[sc + δ, sb] by the results in the previous section, simple bifurcation from Γ̂h

0 can only
arise for s ∈ (sc − δ, sc + δ).

In this section we describe how the prediction of the bifurcation point, the con-
ditioning of the generalized eigenproblem, the solution of that eigenproblem, and the
accurate tracking of the other branch depend on h. Since perturbation of G, even
in finite dimension, can change the structure of Γ̂0 from two intersecting arcs to two
disconnected arcs [21], [22], we cannot show that the bifurcation will be preserved (see
[6] for results on this in the context of finite element discretizations). We can show
that if sc is far enough away from sa and sb, the other path will be detected even if
it does not correspond to a bifurcation for the finite-dimensional problem.
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CONTINUATION METHODS 1845

For (x(s), s) ∈ Γ̂±
0 , Fx(x, s) will be nonsingular and we can consider the eigenvalue

problems

Fh
x (x

h(sb), sb)
−1Fh

x (x
h(sa), sa)w

h = σhwh,(4.11)

where the largest eigenvalue in magnitude is sought. If (4.11) is solved via the Arnoldi
method, the matrix-vector products of Fh

x (x
h(sb), sb)

−1Fh
x (x

h(sa), sa) with a vector
will each require a product of Fh

x (x
h(sb), sb)

−1 with a vector, i.e., a linear solve. If
this solve is performed with GMRES, then Theorem 4.8 implies that the number
of iterations required to approximate that matrix-vector product can be bounded
independently of h, x, s.

Our assumptions imply, if sb − sa is sufficiently small, that σ = σ0 is a simple
eigenvalue with geometric multiplicity 1. Since

{I − Fh
x (x

h(sb), sb)
−1Fh

x (x
h(sa), sa)}h≥0

is a collectively compact and strongly convergent sequence, we can apply Theorem 4.5
to conclude that for h sufficiently small, σh is a simple eigenvalue with geometric mul-
tiplicity 1 as well. Moreover σh will be well separated from the next largest eigenvalue
in magnitude, hence the conditioning of the eigenvalue problem is independent of h.

5. Numerical example. In this section we show how the results in this paper
can be applied to a concrete instance of the methods discussed in the previous sections.
We then report on numerical observations that illustrate the mesh independence of
the convergence rates. In section 5.1 we describe the implementation, choice of algo-
rithmic parameters, and termination tolerances. We describe our example problem,
a nonlinear two point boundary value problem taken from [16], its discretization, and
the family of maps in section 5.2. We present a bifurcation diagram and the numerical
results in section 5.3.

5.1. Methodology. In the example presented in this section we use the normal-
ization equation (2.6) with θ = .5. We used a step of

∆path = s0 − s−1 = .02

in s for path following.
We apply the secant predictor (2.3) to generate the initial iterate. For the cor-

rector, we choose a forward-difference Newton-GMRES algorithm [17]. The outer
iteration that generates the sequence {(x(k), s)} terminates when the nonlinear resid-
ual norm satisfies

‖F (x(k), s)‖ ≤ τa + τr‖F (x(0), s)‖,

where the absolute error tolerance τa = 10−7 and relative error tolerance τr = 10−7

were used. To avoid oversolving on the linear equation for the Newton step zk the
forcing terms ηk such that

‖Fx(x
(k), s)zk + F (x(k), s)‖ ≤ ηk‖F (x(k), s)‖

were adjusted with a method from [9]. We use the l2 norm and scale the norm by a
factor of 1/N for differential and integral equations so that the results are independent
of the computational mesh.
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1846 W. R. FERNG AND C. T. KELLEY

The generalized eigenvalue problem (3.3) that characterizes the singularity pre-
diction and branch switching need not be solved as each new point on the path is
computed (i.e., sb = sa + ∆path is too frequent). In the example considered in this
section, we solved the eigenvalue problem to make a prediction of bifurcation after a
step of

∆eig = sb − sa = 20 ∗∆pred = 4

had been taken. We used a simple version of the Arnoldi method [2] based on modified
Gram–Schmidt orthogonalization to solve (3.3) with reorthogonalization at each iter-
ation. The Jacobian of the inflated system is usually neither symmetric nor positive
definite, and we treat the generalized eigenvalue problem as linear eigenvalue problem
and solve the linear system involved explicitly with preconditioned GMRES.

After j steps the Arnoldi method produces

A(λb)
−1A(λa)Qj = QjHj + hj+1,jqj+1e

T
j ,

where Hj is an upper Hessenberg matrix with the hij ’s as its nonzero entries and Qj

is orthogonal with the qj ’s as columns. If (θ, y) is an eigenpair of Hj and w = Qjy,
then

‖A(λb)
−1A(λa)w − θw‖2 = |hj+1,j ||eTj y|(5.1)

provides a computable error bound. The Ritz pair, (θ, w), is used to approximate the
eigenpair of A(λb)

−1A(λa).
We terminated the Arnoldi iteration when

|hj+1,j ||eTj y| < 10−4

or j > 5. The prediction λ̂ is accepted when λ̂ lies in between λa and λb or

|λ̂− λb| < 1

2
|λa − λb|.

We found this strategy sufficient for the example here and were able to use (3.10) to
move onto the new branch. Of course, the values of ∆eig is problem dependent (as it
is for other methods) as is the criteria for accepting a prediction.

5.2. Example problem. As an example we consider the following two-point
boundary value problem [16]:

u′′ + u3 + λ = 0 in (0, 1),

u(0) = u(1) = 0.
(5.2)

We transform (5.2) to an equation satisfying Assumption 1.1 by multiplying both
sides with the Green’s operator G for u′′, which is defined by

(Gf)′′ = f ; (Gf)(0) = (Gf)(1) = 0.

We obtain

G(u, λ) = u+ G(u3 + λ) = 0.(5.3)

The map G defined by (5.3) satisfies Assumption 1.1 with X = C[0, 1].
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CONTINUATION METHODS 1847

Fig. 5.1. Solution u( 1
4
) versus λ.

Our discretization of (5.2) and (5.3) uses a uniform mesh of spacing h = 1
N .

We denote the solution to the discrete system by U ∈ RN+1. A fourth-order finite
difference discretization leads to the discrete nonlinear system of order N − 1,(

1

h2
+

1

12
U2
j−1

)
Uj−1 −

(
2

h2
− 5

6
U2
j

)
Uj +

(
1

h2
+

1

12
U2
j+1

)
Uj+1 + λ = 0(5.4)

for j = 1, . . . , N − 1. U0 = UN = 0 at the boundaries. We multiply both sides of
(5.4) with the discrete Green’s operator GFD,h for the mesh to obtain a fully discrete
approximation to G:

GFD,h(U, λ)j = Uj + GFD,h

(
1

12
U3
j−1 −

5

6
U3
j +

1

12
U3
j+1 + λ

)
= 0.(5.5)

If we let Rh : X → RN+1 denote the evaluation map

(Rhu)j = u(hj), 0 ≤ j ≤ N,

and Ph : RN+1 → X denote piecewise linear interpolation, then we can define a
sequence of maps Gh that satisfies Assumption 4.1 by

Gh(u, λ) = u+ Ph(G
FD(Rhu, λ)−Rhu).(5.6)

Now U is a solution of the fully discrete problem if and only if PhU is a solution of (5.6);
similarly u is a solution of (5.6) if and only if Rhu is a solution of the fully discrete
problem. A similar statement holds for the linearized problems. Hence the results
on conditioning for the linear equations and eigenproblems apply not only to the
family {Gh} but also to the fully discrete problems that are solved numerically. The
convergence properties of Gh to G follow from the consistency of the discretizations.
Collective compactness of {I − Gh

u} follows from the fact that the matrix entries of
GFD,h converge to the values of the Green’s function at the mesh points [11].

5.3. Numerical results. Starting from the trivial solution u = 0 at λ = 0, the
algorithm traces the solution path, locates bifurcation points, switches branches, and
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1848 W. R. FERNG AND C. T. KELLEY

captures the secondary solution curves. Indeed there are a total of two bifurcation
points at λ ≈ 81,−81 and eight turning points at λ ≈ ±11,±110,±336 in the region
of interest. The primary solution branch represents the symmetric solutions and
the secondary solution branch represents nonsymmetric periodic solutions bifurcating
from the primary branch. Figure 5.1 plots the solution u( 1

4 ) versus λ showing the
folds and bifurcations on the curve.

Table 5.1
Prediction of bifurcation point along the primary branch going toward λ ≈ −81, N = 128.

λa λb Prediction (3.3) Prediction (3.6)
1.0000e− 02 6.0988e+ 00 9.1417e+ 01 1.2288e+ 01
6.0998e+ 00 1.0574e+ 01 1.2614e+ 02 −9.3188e+ 03
1.0574e+ 01 8.4208e+ 00 4.0988e− 01 1.4026e+ 01
8.4208e+ 00 1.1361e+ 00 −2.2855e+ 01 −3.5346e+ 01
1.1361e+ 00 −7.1699e+ 00 −3.6599e+ 01 −4.7426e+ 01
−7.1699e+ 00 −1.5772e+ 01 −4.6063e+ 01 −6.1496e+ 01
−1.5772e+ 01 −2.4500e+ 01 −5.3739e+ 01 −8.3880e+ 01
−2.4500e+ 01 −3.3295e+ 01 −6.0284e+ 01 −1.0833e+ 02
−3.3295e+ 01 −4.2128e+ 01 −6.5987e+ 01 −1.3475e+ 02
−4.2128e+ 01 −5.0984e+ 01 −7.0930e+ 01 −1.6373e+ 02
−5.0984e+ 01 −5.9854e+ 01 −7.5103e+ 01 −1.9663e+ 02
−5.9854e+ 01 −6.8734e+ 01 −7.8384e+ 01 −2.3781e+ 02
−6.8734e+ 01 −7.7621e+ 01 −8.0558e+ 01 −3.0825e+ 02

Table 5.2
Total number of Newton and preconditioned GMRES iterations on the primary branch.

Problem size λ value Newton P-GMRES
λ = +1.0895e+ 01 5 10

N = 64 λ = −4.0017e+ 01 5 12
λ = −8.0127e+ 01 5 12
λ = +1.0894e+ 01 4 7

N = 128 λ = −4.0163e+ 01 5 12
λ = −8.0386e+ 01 5 13
λ = +1.0894e+ 01 4 7

N = 256 λ = −4.0223e+ 01 5 13
λ = −8.0482e+ 01 5 12

Table 5.3
Total number of Newton and preconditioned GMRES iterations at switching point and on the

secondary branch.

Problem size λ value Newton P-GMRES
switching 7 21

N = 64 λ = −8.1319e+ 01 5 12
λ = −1.0020e+ 02 5 11
switching 7 22

N = 128 λ = −8.1571e+ 01 5 14
λ = −1.0015e+ 02 5 13
switching 6 20

N = 256 λ = −8.1262e+ 01 5 12
λ = −1.0001e+ 02 5 11

In Table 5.1 we report the bifurcation predictions along the solution path going
toward λ ≈ −81. One can see that (3.3) is a more accurate predictor than (3.6). Ta-
bles 5.2 and 5.3 illustrate the mesh independence of the linear and nonlinear iterations
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CONTINUATION METHODS 1849

Table 5.4
Total number of preconditioned GMRES and Arnoldi iterations required at different sections

on the path when a prediction procedure is performed.

Path N λa λb P-GMRES Arnoldi Residual
Turning 64 7.0814e+ 00 1.0632e+ 01 53 5 2.9490e− 02
point 128 6.0998e+ 00 1.0574e+ 01 50 5 1.9156e− 05
nearby 256 9.1379e+ 00 1.0883e+ 00 55 5 4.6579e− 03
Regular 64 −3.1304e+ 01 −4.0215e+ 01 65 5 8.0766e− 06
point 128 −2.4500e+ 01 −3.3295e+ 01 69 5 3.3738e− 05

256 −3.1175e+ 01 −3.9836e+ 01 71 5 3.0663e− 05
Bifurcation 64 −6.7012e+ 01 −7.5953e+ 01 56 4 9.5183e− 07
point 128 −6.8734e+ 01 −7.7621e+ 01 56 4 1.3263e− 06
detected 256 −7.4823e+ 01 −8.3605e+ 01 62 4 1.3251e− 06

at various points on the primary (5.2) and secondary ((5.3) branches. The iteration
statistics remain virtually unchanged as the mesh is refined.

Table 5.4 lists the total number of preconditioned GMRES iterations and Arnoldi
iterations corresponding to three representative prediction intervals. In Table 5.4
we show how both the GMRES iterations needed to approximate the product of
Fh
x (x

h(sb), sb)
−1 with Fh

x (x
h(sa), sa) (or G

−1
u with Gu in the case where we predict

a turning point) and the overall number of Arnoldi iterations is independent of the
mesh. Each Arnoldi step requires about 12–14 GMRES iterations. This is similar
to the numbers listed in Tables 5.2 and 5.3. The residual in the table is the Arnoldi
residual when the iteration terminates.
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