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Abstract

In this paper, we propose a GA-based fuzzy knowledge-integration framework that can simultaneously integrate multiple
fuzzy rule sets and their membership function sets. The proposed two-phase approach includes fuzzy knowledge encoding
and fuzzy knowledge integration. In the encoding phase, each fuzzy rule set with its associated membership functions is
�rst transformed into an intermediary representation, and further encoded as a string. The combined strings form an initial
knowledge population, which is then ready for integration. In the knowledge-integration phase, a genetic algorithm is used
to generate an optimal or nearly optimal set of fuzzy rules and membership functions from the initial knowledge population.
The hepatitis diagnostic problem was used to show the performance of the proposed knowledge-integration approach. Results
show that the fuzzy knowledge-base resulting from using our approach performs better than every individual knowledge
base. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Expert systems have been successfully applied to
many �elds and have shown excellent performance.
Knowledge-base construction remains, however, one
of the major costs in building an expert system even
though many tools have been developed to help with
knowledge acquisition. Building a knowledge-based
system usually entails constructing new knowledge
bases from scratch. The cost of the e�ort is high and
will become prohibitive as we attempt to build larger
and larger systems. Reusing and integrating available

∗ Corresponding author.
E-mail address: tphong@csa500.isu.edu.tw (T.-P. Hong)

knowledge from a variety of sources, such as do-
main experts, historical documentary evidence, cur-
rent records, or existing knowledge bases, thus plays
an important role in building e�ective knowledge-
based systems [1, 10, 13, 19]. Especially for complex
application problems, related domain knowledge is
usually distributed among multiple sites, and no sin-
gle site may have complete domain knowledge. The
use of knowledge integrated from multiple knowledge
sources is thus especially important to ensure compre-
hensive coverage.
Many knowledge acquisition and integration

systems [2, 9, 21] based on the Personal Constructs
Psychology (PCP) model [15] or Integrity Con-
straints [1, 19] have been developed. Recently, genetic

0165-0114/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(97)00385 -0



142 C.-H. Wang et al. / Fuzzy Sets and Systems 112 (2000) 141–154

algorithms have also been used to derive knowledge
from training instances [3, 6, 12]. In [28, 29], Wang
et al. proposed a GA-based knowledge-integration
strategy that automatically integrates multiple rule
sets in a distributed-knowledge environment. A self-
integrating knowledge-based brain-tumor diagnostic
system that uses this method was also developed [25].
In this paper, we attempt to generalize it to fuzzy
domains.
Most knowledge sources or actual instances in

real-world applications contain fuzzy or ambiguous
information. Especially in domains such as medical
or control domains, the boundaries of a piece of infor-
mation used may not be clearly de�ned. Expressions
of the domain knowledge using fuzzy descriptions
are thus seen more and more frequently. Several
researchers have recently investigated automatic
generation of fuzzy classi�cation rules and fuzzy
membership functions using evolutionary algorithms
[3, 16, 18, 23]. These methods can be categorized into
the following four types:
1. learning fuzzy membership functions with �xed
fuzzy rules [14];

2. learning fuzzy rules with �xed fuzzy membership
functions [23, 30];

3. learning fuzzy rules and membership functions in
stages [16] (i.e., �rst evolving good fuzzy rule
sets using �xed membership functions, then tuning
membership functions using the derived fuzzy rule
sets);

4. learning fuzzy rules and membership functions
simultaneously [3, 18].
In this paper, we propose a GA-based fuzzy

knowledge-integration framework that can e�ectively
integrate multiple fuzzy knowledge sources into a
single knowledge base. The hepatitis diagnostic prob-
lem [4] was used to show the performance of the
proposed knowledge-integration approach. Results
show that the fuzzy knowledge base that results from
using our approach performs better than every in-
dividual knowledge base. Knowledge integration is
thus a successful application of genetic algorithms.
The remainder of this paper is organized as follows.

Some GA-based classi�er systems are reviewed in
Section 2. A GA-based fuzzy knowledge-integration
framework is proposed in Section 3. The fuzzy
knowledge encoding approach used in the proposed
framework is explained in Section 4. Our fuzzy

knowledge integration approach is proposed in
Section 5. Experiments on the diagnosis of hepatitis
are stated in Section 6. Conclusions and future work
are given in Section 7.

2. Review of GA-based classi�er systems

In this section, we review two famous approaches
commonly used by genetic algorithms as classi�er
systems, the Michigan approach and the Pittsburgh
approach.

2.1. The Michigan approach

Cognitive system one (CS-1) was the �rstMichigan
genetic classi�er system. It was devised by Holland
and Reitman in 1983 [12]. CS-1 maintains a popula-
tion in which each individual is a rule, and is encoded
as a �xed-length string. A �tness function is de�ned
to evaluate the goodness (called the strength) of each
rule in the population. The genetic algorithm then op-
erates on the level of individual rules and selects good
parent rules for mating according to their strength
values.
The major problem with the Michigan approach is

the simultaneous cooperation and competition of the
individual rules within the population. During evolu-
tion, rules within the population compete with each
other, and the ones with high strength values are se-
lected for mating to generate new o�spring rules. At
the same time, rules within the population must co-
operate to solve the given problem. Maintenance and
evolution of such a set of co-adapted rules by consid-
ering both factors mentioned above is thus vital to the
success of the Michigan approach.

2.2. The Pittsburgh approach

Learning system one (LS-1) was the �rstPittsburgh
genetic classi�er system. It was proposed by Smith in
1980 [22]. LS-1 maintains a population in which each
individual is a rule set, and is encoded as a variable-
length string. A �tness function is de�ned to evaluate
the goodness of each rule set in the population. The
genetic algorithm then operates on the level of indi-
vidual rule sets and selects good parent rule sets for
mating according to their �tness values.
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Fig. 1. A GA-based fuzzy knowledge-integration framework.

The major problem with the Pittsburgh approach
is the maintenance and evaluation of a population of
rule sets. It often leads to a much greater computa-
tional burden (in terms of both memory and process-
ing time). Also, since credit assignment occurs on
the level of rule sets by a prede�ned evaluation func-
tion, we may obtain only the �tness value of rule sets.
It cannot help us promote the performance of individ-
ual rules. This is another problem of the Pittsburgh
approach.
Application of genetic algorithms to the Pittsburgh

approach is apparently quite di�erent applying
them to the Michigan approach. For the knowl-
edge integration task, representation based on the
Pittsburgh approach is preferred since knowledge at
each di�erent site is a rule set. In [28, 29], we pro-
posed a GA-based knowledge-integration framework
based on the Pittsburgh approach for integrating un-
ambiguous knowledge. In this paper, we extend it to
managing fuzzy knowledge integration.

3. A GA-based fuzzy knowledge-integration
framework

Here, we propose a GA-based fuzzy knowledge-
integration framework that integrates information

from various fuzzy knowledge sources into a single
knowledge base. The proposed framework can inte-
grate multiple fuzzy rule sets and membership func-
tion sets at the same time. The proposed framework
is shown in Fig. 1.
Fuzzy rule sets, membership functions, and test ob-

jects including instances and historical records may be
distributed among various sources. Knowledge from
each site might be directly obtained by a group of
human experts using knowledge-acquisition tools, or
derived using machine-learning methods. Here, we as-
sume that all knowledge sources are represented by
fuzzy rules since almost all knowledge derived by
knowledge-acquisition tools or induced by machine-
learning methods may easily be translated into or rep-
resented by rules.
The proposed framework maintains a population of

fuzzy rule sets with their membership functions, and
uses the genetic algorithm to automatically derive the
resulting fuzzy knowledge base. It operates in two
phases: fuzzy knowledge encoding and fuzzy knowl-
edge integration. The encoding phase �rst transforms
each fuzzy rule set and its associated membership
functions into an intermediary representation, which
is further encoded as a variable-length string. The
integration phase then chooses appropriate strings
for “mating”, gradually creating good o�spring fuzzy
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Fig. 2. Genetic fuzzy knowledge integration.

rule sets and membership function sets. The o�spring
fuzzy rule sets with their associated membership
functions then undergo recursive “evolution” until an
optimal or nearly optimal set of fuzzy rules and mem-
bership functions has been obtained. Fig. 2 shows
the two-phases process, where R̃S̃1 + MFS1; R̃S̃2 +
MFS2; : : : ; R̃S̃m + MFSm are the fuzzy rule sets with
their associated membership function sets, as obtained
from di�erent sources for integration.

4. Fuzzy knowledge encoding

In order to apply GAs to integration of multiple
fuzzy rule sets, we need a powerful description lan-
guage to represent complex rule sets and to map them
easily into string representations. One of the most pop-
ular representation of rules, the conjunctive normal
form, is then chosen as our description language to ex-
press each fuzzy rule set. Since the fuzzy rule sets with
their associated membership functions are obtained
from di�erent sources, they may di�er in size. Repre-
sentation of variable-length rule sets is thus preferred
here. Each fuzzy rule set with its associated member-
ship functions is encoded as a variable-length chro-
mosome by the Pittsburgh approach. However, each
fuzzy rule set must �rst be translated into a uniform
intermediary representation to preserve the syntactic
and semantic constraints of the fuzzy rule sets before
encoding. The steps for translating fuzzy rule sets into
intermediary representations are described below.
1. Collect the features and possible values occurring
in the condition parts of the fuzzy rule sets. All fea-
tures gathered together comprise the global feature
set.

2. Collect classes occurring in the conclusion parts of
the fuzzy rule sets. All classes gathered together
comprise the global class set.

3. Translate each fuzzy rule into an intermediary rep-
resentation that retains its essential syntax and se-
mantics. If some features in the global feature set
are not used by the fuzzy rule, dummy tests are
inserted into the condition part of the fuzzy rule.
Each rule in the intermediary representation is then
composed of N feature tests and one class pattern,
where N is the number of global features collected.

4. Concatenate all intermediary representations of
rules to form the representation of a rule set.
An example is given below to demonstrate the

translation process of forming intermediary represen-
tations.

Example 1. Fisher’s Iris data [8] are used to demon-
strate the translation process of forming interme-
diary representations. There are three species of
Iris Flowers to be distinguished: Setosa, Versicolor
and Virginica. A class domain D
ower is de�ned as
D
ower = {Setosa; Versicolor; Virginica}. Each rule
is described by four features: Sepal Length (S:L:),
Sepal Width (S:W:), Petal Length (P:L:), and Petal
Width (P:W:). Each feature has the possible linguistic
values shown below.

DS:L:= {Short; Medium; Long};
DS:W:= {Narrow; Medium; Wide};
DP:L:= {Short; Medium; Long};
DP:W:= {Narrow; Medium; Wide}:
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Assume a fuzzy rule set R̃S̃q obtained from a fuzzy
knowledge source has the following four rules:

r̃q1: IF (P:L:=Short); then Class is Setosa:

r̃q2: IF (P:L:=Long); then Class is Virginica:

r̃q3: IF (P:W:=Medium); then Class is Versicolor:

r̃q4: IF (P:W:=Wide); then Class is Virginica:

After translation, the intermediary representations
of these rules would then be constructed as follows:

r̃′q1: IF (S:L:=Short or Medium or Long) and
(S:W :=Narrow or Medium or Wide) and
(P:L:=Short) and
(P:W :=Narrow or Medium or Wide);
then Class is Setosa:

r̃′q2: IF (S:L:=Short or Medium or Long) and
(S:W :=Narrow or Medium or Wide) and
(P:L:=Long) and
(P:W :=Narrow or Medium or Wide);
then Class is Virginica:

r̃′q3: IF (S:L:=Short or Medium or Long) and
(S:W :=Narrow or Medium or Wide) and
(P:L:=Short or Medium or Long) and
(P:W :=Medium); then Class is Versicolor:

r̃′q4: IF (S:L:=Short or Medium or Long) and
(S:W :=Narrow or Medium or Wide) and
(P:L:=Short or Medium or Long) and
(P:W :=Wide); then Class is Virginica:

The tests with underlines are dummy tests.
Also, r̃′qi is logically equivalent to r̃qi, for i=1; : : : ; 4.
After translation, each intermediary representation of
the rule is then composed of four feature tests and
one class pattern.

Although the intermediary representation may in-
clude irrelevant tests and increase search space dur-
ing integration, it can easily map each intermediary
rule into a �xed-length string representation. The con-
dition part of each intermediary rule is a conjunctive
form with internal disjunctions that can describe com-
plex rules. Irrelevant tests can also be removed by the
knowledge decoding process after integration.
After each rule set has been translated into an in-

termediary representation, an appropriate data struc-
ture must then be designed to encode both the fuzzy

Fig. 3. Membership functions of feature Ai .

rule sets and their membership function sets. Several
strategies for representing fuzzy knowledge structures
in conceptual learning were proposed [3, 20]. Here,
we represent each membership function with two pa-
rameters as Parodi and Bonelli [20] did. Membership
functions applied to a fuzzy rule set are assumed to be
isosceles-triangle functions, as shown in Fig. 3, where
cij is the abscissa with the highest membership value
of the jth linguistic value (aij) of feature Ai, and wij
represents half the spread of the membership function.
A linguistic value aij of the feature Ai is then repre-
sented as a pair (cij; wij).
Assume that an intermediary rule r̃′qk is composed

of N feature tests and one class pattern. Each fea-
ture test in a fuzzy rule is then encoded as mi pairs
of (c; w)’s, where mi is the number of possible lin-
guistic values of Ai, and the pair of (c; w) represents
one possible linguistic value. If a fuzzy test value
“Ai= aij” exists in a rule, the test is then encoded
as (ci1;−wi1)(ci2;−wi2) : : : (cij; wij) : : : (cimi ;−wimi ).
Only wij is positive, the other w values have minus
signs added to them. Similarly, if the fuzzy test is
(“Ai= aij” or “Ai= aik”), then only wij and wik are
positive and the other w values are negative. From the
sign of w, the encoded string can then correctly repre-
sent the test condition of a fuzzy rule. The condition
part of each fuzzy rule is then encoded as

∑N
i=1 mi

pairs of (c; w)’s using the proposed encoding methods.
Next, the conclusion part of each fuzzy rule is en-

coded as a bit substring (’1 · · ·’x), where x is the
number of possible classes. When the rule points to
class j, then ’j is set as 1 and the others are set as 0.
The rule r̃qk is then encoded as shown in Fig. 4.
In Fig. 4, the substring (cqki1 w

qk
i1 · · · cqkij wqkij · · ·

cqkimi w
qk
imi
) represents the membership functions of mi

possible linguistic values for feature Ai in rule r̃qk , and
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Fig. 4. String representation of r̃′qk .

Fig. 5. String representation of fuzzy rule set R̃S̃q.

the substring (’qk1 · · ·’qkx ) represents its output class.
Since cij and wij are both numeric values, fuzzy rules
and their fuzzy membership function sets are then en-
coded as �xed-length real-number strings rather than
bit strings. Each fuzzy rule set R̃S̃q that contains k
fuzzy rules is then encoded by concatenating strings
of k fuzzy rules (Fig. 5).
An example is given below to demonstrate the en-

coding of fuzzy knowledge.

Example 2. Continuing from Example 1, assume the
fuzzy rule set R̃S̃q is to be encoded. Assume that the
membership functions used for each feature are as
shown in Fig. 6.
Using the proposed intermediary representation, the

fuzzy rule r̃′q1 in Example 1 is encoded as shown in
Fig. 7.
Since feature S:L: in r̃′q1 has three disjunctive test

values, Short;Medium and Long, the tests for S:L: are
then encoded as “5.2, 0.9, 6.1, 0.9, 7.0, 0.9” according
to the membership functions given in Fig. 6. S:W: also
has three disjunctive test values,Narrow,Medium and
Wide, and is then encoded as “2.6, 0.6, 3.2, 0.6, 3.8,
0.6”. Similarly, P:W: is encoded as “0.7, 0.6, 1.3, 0.6,
1.9, 0.6”. But P:L:, has only one test value, Short. It is
then encoded as “2.4, 1.5, 3.9,−1.5, 5.4,−1.5”, where
the two negative w values indicate “P:L:=Medium”
and “P:L:=Long” are not in the condition part of
rule r̃′q1.
This representation allows genetic operators (de-

�ned later) to easily integrate multiple fuzzy rule sets
and their fuzzy membership function sets at the same

time. Furthermore, since fuzzy membership functions
are encoded together with each rule (as opposed to
a global collection of membership functions for all
rules), rules are permitted to evolve to di�erent de-
grees of vagueness as Carse et al. proposed [3]. The ad-
vantage of this representation is the expressive power
for the derived rules to possess their own speci�city
in terms of the fuzzy sets they relate to. Especially
for multi-dimensional domains that cannot generally
use a global collection of membership functions for
all rules, the use of local fuzzy sets to perform a lin-
guistic interpretation of individual rules seems valid
to overcome “curse of dimensionality” [3]. However,
this advantage is at the cost of an increase of the search
space. A more detailed discussion about using local
fuzzy sets can be found in [3, 5, 18].

5. Fuzzy knowledge integration

After each fuzzy rule set with its associated mem-
bership functions has been encoded as a variable-
length string (an individual in the initial population),
the genetic-fuzzy knowledge-integration process
starts. It chooses good individuals in the population
for “mating”, gradually creating better o�spring fuzzy
rule sets. During evolution, a measure function and
a set of test objects are used to evaluate the �tness
value of each “o�spring” fuzzy rule set. The o�spring
fuzzy rule sets then undergo recursive “evolution”
until a really good fuzzy knowledge base has been
produced. Domain experts thus need not intervene in



C.-H. Wang et al. / Fuzzy Sets and Systems 112 (2000) 141–154 147

Fig. 6. Membership functions for Example 2.

Fig. 7. String representation of r̃′q1.

the integration process. Notation and de�nitions used
are given as below.

5.1. Notation and de�nitions

De�nition 1. A fuzzy test s̃k is represented as [Ak r �],
where Ak is a feature, r is a relationship, and � is a
fuzzy linguistic value. For example “color= reddish”
and “height= tall” are both fuzzy tests.

De�nition 2. us̃k (ẽ) represents the degree to which
object ẽ is matched by s̃k . The value of us̃k (ẽ) ranges
between 0 and 1; 0 indicates complete exclusion and
1 indicates complete inclusion.

De�nition 3. Assume the condition part c̃j of rule r̃j
consists of jm tests, s̃j1 ∧ s̃j2 ∧ · · · ∧ s̃jm . The degree of
object ẽ matched by c̃j is evaluated as

uc̃j (ẽ)= us̃j1 (ẽ)∧ us̃j2 (ẽ)∧ · · · ∧ us̃jm (ẽ);

or more generally,

uc̃j (ẽ)= us̃j1 (ẽ) � us̃j2 (ẽ) � · · · � us̃jm (ẽ);

where � is a t-norm operator.

De�nition 4. The classi�cation of an object ẽ judged
by a rule r̃j (c̃j⇒ �̃j) is �̃j, with a membership value
uc̃j (ẽ).

De�nition 5. The classi�cation of an object ẽ judged
by a rule set R̃S̃ is �̃j ; if a rule concluding to
�̃j (c̃j⇒ �̃j) has the highest uc̃j (ẽ) among all rules.
If ẽ is classi�ed by R̃S̃ into several classes that have
the highest degree, the classi�cation of an object ẽ is
then shared among them.

De�nition 6. An object is correctly matched by rule
set R̃S̃ if the original object class is equal to the class
judged by R̃S̃.

5.2. Initial population

The proposed fuzzy knowledge-integration method
uses a genetic algorithm for integration and optimiza-
tion of fuzzy rule sets. The genetic algorithm requires
a population of feasible solutions to be initialized and
updated during the evolution process. In our approach,
the initial population of fuzzy rule sets with their as-
sociated membership functions comes from multiple
knowledge sources. Each individual in the initial pop-
ulation represents a fuzzy rule set with its associated
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membership functions. If the initial number of knowl-
edge sources is small, some dummy initial rule sets
that are randomly generated or duplicated from orig-
inal rule sets, are inserted into the population to in-
crease the population size.

5.3. Fitness and selection

In order to develop a “good” fuzzy knowledge base
from the initial population, the genetic algorithm se-
lects parent fuzzy rule sets with high �tness values
for mating. An evaluation function and a set of test
objects including instances or historical records, are
then used to qualify the derived fuzzy rule set. Rule
set performance is then fed back to the genetic algo-
rithm to control how the solution space is searched to
promote fuzzy rule set quality. Two important factors
are used in evaluating derived fuzzy rule sets, the ac-
curacy and the complexity of the resulting knowledge
structure. Accuracy of a fuzzy rule set R̃S̃ is evaluated
using test objects as follows:

Accuracy(R̃S̃)

=
total number of objects correctly matched by R̃S̃

total number of objects
:

Themore data used, the more objective and accurate
the evaluation is. The complexity of the resulting rule
set (R̃S̃) is the ratio of rule increase, de�ned as follows:

Complexity(R̃S̃)

=
Number of rules in the integrated rule set R̃S̃

[
∑m

i=1 (Number of rules in the initial R̃S̃ i)] =m
;

where R̃S̃ i is the ith initial fuzzy rule set, and m is the
number of initial rule sets. Accuracy and complexity
are combined to represent the �tness value of the rule
set. The evaluation function is then de�ned as follows:

�tness(R̃S̃)=
[Accuracy(R̃S̃)]

[Complexity(R̃S̃)]�
;

where � is a control parameter, representing a trade-
o� between accuracy and complexity.

5.4. Genetic operators

Genetic operators are very important to success
of speci�c GA applications. Two genetic operators,

crossover and mutation, are used in the genetic fuzzy
knowledge-integration framework.

5.4.1. Crossover operator
The crossover operator used here selects crossover

points di�erently from the way used in the simple ge-
netic algorithm. The crossover operator in the simple
genetic algorithm chooses the same points for both
parent chromosomes, but, the crossover operator used
here need not use the same point positions for both
parent chromosomes. The crossover points may oc-
cur within rule strings or at rule boundaries. The only
requirement for crossover points is that they must
“match up semantically”. That means, if one parent is
cut at a rule boundary, then the other parent must also
be cut at a rule boundary. Similarly, if one parent is
cut at a point p units to left of a rule boundary, then
the other parent must also be cut at a point p units to
the left of some other rule boundary. An example of
crossover operation is shown below.

Example 3. Assume that parent rule sets R̃S̃1 and
R̃S̃2, contain, respectively, n and m rules for classify-
ing test objects with two linguistic features (F1 and
F2). Features F1 and F2 both have two possible lin-
guistic values. Two classes are to be determined. As-
sume that R̃S̃1 and R̃S̃2 are encoded as shown in Fig. 8.
As mentioned above, the crossover points on both

parents must “match up semantically”. If crossover
point cp1 is the sixth unit to the left of r̃1i in R̃S̃1
(denoted as cp1 = (1i; 6)), then crossover point cp2
for R̃S̃2 must be the sixth unit to the left of a certain
rule r̃2j (denoted as cp2 = (2j; 6)). Thus, the crossover
operator generates two o�spring rule sets, Õ1 and Õ2,
as shown in Fig. 9.
After o�spring fuzzy rule sets have been generated

using the crossover operation, the order of fuzzy mem-
bership functions may be destroyed, and may need
rearrangement according to their center values. An ex-
ample is given below to demonstrate the rearrange-
ment of membership functions.

Example 4. Assume that two fuzzy rule sets, R̃S̃1 and
R̃S̃2, for the Iris Flower domain, are encoded as shown
in Fig. 10.
The crossover operator generates two o�spring rule

sets, Õ1 and Õ2. The pairs (2.6, 0.6)(2.5, −0:4)(3.8,
−0:9) for S:W: in Õ1 are out of sequence. They are then
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Fig. 8. String representation of R̃S̃1 and R̃S̃2.

Fig. 9. An example of the crossover operation.

Fig. 10. Rearrangement of membership functions for Example 4.
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Fig. 11. The mutation process for Example 5.

Fig. 12. String representation of r̃′qi .

rearranged in ascending order of membership function
centers to (2.5, −0:4)(2.6, 0.6)(3.8,−0:9).

5.4.2. Mutation operator
The mutation operator is used to create a new

fuzzy membership function by adding a random value
� to the center or the spread of an existing fuzzy
membership function, say f. Assume that c and w
represent the center and the spread of f. The center or
the spread of the new derived membership function
will be changed to c + � or w + � by the mutation
operation. Mutation at the center of a fuzzy member-
ship function may, however, disrupt the order of the
feature’s fuzzy membership functions. These fuzzy
membership functions then need rearrangement ac-
cording to their center values. An example is given
below to demonstrate the rearrangement of member-
ship functions.

Example 5. Continuing from Example 1, assume a
center of the second membership function for feature
S:W: in R̃S̃1 is chosen for mutation. Assume the ran-
dom value � is −0:7. The mutation process is shown
in Fig. 11.

The mutation operator generates one o�spring, rule
set Õ1, from R̃S̃1, by adding the � to the center of mem-
bership function (3.2, −0:6). The new membership
function formed is (2.5, −0:6). The pairs (2.6, 0.6),
(2.5, −0:4) and (3.8, −0:9) for S:W: in Õ1 are then,
however, out of sequence. They must be rearranged in
ascending order of membership function centers; the
�nal result is (2.5, −0:4), (2.6, 0.6), and (3.8, −0:9).
As mentioned above, the fuzzy knowledge integra-

tion phase chooses fuzzy rule sets with their associated
membership functions for “mating”, gradually creat-
ing good o�spring. After the termination criteria are
satis�ed, the best o�spring is decoded into the form
of rules. If a fuzzy test in the �nal o�spring is repre-
sented as (ci1; wi1)(ci2; wi2) · · · (cij; wij) · · · (cimi ; wimi )
and each w is positive, the feature is irrelevant for the
rule and is removed from the rule condition part. The
rule can thus be succinctly interpreted. An example is
given below to demonstrate the decoding of the �nal
o�spring.

Example 6. Continuing from Example 1, assume the
fuzzy-rule string r̃′qi (shown in Fig. 12) is to be decoded
into the form of rules.
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Fig. 13. Membership functions for P:L: in Example 6.

Since the tests for feature S:L: in r̃′qi are represented
as “5.3, 0.9, 6.2, 0.6, 7.1, 0.8” and theirw values are all
positive, feature S:L: is thus irrelevant and is removed
from the condition part of r̃′qi. Similarly, the features
S:W: and P:W: are also removed from the condition
part of r̃′qi. The tests in P:L: are represented as “2.5,
1.3, 3.8, 1.4, 5.5, −1:5”. Since the last w value (−1:5)
in the tests of P:L: is negative, the feature P:L: cannot
be thought of an irrelevant one. The tests for P:L:
are then decoded as “P:L:= Short or Medium” and
their associated membership functions are decoded as
shown in Fig. 13.
After decoding, the fuzzy-rule string r̃′qi is thus rep-

resented as below.

IF (P:L:= Short or Medium); then Class is Setosa:

6. Experimental results

The hepatitis diagnostic problem [4] was used as
the problem domain to test the performance of the
proposed fuzzy knowledge-integration approach. The
155 cases used in these experiments were obtained
from Carnegie–Mellon University [4]. The goal of the
experiments was to identify two possible classes, Die
or Live. Table 1 shows an actual case expressed in
term of 19 features and one class.
The 155 cases were �rst divided into two groups, a

training set and a test set. The training set was used to
evaluate the �tness of rule sets during the integration
process; the test set acted as input events to test the
derived rule set, and the percentage of correct predic-
tions was recorded. In each run, 70% of the hepatitis
cases were selected at random for training, and the
remaining 30% of the cases were used for testing. Ten
initial rule sets were obtained from di�erent groups of
experts or derived via machine-learning [24, 26, 27].

Table 1
A case for hepatitis diagnosis

Features Feature values

Age 34
Sex male
Steroid high
Antivirals high
Fatigue high
Malaise high
Anorexia high
Liver BIG yes
Liver Firm yes
Spleen Palpable yes
Spiders yes
Ascites high
Varices high
Bilirubin 0.90
Alk Phosphate 95
SGOT 28
Albumin 4.0
Protime 75
Histology no

Class: Live

Table 2
The accuracy of the ten initial fuzzy rule sets

Rule Sets Accuracy (%) No. of rules

1 80.0 3
2 79.1 4
3 73.4 3
4 78.7 4
5 74.6 3
6 74.8 4
7 73.3 3
8 74.3 4
9 80.4 4
10 80.2 4
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Table 3
Experimental results for the hepatitis diagnostic problem

Generation CPU time (s) Accuracy Fitness values

0 1 76.88 0.7537
13 4 78.44 0.7690
69 19 81.32 0.7972
124 35 83.28 0.8164
181 52 84.32 0.8266
261 75 85.25 0.8357
414 115 86.88 0.8517
1401 427 88.76 0.5701
2110 560 89.49 0.8773
3110 822 89.65 0.8789
3550 935 89.77 0.8800
3817 1005 91.83 0.9002
4000 1056 92.90 0.9107

The accuracy of the ten initial rule sets was measured
using the test instances. The results are shown in
Table 2.
Although the ten initial fuzzy rule sets were not

accurate enough, they could however act as a set
of locally-optimal solutions that provide useful in-
formation in the search space. Beginning with these
fuzzy rule sets, the genetic algorithm could then
reach the (nearly) global optimal solution more
rapidly than if it had nothing to refer to. Of course,
each initial rule set could �rst have been improved
by the same GA scheme before integration. We
do not however favor this alternative since it can-
not use information from the other rule sets, and
it would take much time to get good results. Sim-
ilarly, we could also have abandoned these initial
rule sets and directly applied the genetic algo-
rithm to acquire knowledge from training instances.
But the same disadvantages would still have been
present.
In the experiments, the operation frequency for

crossover and mutation was set at 0.9 and 0.04,
respectively. Table 3 shows the results for di�er-
ent generations as to accuracy, integration time, and
�tness values.
Experimental results also show that executing the

proposed approach in more generations yields more
accurate results although the spent time increases.
Fig. 14 shows the relationship between generations
and �tness values of resulting rule sets for the pro-
posed approach.

Fig. 14. Relationship between �tness values and generations.

Table 4
A comparison with other learning methods

Methods Accuracy (%)

Our approach 92.9
Assistant-86 [5] 83
Diaconis and Efron’s [8] 80

As the numbers of generations were increased, the
resulting �tness values also increased, and �nally con-
verged to a speci�c value.
The accuracy of some other learning algorithms on

the Hepatitis classi�cation problem was examined in
[4, 7]. The methods studied were Diaconis and Efron’s
statistic method [7] and that of Cestnik et al. Assistant-
86 [4]. Table 4 compares the accuracy of our proposed
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approach with that of the other learning methods.
It can easily be seen that the accuracy of our approach
is higher than those of the other learning methods.

7. Conclusions

In this paper, we have shown how fuzzy knowledge-
integration can be e�ectively processed using a genetic
algorithm. Experimental results have also shown that
our genetic fuzzy knowledge-integration framework is
valuable for simultaneously combining multiple fuzzy
rule sets and membership function sets. Our approach
needs no human experts’ intervention during the inte-
gration process. The time required by our approach is
thus dependent on computer execution speed, but not
on human experts. Much time can thus be saved since
experts may be geographically dispersed, and their
discussions are usually very time-consuming [11, 17].
Also, our approach is a scalable integration method,
that can be applied as well when the number of rule
sets to be integrated increases. Integrating a large num-
ber of rule sets may increase the validity of the result-
ing knowledge base. It is also objective since human
experts are not involved in the integration process.
Although the work presented here shows good re-

sults, it is only a beginning. Some future investigations
are proposed below.
1. Several issues in the �eld of knowledge veri�ca-
tion remain unresolved. E�ectively dealing with
knowledge veri�cation issues is another interesting
topic.

2. Each derived rule supplied to the classi�er sys-
tem has a di�erent degree of vagueness. Design
of a new genetic fuzzy knowledge-integration
framework that permits rules evolve over a global
collection of membership functions is our current
research project.
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