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Abstract

In this paper, from a Bayesian point of view, we consider estimation of parameters and
prediction of future values for the longitudinal model proposed by Diggle (1988. Biometrics
44, 959–971). This model, called the repeated measures linear model, incorporates group mean,
variability among individuals, serial correlation within an individual, and measurement error.
Two di�erent priors are employed by the Bayesian approach, one is the noninformative prior
and the other is composed of inverse gamma distributions. Given the noninformative prior, it is
shown that the resulting approximate estimates of the regression coe�cients are the same as those
derived by the restricted maximum likelihood estimation. Markov chain Monte Carlo methods
are also used to obtain more accurate Bayesian inference for parameters as well as prediction
of future values. For parameter estimation and prediction of future values, the advantages of the
Bayesian approach over the maximum likelihood method and the restricted maximum likelihood
method are demonstrated by both real and simulated data. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In this paper, from a Bayesian point of view, we consider estimation of parameters
and prediction of future values for the longitudinal model proposed by Diggle (1988).
This model, called the repeated measures linear model, incorporates group mean, vari-
ability among individuals, serial correlation within an individual, and measurement
error, and is de�ned as

Yij = Xij�i + �ij1ij + Vij + �ij (1.1)
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for j = 1; : : : ; Ni and i = 1; : : : ; r. Here Yij is a pij × 1 random vector representing pij
observations made on the jth subject in the ith group. The Xij is a known design
matrix of order pij × m, and �i an unknown m × 1 vector of regression coe�cients
of the ith group. The �ij’s are independent and identically distributed normal random
variables each with mean 0 and variance �2� , and 1ij is a pij × 1 vector of 1’s. The
Vij’s are independent pij× 1 normal random vectors each with mean 0 and covariance
matrix �2VCij, where Cij stands for a correlation matrix. Finally, �ij’s are independent
pij × 1 normal random vectors each with mean 0 and covariance matrix �2� Iij. It is
noted that Iij is a pij × pij identity matrix, and Xij is of rank m; 26m6pij. The
�rst component Xij�i in (1.1) is interpreted as the ith group mean over individuals.
The second component �ij stands for the individual random e�ect on the jth subject in
the ith group. The third component Vij represents serial correlation in Yij. The fourth
component �ij denotes measurement errors which are uncorrelated.
By (1.1), the covariance matrix of Yij can be expressed as

Cov(Yij) = �2V�ij; (1.2)

where �ij=�11ij1′ij+Cij+�2Iij; �1=�
2
� =�

2
V and �2=�

2
� =�

2
V . The dependence structure

in Vij considered in this paper is an autoregressive process of order 1, i.e., an AR(1)
process. Hence Cij = (�

|a−b|
3 ), for a; b = 1; : : : ; pij, and �3 ∈ (−1; 1) is the AR(1)

parameter. Note that the covariance structure of Yij consists of a uniform covariance
and an AR(1) serial covariance. See Lee (1988) for a detailed explanation. It is also
worth noting that this covariance structure, although quite 
exible for longitudinal data,
may not model well in some situations. In particular, it assumes variance components,
and correlation structure, that apply to all subjects and is time independent. A residual
variance that slightly increases over time might well be indistinguishable from one that
does not in terms of model �t to the observations. However, it could make a large
di�erence in prediction. Furthermore, a more complicated correlation structure such as
AR(g) or ARMA could be more appropriate for the data at hand. These are beyond
the scope of the current paper and will be subjects of future investigation. Finally,
�1=(�1 +�2)=�2� =(�

2
� +�

2
� ) will tends to the intraclass correlation as �3 tends to zero.

The estimation of parameters for the model has been studied by Diggle (1988) using
the methods of maximum likelihood (ML) and restricted maximum likelihood (REML).
The prediction of future values for the model has been considered by Donnelly et al.
(1995) by using the ML method.
In addition to estimation of parameters, two di�erent prediction problems for the un-

balanced repeated measures growth curve model are considered from a Bayesian point
of view. For the �rst prediction problem, let yi‘ be a q× 1 random vector representing
q future observations made on the ‘th subject in the ith group, for ‘ = 1; : : : ; Ni and
i=1; : : : ; r. We are interested in predicting yi‘ given Y=(Y ′

11; : : : ; Y
′
1N1 ; : : : ; Y

′
r1; : : : ; Y

′
rNr)

′.
This is a time series prediction and thus is important in practice. This prediction prob-
lem is called extended prediction of yi‘, by Lee (1988), since the prediction is made
beyond the observed time range of the sample. It is noted that in our setting extended
prediction is identical to conditional prediction as studied in Lee and Geisser (1972,
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1975), Fearn (1975), Rao (1987), Lee (1988, 1991), and Donnelly et al. (1995). For
the second prediction problem, let Fi be p future values made on a new subject under
study in the ith group. Note that the new subject under study is not contained in the
original Ni subjects in the ith group in (1.1). Speci�cally, Fi is a multivariate normal
random vector with mean X�i and covariance matrix �2V�p, where X is a known p×m
design matrix for the new subject under study in the ith group, and �p is of the form
speci�ed by (1.2). We will address the prediction of Fi given Y .
In order to estimate parameters and to predict future values for the growth curve

problem, the model is considered in this paper from a Bayesian viewpoint with two
di�erent priors. The �rst prior is the noninformative prior (Edwards et al., 1963; Zellner
and Tiao, 1964). Using this prior, it is shown that the resulting approximate estimates
of the regression coe�cients are the same as those obtained by the REML estima-
tion. For a detailed discussion of the REML estimation, see, for example, Patterson
and Thompson (1971) and Harville (1974). The second prior is composed of inverse
gamma distributions, Gelfand et al. (1990). In order to employ the second prior, the
hyperparameters of the inverse gamma distributions are selected by the idea of min-
imum accumulated prediction error (Rissanen, 1986; Lee and Tsao, 1992). In order
to compare relative merits of di�erent methods, we will compare the mean absolute
deviation (MAD) and the mean absolute relative deviation (MARD) of the predicted
values from the actual observations. For extended prediction of yi‘, it is shown by real
data that the approximate Bayesian method employing the second prior performs better
than those using the �rst prior, the ML method and the REML method. A possible
advantage of this prior is demonstrated in Table 5 regarding the predictive accuracy of
extended prediction of yi‘.
Given the model using two di�erent priors, Bayesian estimation of parameters is

considered in Section 2 and prediction problems are presented in Section 3. Bayesian
inference via the Markov chain Monte Carlo (MCMC) methodology is considered in
Section 4. The results developed in this paper are illustrated in Section 5 with real and
simulated data. Finally, some concluding remarks are made in Section 6.

2. Bayesian estimation of the parameters

In this section, the posterior distributions and the posterior regions for the parameters
in the model are studied.
For the joint prior of the parameters �; �2V ; �1; �2, and �3, two di�erent priors (2.1)

and (2.2) will be used in this paper:

�(�; �2V ; �1; �2; �3)˙ �−2V ; (2.1)

�(�; �2V ; �1; �2; �3)˙ �−2V �(�1)�(�2); (2.2)

where � = (�1; : : : ; �r) and the function � is the inverse gamma distribution with the
hyperparameters �¿ 1 and �¿ 0. Speci�cally,

�(x) = IG(�; �)˙ x−(�+1) exp(−�=x):
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In both (2.1) and (2.2), we have assumed that �1; : : : ; �r ; �2V ; �1; �2, and �3 have
independent prior distributions. In (2.1), no information is available for each of the
parameters and it is called noninformative prior (Edwards et al., 1963; Zellner and Tiao,
1964); whereas for (2.2) Gelfand et al. (1990) chose subjectively the hyperparameters
� and � of the inverse gamma distribution in advance. But in this paper we shall use the
idea of minimum accumulated prediction error as proposed by Rissanen (1986) and Lee
and Tsao (1992) to choose these two hyperparameters. In the accumulated prediction
error criterion, the prediction is performed sequentially and was termed “prequential” by
Dawid (1984). In this case, we avoid choosing these two hyperparameters subjectively.
Note that the priors for �1 and �2 given on the right-hand side of (2.2) can be
generalized by using two di�erent sets of hyperparameters in their inverse gamma
distributions. Here, for simplicity, the same set of hyperparameters is assumed for the
two inverse gamma distributions.
We now introduce the idea of the minimum accumulated prediction error criterion

for choosing the two hyperparameters (�; �). This idea will take the minimizer of the
accumulated prediction error S(�; �) over (�; �) as the selected hyperparameters for
(�; �). The function S(�; �) is de�ned by

S(�; �) =
r∑
i=1

Ni∑
j=1

pij∑
k=4

|Yijk − Ŷ ijk(�; �)|:

Here Yijk is the kth observation in Yij and Ŷ ijk(�; �) the predicted value of Yijk when
� and � are used in (2.2). The detailed formulation of Ŷ ijk(�; �) will be given in
Section 3. Let (�̂; �̂) denote the selected hyperparameters for (�; �). In this paper,
the prior given in (2.1) is called prior 1 and that given in (2.2) with the selected
hyperparameters (�̂; �̂) prior 2.
By applying the approximate method of Ljung and Box (1980), it can be shown that

the approximate posterior distributions of �i and �2V , and an approximate 100(1− �)%
posterior region for �i; i = 1; : : : ; r, are

�i|Y ∼̇Tm

 ˆ̂�i; B̂1

(
(n− mr)

Ni∑
j=1

X ′
ij�̂

−1
ij Xij

)−1
; n− mr


 ; (2.3)

�2V |Y ∼̇IG((n− mr)=2; B̂1=2); (2.4)

(�i − ˆ̂�i)
′
(
Ni∑
j=1

X ′
ij�̂

−1
ij Xij

)
(�i − ˆ̂�i)6const1; (2.5)

where n=
∑r

i=1

∑Ni
j=1 pij; const1=F(1−�;m; n−mr)m(n−mr)−1B̂1; Tp(�; �; n) denotes

a p-variate T-distribution with mean � and covariance matrix n(n− 2)−1�, and ˆ̂�i; B̂1
and �̂ij are the �̂i; B1 and �ij with �1; �2; �3 replaced by �̂1; �̂2; �̂3, respectively,

B1 =
r∑
i=1

Ni∑
j=1
(Yij − Xij�̂i)′�−1

ij (Yij − Xij�̂i);
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�̂i =

(
Ni∑
j=1

X ′
ij�

−1
ij Xij

)−1(
Ni∑
j=1

X ′
ij�

−1
ij Yij

)
;

and �̂1; �̂2; �̂3 maximize

p(�1; �2; �3|Y; prior 1)˙ B−(n−mr)=21

r∏
i=1

Ni∏
j=1

|�ij|−1=2
r∏
i=1

∣∣∣∣∣
Ni∑
j=1

X ′
ij�

−1
ij Xij

∣∣∣∣∣
−1=2

;

(2.6)

or

p(�1; �2; �3|Y; prior 2)˙�−(�̂+1)
1 �−(�̂+1)

2 exp(−�̂=�1 − �̂=�2)

×B−(n−mr)=21

r∏
i=1

Ni∏
j=1

|�ij|−1=2
r∏
i=1

∣∣∣∣∣
Ni∑
j=1

X ′
ij�

−1
ij Xij

∣∣∣∣∣
−1=2

:

(2.7)

We now close this section with the following remarks. Firstly, the joint posterior
distribution of �1; �2, and �3 given in (2.6) is proportional to the objective function
for choosing the REML estimates of �1; �2, and �3. Hence, the REML estimates of
�1; �2, and �3 are identical to the mode of the joint posterior distribution of �1; �2, and
�3 as given in (2.6). Secondly, by (2.3), the expectation of the approximate posterior

distribution of �i is
ˆ̂�i. It is the same as the REML estimate of �i. Hence, we know that

when prior 1 is used, the REML estimate of �i is an approximate Bayesian estimate,
for each i. To the authors’ knowledge, this fact regarding the estimation of �i has
not been given in the literature. Finally, by (2.4), the posterior expectation of �2V is
B̂1=(n− 2−mr) while the REML estimate of �2V is B̂1=(n−mr). Hence, when n−mr
is su�ciently large, the estimates of �2V derived by the two methods are very close.
However, in small samples, the Bayesian estimate of �2V will be a bit more biased than
the REML estimate. In fact, it is easily seen that

E

(
B̂1

n− 2− mr − �
2
V

)
=

n− mr
n− 2− mrE

(
B̂1

n− mr − �
2
V

)
+

2
n− 2− mr�

2
V ; (2.8)

and the REML estimate of �2V is positively biased as seen in Table 11.
Note that if the joint prior for the parameters �; �2V ; �1; �2, and �3 is proportional

to a constant, then the mode of the resulting joint posterior distribution of �2V ; �1; �2,
and �3 is the REML estimates of �2V ; �1; �2, and �3. This fact has been noted by
Harville (1974) for a general variance component model. In this case, the approximate
posterior distribution of �i is a multivariate T distribution as given in (2.3), except
that the degree of freedom n− mr is replaced by n− 2− mr.

3. Prediction

In this section, two di�erent prediction problems for the model will be considered.
We shall �rst study extended prediction of yi‘, a future q-dimensional observation

made on the ‘th subject in the ith group, given Y , for ‘ = 1; : : : ; Ni and i = 1; : : : ; r,
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when each of priors 1 and 2 is employed. To solve this prediction problem, both
mean and covariance structure generally have to be extendable to the future values
of the individuals observed. We assume that the mean structure is extendable and
the covariance structure considered in the paper also satis�es this requirement. Since
the estimation of parameters, especially �3, can be highly sensitive to outliers and the
proper dependence structure is important in the prediction of future observation, we
would expect that the predictive inference will be quite sensitive to outliers. This topic
is beyond the scope of the paper and will be a potential topic in the future.
Let x be a q× m design matrix corresponding to yi‘ and X̃ i‘ =

(Xi‘
x

)
. We have

Cov
(
Yi‘
yi‘

)
= �2V (�11 1

′ + C + �2I) = �2V�=
(
�11 �12
�21 �22

)
: (3.1)

Here 1 is a (pi‘ + q) × 1 vector of 1’s, I is a (pi‘ + q) × (pi‘ + q) identity matrix,
and C = (�|a−b|

3 ) for a; b= 1; : : : ; (pi‘ + q).
As in Section 2, it can be shown that the approximate predictive distribution and an

approximate 100(1− �)% predictive region for yi‘ are

yi‘|Y ∼̇Tq(�̂y; Ŝy((n− mr)Ĝ22)−1; n− mr); (3.2)

(yi‘ − �̂y)′Ĝ22(yi‘ − �̂y)6const2; (3.3)

where

Q1 =
Ni∑
j 6=‘

X ′
ij�

−1
ij Xij; Q2 = X̃

′
i‘�

−1X̃ i‘; Q = Q1 + Q2;

�̂i1 =

(
Ni∑
j 6=‘

X ′
ij�

−1
ij Xij

)−1(
Ni∑
j 6=‘

X ′
ij�

−1
ij Yij

)
;

B2 =
r∑
k 6=i

Nk∑
j=1
(Ykj − Xkj�̂k)′�−1

kj (Ykj − Xkj�̂k) +
Ni∑
j 6=‘
(Yij − Xij�̂i1)′�−1

ij (Yij − Xij�̂i1);

G = �−1X̃ i‘(X̃
′
i‘�

−1X̃ i‘)−1Q1Q−1X̃
′
i‘�

−1 + Z(Z ′�Z)−1Z ′ =
[
G11 G12
G21 G22

]
;

�y = x�̂i1 − G−1
22 G21(Yij − Xij�̂i1); Sy = B2 + (Yi‘ − Xi‘�̂i1)′G11:2(Yi‘ − Xi‘�̂i1);

Z is a (pi‘ + q) × (pi‘ + q − m) matrix satisfying X̃ ′
i‘Z = 0; G11; G12, and G22 are

pi‘ × pi‘; pi‘ × q, and q × q matrices, respectively, G21 = G′
12, and G11:2 = G11 −

G12G−1
22 G21; const2=F(1−�; q; n−mr)q(n−mr)−1Ŝy, and �̂y; Ŝy, and Ĝ22 are the �y; Sy,

and G22 with �1; �2, and �3 replaced respectively by �̂1; �̂2, and �̂3 which maximize

p(�1; �2; �3|Y; prior 1)˙ S−(n−mr)=2y

r∏
k 6=i

Nk∏
j=1

|�kj|−1=2
Ni∏
j 6=‘

|�ij|−1=2

×(|�||Q||G22|)−1=2
r∏
k 6=i

∣∣∣∣∣
Nk∑
j=1
X ′
kj�

−1
kj Xkj

∣∣∣∣∣
−1=2

;
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or

p(�1; �2; �3|Y; prior 2)˙�−(�̂+1)
1 �−(�̂+1)

2 exp(−�̂=�1 − �̂=�2)

×S−(n−mr)=2y

r∏
k 6=i

Nk∏
j=1

|�kj|−1=2
Ni∏
j 6=‘

|�ij|−1=2

×(|�||Q||G22|)−1=2
r∏
k 6=i

∣∣∣∣∣
Nk∑
j=1
X ′
kj�

−1
kj Xkj

∣∣∣∣∣
−1=2

:

The prediction of future values Fi, a p × 1 vector, given the sample Y is now
considered. Similar to yi‘, the approximate predictive distribution and an approximate
100(1− �)% predictive region for Fi are

Fi|Y ∼̇Tp(X �̃i; B̃1((n− mr)M̃)−1; n− mr); (3.4)

(Fi − X �̃i)′M̃ (Fi − X �̃i)6const3; (3.5)

where const3 = F(1− �;p; n− m)p(n− m)−1B̃1,

W1 =
Ni∑
j=1

X ′
ij�

−1
ij Xij; W2 = X ′�−1

p X; W =W1 +W2;

M = �−1
p X (X

′�−1
p X )

−1W1W−1X ′�−1
p + U (U ′�pU )−1U ′;

U is a p× (p−m) matrix satisfying X ′U = 0, and �̃i; B̃1, and M̃ are the �̂i; B1, and
M with �1; �2, and �3 replaced respectively by �̂1; �̂2, and �̂3 which maximize

p(�1; �2; �3 |Y; prior 1)˙ B−(n−mr)=21

r∏
i=1

Ni∏
j=1

|�ij|−1=2

×(|�p||W ||M |)−1=2
r∏
k 6=i

∣∣∣∣∣
Nk∑
j=1
X ′
k�

−1
kj Xkj

∣∣∣∣∣
−1=2

;

or

p(�1; �2; �3 |Y; prior 2)˙�−(�̂+1)
1 �−(�̂+1)

2 exp(−�̂=�1 − �̂=�2)B−(n−mr)=21

×
r∏
i=1

Ni∏
j=1

|�ij |−1=2(|�p||W ||M |)−1=2

×
r∏
k 6=i

∣∣∣∣∣
Nk∑
j=1
X ′
k�

−1
kj Xkj

∣∣∣∣∣
−1=2

:

4. Bayesian inference via MCMC methodology

The MCMC methodology has been extremely popular in statistics since the publi-
cation of Gelfand and Smith (1990). For some details see Casella and George (1992)
and Gilks et al. (1996). In the rest of this section we will show the results for prior 1
only. They can be adapted for prior 2 easily and are hence omitted.
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4.1. Parameter estimation

The joint posterior of �=(�1; : : : ; �r),�2V ,�1,�2, and �3 can be obtained from com-
bining the likelihood function and the prior (2:1). MCMC proceeds as follows:

1. Generate �i given �j, j 6= i, �2V , �1, �2, �3 and Y from N(�̂i, �2V (
∑Ni

j=1 X
′
ij�

−1
ij Xij)

−1).
2. Generate �2V given �, �1, �2, �3, and Y from IG(n=2; S(�; �1; �2; �3; Y )) where
S(�, �1, �2, �3; Y ) =

∑r
i=1

∑Ni
j=1 (Yij − Xij�ij)′�−1

ij (Yij − Xij�ij).
3. Generate �1 given �, �2, �3 and Y via the Metropolis–Hastings (M–H) algorithm from
g1 (�′

1 | �; �2; �3; Y )˙
∏r
i=1

∏Ni
j=1 |�∗

ij|−1=2 exp[(1=2�2V ) S(�; �′
1; �2; �3; Y )] exp(�

′
1),

where �′
1 = log(�1); �

∗
ij is �ij with �1 replaced by exp(�

′
1). Once �

′
1 is generated,

�1 = exp(�′
1).

4. Generate �2 given �, �1, �3 and Y via the M–H algorithm from g2(�′
2 |�; �1; �3; Y )

which is de�ned as g1 with �′
1 replaced by �

′
2 and �2 replaced by �1.

5. Generate �3 given �, �1, �2 and Y via the M–H algorithm from

g3(�′
3 |�; �1; �2; Y )˙

r∏
i=1

Ni∏
j=1

|�∗
ij|−1=2exp

[
− 1
2�2V

S(�; �1; �2; �′
3; Y )

]

×[2 exp(�′
3)][1 + exp(�

′
3)]

−2;

where �′
3 = log(1 + �3)(1 − �3)−1, �∗

ij is �ij with �3 replaced by [exp(�
′
3) −

1][exp(�′
3) + 1]

−1. Once �′
3 is generated, �3 = [exp(�

′
3)− 1][exp(�′

3) + 1]
−1.

In order to ensure that the samples are drawn from the domain of the entire density,
Gelman and Rubin (1992) suggested using “overdispersed” starting values in multiple
chains to assist in drawing from the domain of the entire density and assessing conver-
gence by using the potential scale reduction measure

√
R̂. According to this viewpoint,

we implemented the MCMC sampling using seven chains with di�erent starting values.
The starting values for each variable of interest are the MLE and six others obtained
from MLE ± k times standard deviation, for k = 1; 3; 5. For each chain, after a su�-
ciently long burn-in iterations, we then use the remaining samples as simulated from
the variable of interest.

4.2. Prediction

We have from (3:1) that yij | �; Y ∼ N(�2:1; �2V�22:1), where � = (�; �
2
V ; �1; �2; �3),

�2:1 = x�i +�21�−1
11 (Yi‘ − Xi‘�i); �22:1 =�22 −�21�−1

11 �12, and �ij is de�ned in (3:1).
Hence we can generate y(k; s)i‘ from f(yi‘|� (k; s); Y ) where � (k; s) is the kth iteration and
sth replication of the MCMC sampler of �. Thus, we can predict yi‘ by the mean

ŷ i‘ =
1
mn

m∑
s=1

n∑
k=1
y(k; s)i‘

or the median of the samples, i.e.,

ŷ i‘ =
1
m

m∑
s=1
y(s)0:5;
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where y(s)0:5 is the median of the last n iterations for each chain. Prediction intervals
and quantiles of yi‘ can also be obtained from the sampler y(k; s)i‘ .
It is noted that the prediction of future values Fi can be done in a similar manner.

5. Numerical illustration

In order to get a further insight into the results obtained in Sections 2–4, we will
illustrate with a real example and a simulation study.

5.1. A real example

In this section, the results obtained in Sections 2–4 are applied to a real exam-
ple. The data, given in Table 1, consist of the weights of 23 calves, each observed
from 0 to 18 weeks with an increment of 2 weeks. They are given in Group B of
Table 6:1 of Diggle et al. (1994) with the weights on 19th week excluded and with
the exception of individuals 1, 9, 11, 19, 23, 26 and 28. The seven calves are excluded
from consideration for this illustration because their growth patterns are irregular in
the last two weeks which make them unsuitable for the model.

Table 1
Weights (100 kg) of calves

Time in weeks
0 2 4 6 8 10 12 14 16 18

1 2.30 2.40 2.58 2.77 2.77 2.93 3.00 3.23 3.27 3.40
2 2.26 2.33 2.48 2.77 2.97 3.13 3.22 3.40 3.54 3.65
3 2.33 2.39 2.53 2.77 2.92 3.10 3.18 3.33 3.36 3.53
4 2.38 2.41 2.62 2.82 3.00 3.14 3.19 3.31 3.38 3.48
5 2.25 2.28 2.37 2.61 2.71 2.88 3.00 3.16 3.19 3.33
6 2.24 2.25 2.39 2.57 2.68 2.90 3.04 3.13 3.10 3.18
7 2.37 2.41 2.55 2.76 2.93 3.07 3.12 3.36 3.36 3.44
8 2.33 2.39 2.59 2.83 2.94 3.13 3.20 3.47 3.48 3.62
9 2.28 2.23 2.46 2.66 2.77 2.87 3.00 3.12 3.08 3.28
10 2.41 2.47 2.68 2.90 3.09 3.23 3.36 3.48 3.59 3.72
11 2.21 2.21 2.40 2.53 2.73 2.82 2.92 3.07 3.06 3.17
12 2.17 2.20 2.35 2.59 2.62 2.76 2.84 3.05 3.03 3.15
13 2.14 2.21 2.37 2.56 2.71 2.83 2.87 3.14 3.16 3.20
14 2.24 2.31 2.41 2.56 2.65 2.83 2.95 3.14 3.13 3.28
15 2.00 2.03 2.21 2.36 2.48 2.62 2.76 2.94 2.91 3.11
16 2.30 2.22 2.43 2.53 2.68 2.84 2.90 3.16 3.14 3.30
17 2.17 2.24 2.42 2.65 2.84 3.02 3.09 3.24 3.28 3.38
18 2.09 2.09 2.21 2.38 2.56 2.67 2.81 2.95 3.01 3.09
19 2.30 2.31 2.44 2.61 2.72 2.83 2.94 3.18 3.20 3.33
20 2.16 2.18 2.23 2.43 2.59 2.70 2.70 2.90 3.01 3.14
21 2.07 2.16 2.28 2.55 2.75 2.85 2.96 3.14 3.19 3.30
22 2.21 2.32 2.51 2.84 2.84 2.95 3.00 3.23 3.19 3.33
23 2.33 2.38 2.54 2.66 2.82 2.94 2.95 3.10 3.20 3.27
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Fig. 1. Weights of calves.

To get the ML, REML and the approximate Bayesian estimates of parameters in the
model and to predict future values, the data were divided by 100 to avoid “over
ow”
or “under
ow” problems. They are plotted in Fig. 1.
Given the model and prior 1, in order to predict the values in the 18th week, the

MCMC simulated samples of the related parameters were produced by using the data
in the �rst 16 weeks. In order to �t the model, we �rst examine Fig. 1 which shows
clearly that the data have a linear trend and consist of only one group. By this and
the fact that the times of measurement are equally spaced, the value of r was taken
as r=1, the vector of regression coe�cients �1 = (�11; �12)′ and the design matrix for
each calf is

X =
[
1; 1; : : : ; 1
1; 2; : : : ; 9

]′
:

Tables 2 and 3 give the mean, standard deviation, and 2.5%, 5%, 25%, 50%, 75%,
95%, and 97.5% quantiles of the 7000 MCMC simulated samples of (�1; �2V ; �1; �2; �3)
for priors 1 and 2, respectively. We can then obtain point and interval estimates for
any parameter of interest. The parameter estimates from ML and REML are shown in
Table 4.
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Table 2
MCMC simulated posterior distributions using prior 1

�11 �12 �2V �1 �2 �3

Mean 2.1039 0.1259 0.0088 1.2051 0.0860 0.8196
S.D. 0.0372 0.0034 0.0011 0.6511 0.0621 0.0543
2.5% 2.0106 0.1195 0.0071 0.3595 0.0059 0.7268
5% 2.0255 0.1205 0.0074 0.4286 0.0083 0.7366
25% 2.0858 0.1237 0.0081 0.6065 0.0269 0.7742
50% 2.1088 0.1258 0.0085 1.1056 0.0786 0.8195
75% 2.1278 0.1282 0.0092 1.6997 0.1347 0.8622
95% 2.1535 0.1321 0.0109 2.4248 0.1905 0.9053
97.5% 2.1666 0.1329 0.0115 2.5738 0.2143 0.9165

Table 3
MCMC simulated posterior distributions using prior 2

�11 �12 �2V �1 �2 �3

Mean 2.1041 0.1261 0.0078 0.0623 0.0845 0.8068
S.D. 0.0216 0.0032 0.0012 0.0152 0.0281 0.0506
2.5% 2.0605 0.1199 0.0049 0.0317 0.0430 0.7229
5% 2.0690 0.1209 0.0057 0.0404 0.0481 0.7380
25% 2.0894 0.1239 0.0072 0.0527 0.0641 0.7716
50% 2.1039 0.1261 0.0079 0.0613 0.0795 0.7995
75% 2.1192 0.1282 0.0085 0.0707 0.0992 0.8328
95% 2.1396 0.1314 0.0095 0.0883 0.1392 0.9069
97.5% 2.1462 0.1321 0.0098 0.0952 0.1518 0.9295

Table 4
Comparison of estimates from ML and REML using real data

�11 �12 �2V �1 �2 �3

ML 2.0962 0.1277 0.0079 1.5448 0.1911 0.8245
REML 2.0962 0.1276 0.0087 1.4019 0.1753 0.8429

We now compare prediction ability among the eight prediction methods: ML method,
REML method, approximate Bayesian method, and the mean and the median of the
MCMC samples for both priors. The ML method has been used in prediction by
Donnelly et al. (1995). The approximate Bayesian method is to take �̂y in (3:3) for both
priors 1 and 2 as the predictor for yi‘. To get �̂y for prior 2, the minimum accumulated
prediction error criterion was used to select the inverse gamma hyperparameters � and �
over the rectangle (1; 40]×(0; 10]. The values of S(�; �) were calculated on 1950×500
equally spaced grid points in the rectangle. The minimizer of these values was taken
as the selected value of (�; �) for prior 2.
Using the model and the data in the �rst 16 weeks in Fig. 1, each of the above eight

methods was used to predict the weight of each calf in the 18th week. For the weight
of the �rst calf in the 18th week given all the data in the �rst 16 weeks, using prior
1, Fig. 2 gives the exact predictive density (solid curve), approximate Bayesian pre-
dictive density (dashed curve), and MCMC predictive density (dotted curve). Similar
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Fig. 2. Comparison of predictive densities f(y|Y ) using prior 1.

comparisons are shown in Fig. 3 when using prior 2. Figs. 2 and 3 show that the
approximate Bayesian predictive density and the MCMC predictive density are very
close to the exact predictive density. This indicates that the predictive density can
be approximated closely by both approximate Bayesian and MCMC sampling meth-
ods. It is noted that the exact Bayesian predictive densities are obtained by numerical
integrations.
Table 5 gives the MAD and MARD for each of the above eight prediction methods.

Table 5 shows that REML and the approximate Bayesian method using prior 1 performs
about as well as MLE. However, the approximate Bayesian method using prior 2
performs better. The best among the methods compared are MCMC mean and median
using either prior. Thus, MCMC methods are quite encouraging for this model.
Fig. 4 gives 95% con�dence and posterior regions for �1 derived respectively by the

ML method (solid curve) and the approximate Bayesian method using prior 1 (dashed
curve) and using prior 2 (short dashed curve). It also shows the point estimates of �1
obtained by the three methods denoted by the circle, triangle, and plus signs, respec-
tively. Fig. 4 shows that the point estimates of �1 derived by the ML method and the
approximate Bayesian method using prior 1 are very close. The 95% posterior region
derived by the approximate Bayesian method using prior 1 is slightly larger than the
con�dence region obtained by the ML method. But the approximate Bayesian method
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Fig. 3. Comparison of predictive densities f(y|Y ) using prior 2.

Table 5
Comparison of prediction methods using real data

MLE REML Prior 1 Prior 2 MCMC(Prior 1) MCMC(Prior 2)

Mean Median Mean Median

MAD 0.0412 0.0412 0.0412 0.0398 0.0398 0.0380 0.0386 0.0386
MARD 0.0126 0.0126 0.0126 0.0120 0.0121 0.0116 0.0117 0.0117

using prior 2 has the largest posterior region for �1. It is noted that the con�dence
region obtained by the REML method is almost indistinguishable from that of the
approximate Bayesian method using prior 1.

5.2. A simulation study

In this section, a simulation study was conducted to compare both the coverage
probabilities of con�dence and posterior regions of �1 and the predictive intervals of yil
derived by the ML method, the REML method and those obtained by the approximate
Bayesian methods using priors 1 and 2. We now describe the simulation settings. The
simulated data were independently generated from the model with r = 1, �1 = 0:5,
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Fig. 4. 95% con�dence and posterior region of beta.

Table 6
Comparison of coverage probabilities for �1(1− � = 0:95)

N p MLE REML Prior 1 Prior 2

5 5 0.829 0.870 0.894 0.915
10 5 0.904 0.921 0.934 0.957
15 5 0.923 0.935 0.936 0.948
20 5 0.933 0.941 0.941 0.953

�2 = 0:1, �3 = 0:8, �2V = 0:2, �1 = (10; 1)
′, and

X =
[
1; 1; : : : ; 1
1; 2; : : : ; p

]′
:

Given p = 5, for N = 5; 10; 15, and 20, Table 6 gives the coverage probabilities
of 95% con�dence and posterior regions for �1. Given the values of N and p, each
data set contains N subjects and for each subject p measurements were made. For
each combination of N and p, 1000 independent data sets were generated. Table 6
shows that the approximate posterior regions, using both priors 1 and 2, have larger
coverage probabilities (and closer to 0.95) than the con�dence regions derived by the
ML method and the REML method.
Given p= 5, for N = 5; 10; 15, and 20, Table 7 gives the coverage probabilities of

95% predictive intervals for yil, the (p + 1)th measurement for each subject. Given
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Table 7
Comparison of coverage probabilities for yi‘(1− � = 0:95)

N p MLE REML Prior 1 Prior 2

5 5 0.8724 0.8798 0.9346 0.9372
10 5 0.9102 0.9156 0.9414 0.9472
15 5 0.9237 0.9273 0.9439 0.9506
20 5 0.9298 0.9313 0.9440 0.9508

Table 8
Comparison of prediction method (MAD)

N p MLE REML Prior 1 Prior 2

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

5 5 0.2796 0.0940 0.2782 0.0937 0.2783 0.0937 0.2757 0.0946
10 5 0.2716 0.0641 0.2710 0.0640 0.2710 0.0640 0.2681 0.0632
15 5 0.2676 0.0487 0.2673 0.0486 0.2673 0.0485 0.2648 0.0479
20 5 0.2653 0.0453 0.2651 0.0452 0.2651 0.0452 0.2629 0.0448

Table 9
Comparison of prediction methods (MARD)

N p MLE REML Prior 1 Prior 2

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

5 5 0.0175 0.0059 0.0174 0.0059 0.0174 0.0059 0.0173 0.0059
10 5 0.0170 0.0040 0.0170 0.0040 0.0170 0.0040 0.0168 0.0040
15 5 0.0168 0.0031 0.0167 0.0030 0.0167 0.0030 0.0166 0.0030
20 5 0.0166 0.0028 0.0166 0.0028 0.0166 0.0028 0.0165 0.0028

the values of N and p, each data set contains N subjects and for each subject p+ 1
measurements were made. Among the N subjects, the �rst p measurements were used
to predict yil. For each combination of N and p, 1000 independent data sets were
generated. Hence there were N ×1000 predicted values to be compared with N ×1000
true values. Table 7 shows that the approximate Bayesian predictive intervals using
both priors 1 and 2 have larger coverage probabilities (and closer to 0.95) than those
for the intervals derived from the ML method and the REML method.
Given p=5, for N=5; 10; 15, and 20, Tables 8 and 9 give the prediction comparisons

for the various methods in terms of MAD and MARD, respectively. Prediction intervals
from the four methods are given in Table 10.
All four predictors perform about equally, although prior 2 is slightly better. Finally,

we will show biasedness of the estimate for �2V . Given p=5, for N =5; 10; 15, and 20
and set �2V = 0:2, Table 11 shows that the mean of the REML estimates is positively
biased.
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Table 10
Comparison of prediction intervals

True MLE REML Prior 1 Prior 2
weight

Lower Upper Lower Upper Lower Upper Lower Upper

3.4000 3.2809 3.5508 3.2798 3.5507 3.2767 3.5538 3.2652 3.5439
3.6500 3.4854 3.7553 3.4873 3.7582 3.4842 3.7613 3.4956 3.7743
3.5300 3.3676 3.6365 3.3664 3.6372 3.3633 3.6403 3.3519 3.6306
3.4800 3.3827 3.6517 3.3809 3.6517 3.3778 3.6548 3.3644 3.6432
3.3300 3.2109 3.4808 3.2102 3.4810 3.2071 3.4841 3.1957 3.4744
3.1800 3.1526 3.4225 3.1512 3.4221 3.1481 3.4252 3.1263 3.4050
3.4400 3.3702 3.6401 3.3698 3.6406 3.3667 3.6437 3.3544 3.6331
3.6200 3.4653 3.7353 3.4663 3.7372 3.4632 3.7403 3.4610 3.7397
3.2800 3.1405 3.4104 3.1384 3.4092 3.1353 3.4123 3.1090 3.3878
3.7200 3.5519 3.8218 3.5528 3.8236 3.5497 3.8267 3.5488 3.8278
3.1700 3.1092 3.3791 3.1075 3.3784 3.1044 3.3815 3.0845 3.3632
3.1500 3.0794 3.3493 3.0777 3.3486 3.0746 3.3517 3.0568 3.3355
3.2000 3.1756 3.4455 3.1753 3.4461 3.1722 3.4492 3.1666 3.4454
3.2800 3.1671 3.4371 3.1660 3.4368 3.1629 3.4399 3.1469 3.4256
3.1100 2.9660 3.2359 2.9650 3.2359 2.9619 3.2390 2.9491 3.2278
3.3000 3.1753 3.4452 3.1742 3.4450 3.1711 3.4481 3.1559 3.4346
3.3800 3.2845 3.5544 3.2848 3.5556 3.2817 3.5587 3.2767 3.5554
3.0900 3.0374 3.3074 3.0366 3.3075 3.0335 3.3106 3.0261 3.3048
3.3300 3.2197 3.4896 3.2187 3.4896 3.2156 3.4927 3.2041 3.4828
3.1400 3.0299 3.2998 3.0281 3.2989 3.0250 3.3020 3.0163 3.2940
3.3000 3.1942 3.4641 3.1947 3.4655 3.1916 3.4686 3.1913 3.4690
3.3300 3.2277 3.4976 3.2266 3.4975 3.2235 3.5006 3.2063 3.4840
3.2700 3.2147 3.4846 3.2126 3.4835 3.2095 3.4866 3.1938 3.4725

Table 11
REML estimate of �2V

a

N p Mean S.D.

5 5 0.2216 0.1546
10 5 0.2270 0.1311
15 5 0.2211 0.1125
20 5 0.2231 0.1043

aThe true value of �2V is 0.2.

6. Concluding remarks

In this paper we consider, from a Bayesian viewpoint, estimation of parameters and
prediction of future values for the longitudinal model proposed by Diggle (1988). Two
di�erent priors are employed in this study. For the noninformative prior, it is found that
the approximate Bayesian estimates of the regression coe�cients are identical to the
REML estimates. For the informative prior, the inverse gamma distribution is assumed
for both variance ratios with the same set of hyperparameters which are determined
from the sample using the minimum accumulated prediction error criterion.
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In real and simulated data, it is found that the proposed methods are quite encour-
aging. For the prediction of future values, the approximate Bayesian predictor using
noninformative prior performs about the same as the REML predictor, but slightly better
than the ML predictor, although the approximate Bayesian predictor using informative
prior is even better. The best among the predictors compared are the MCMC mean and
median using either noninformative or informative priors. For the con�dence and pos-
terior regions, it is found that the posterior region based on the approximate posterior
distribution of the regression coe�cients when noninformative prior is employed has a
much more accurate coverage probability than the ML method and the REML method
when the sample size is small. Thus we believe that the proposed approximate method
is a useful alternative to the ML method and the REML method in dealing with the
longitudinal model proposed by Diggle (1988). Of course, better results are those using
the MCMC simulation as suggested in the paper, although the implementation is more
involved. However, the steps outlined in the paper can be followed rather easily.
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