
Applying stack simulation for branch target bu�ers q

R-Ming Shiu *, Neng-Pin Lu, Chung-Ping Chung

Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC

Received 20 August 1998; received in revised form 8 January 1999; accepted 15 February 1999

Abstract

Branch target bu�er (BTB) is widely used in modern microprocessor designs to reduce the penalties caused by branches. To

evaluate the performance of a BTB, trace-driven simulation is often used. However, as the trace of a typical program is very large,

the simulation time is often too long. To reduce the simulation time, we developed a stack simulation technique for BTB to evaluate

many sets of design parameters in one simulation pass. Due to the fact that the prediction information in the BTB does not have the

inclusion property ± a property which makes the stack simulation work, we propose a state vector method to enumerate the pre-

diction information for di�erent sets of BTB design parameters to mimic the inclusion property. Simulation results show that the

state vector method greatly reduces the simulation time. The speedup of the stack simulation for BTB proposed in this paper over

the traditional BTB simulation is 4.68 in terms of simulation time when 13 sets of BTB design parameters are simulated in one

simulation pass. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Branch target bu�er; Branch prediction; Trace-driven simulation; Single-pass simulation; Stack simulation

1. Introduction

Contemporary microprocessor designs achieve higher
performance by using superpipelining and superscalar
processing. In contrast, the performance degradation
caused by branch instructions becomes more vital. To
reduce the penalties caused by branches, many branch
prediction schemes have been proposed in the literature
(Lee and Smith, 1984; Dubey and Flynn, 1991). Among
these schemes, the branch target bu�er (BTB) has been
used in many modern microprocessors.

The BTB is a storage associated with the instruction
fetch stage of the instruction pipeline. As shown in Fig. 1,
each entry of a BTB contains three ®elds to record the
behavior of the previously executed branches: the branch
address, the target address, and the prediction state. In
the instruction fetch stage, the address of an instruction
is compared with all the valid branch address ®elds. If a
match is found in the comparison, the associated pre-
diction state will be used to predict the branch direction.

If the branch is predicted to be taken, the content of the
target address ®eld will be used as the next instruction
address. To gain higher performance, the BTB must be
designed carefully. The design parameters of a BTB in-
clude the size, placement, associativity degree, replace-
ment, and the mechanism that maintains the prediction
state. As the performance loss due to prediction miss
becomes more vital, careful selections of these parame-
ters become more crucial.

Trace-driven simulation has been the most popular
method to evaluate the BTB designs (Dubey and
Flynn, 1991). It can give more accurate and detailed
performance data than the analytical modeling, and is
more e�cient than the software-based emulation. The
time required in a trace-driven simulation is in pro-
portion to both the length of the simulated trace and
the number of alternative design parameters. Though
the computing power of recent computers has been
greatly increased, the trace lengths of generally ac-
cepted benchmark suits have also grown inde®nitely.
For example, BTB trace-simulation for some of the
SPEC95 benchmarks may run several days with only
one set of design parameters (Case, 1995). Worse yet,
the speed of reading trace ®les from secondary storage
has not been improved as expected. Several techniques,
such as trace sampling (Laha et al., 1988; Chame and
Dubois, 1993) and trace reduction (Wang and Baer,

The Journal of Systems and Software 52 (2000) 67±78
www.elsevier.com/locate/jss

q This paper presents partial result of a long-term research project

®nanced by both the NSC of ROC under contract no. NSC 87-2622-E-

009-009 and the industry.
* Corresponding aurhor. Tel.: +886-3-5712121-54740; fax: +886-3-

5724176.

E-mail address: rmshiu@csie.nctu.edu.tw (R.-M. Shiu).

0164-1212/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 1 3 3 - 8

1991), have been developed to reduce the trace length
without sacri®cing accuracy. However, these techniques
still require that the simulation be run once to trim the
original trace down. The trimmed trace can then be
used in the simulation, once for each set of design
parameters. To reduce the time required in the simu-
lation process, some approach, called the single-pass
simulation, has been proposed to evaluate many sets of
design parameters in one simulation pass for systems
with certain particular properties.

The single-pass simulation techniques for storage
systems of di�erent kinds, such as memory hierarchies,
bu�ers and caches, have been thoroughly studied in the
last decade. Mattson and his colleagues (Mattson et al.,
1970, 1971) explored the single-pass simulation tech-
nique to evaluate memories with di�erent sizes, known
as the stack simulation. They observed that when the
data stored in the memories of di�erent speci®cations
hold the inclusion property, then all the stored data can
be presented as in a stack and evaluated in a single trace
pass. This technique has been applied to designs on
di�erent storage hierarchies (Gecsei, 1974; Tompson
and Smith, 1989; Hill and Smith, 1989; Wang and Baer,
1991; Silberman, 1983; Sugumar and Abraham, 1995;
Wu and Muntz, 1995).

In this research, we intend to apply the stack simu-
lation technique to evaluate the performance of di�erent
BTB designs. Several di�culties remain to be con-
quered. The BTB is a storage to help predict branch
directions by keeping the past branch information. The
branch instruction addresses and target addresses in the
BTB adhere to the inclusion property, thus we can
simply apply the stack simulation on these two ®elds.
However, since the prediction state in the BTB usually
does not adhere to the inclusion property, modi®cation
must be made to the stack simulation to remedy this
situation.

To mimic the including property of the prediction
state, we propose a state vector method. The behavior of
the prediction state can be modeled with a ®nite state
automata. By enumerating the prediction states of BTBs
with di�erent sizes, this method can manipulate the ®-
nite state automata on every prediction state. As a re-
sult, the algorithm proposed in this paper can reduce the
simulation time of the trace-driven simulation for the
BTB designs signi®cantly.

The remainder of this paper is organized as follows.
Section 2 reviews the stack simulation for the general
memories. Section 3 presents the general BTB simula-
tion algorithm, studies the behavior of the BTBs, and
creates a simulation model suitable for stack simulation.
We develop the stack simulation procedure for BTBs in
Section 4. Section 5 shows the experimental results and
in Section 6, we conclude this paper.

2. Stack simulation

This section describes the stack simulation for the
general memory as proposed in Mattson et al. (1970).
Mattson et al. have showed that if the replacement al-
gorithm used in the memories of di�erent sizes obeys the
inclusion property, these memories can be represented
and maintained as a stack, and the replacement algo-
rithm is called the stack algorithm. The popular stack
algorithms include the least recently used (LRU) algo-
rithm, the least frequently used (LFU) algorithm, and
the optimum (OPT) algorithm. In this paper, we focus
our attention on the LRU algorithm due to its popu-
larity. However, it is easy to extend the technique to deal
with other stack algorithms.

Let X � �x1; x2; . . . ; xT � be the memory access trace
used in our simulation, where xt is the access address
used at time t and T is the length of the trace. Assume
that the purpose of the simulation is to measure the hit
ratios of memories with sizes ranged from 1 to C blocks.
The inclusion property holds if the data contained in the
smaller bu�er are also contained in the larger bu�er at
any given point of simulated time. Let Mt�c� be the set of
blocks contained in the memory of size c at time t. The
inclusion property can be described as follows:

Mt�cÿ 1� � Mt�c� for all 16 t6 T and 16 c6C:

By this property, one can see that the sets of blocks
contained in the memories of di�erent sizes at the same
time form a total ordering. And the blocks contained in
the memories of di�erent sizes can be represented with a
stack St � �st�1�; st�2�; . . . ; st�C��, where st�c� is the cth
block of the stack at time t. We call the cth block as at
the level c of the stack. As shown in Fig. 2,
st�0� � /; st�c� � Mt�c� ÿMt�cÿ 1� for 16 c6C, and

Fig. 2. The stack formed by the blocks contained in the memories of

di�erent sizes.

Fig. 1. The organization of a branch target bu�er.

68 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

the blocks contained in the memory of size c are those
from the stack top to level c.

The stack portrays the history of the memory access
trace X. When an access xt is to take place in the sim-
ulation, we identify the level of the stack Stÿ1 such that
stÿ1�Dt� � xt, where Dt is the stack distance of xt from the
top of the stack. If xt is not in Stÿ1, then Dt � 1. The
access to xt is a hit when the memory size is larger than
or equal to Dt; otherwise it is a miss. If the access to the
stack is a hit, the stack should be updated as shown in
Fig. 3. Under the LRU algorithm, the stack level posi-
tion of a memory block in the stack represents the pri-
ority of a block to be replaced. The deeper the stack
level of a memory block, the lower priority the memory
block to stay in the memory. Since xt has the highest
priority, it is moved to the top of the stack and becomes
st(1). The other blocks originally on top of xt in the stack
are pushed down one place and kept in the original
order.

The stack simulation proposed in Mattson et al.
(1970) evaluates only fully associative memories. Hill
and Smith (1989) extended the stack simulation to
simulate memories with di�erent associativities, called
the all-associativity simulation. In this paper, we focus
our attention on stack simulation of the fully associative
BTBs. To extend the stack simulation to become the all-
associativity simulation using the same technique pro-
posed in Hill and Smith (1989), our technique can easily
be applied to evaluate the BTBs with di�erent associ-
ativities.

3. BTB simulation model

To develop the stack simulation technique for the
BTB, a BTB simulation model is ®rst built to model the
behavior of a BTB simulation. We re®ned the BTB
model in Dubey and Flynn (1991). The BTB simulation
model contains the following four components: the
branch trace, the prioritized BTB entries, the branch
prediction automata, and the general BTB simulation

algorithm. These components are presented in the fol-
lowing sections.

3.1. Branch trace

Each entry of the input trace to the BTB simulation
model represents a branch encountered in the program
execution trace, and must have three ®elds: the branch
address, the branch target address, and an indicator
showing whether the branch is taken or not. Prepro-
cessing may be needed to generate this trace from the
program execution trace. We de®ne the branch trace as
follows:

De®nition 1. Branch trace ± A branch trace B �
��ba1; bta1; bt1�; �ba2; bta2; bt2�; . . . ; �baT ; btaT ; btT �� is the
input trace to the BTB simulator, where �bat; btat; btt�
represents the branch encountered at time t, whose in-
struction address is the branch address bat, and the target
address is the branch target address btat. If the branch is
taken, the branch taken btt is true; otherwise, btt is false.

3.2. Prioritized BTB entries

Each entry of a typical BTB consists of three ®elds:
the address tag, the target address, and the prediction
state. Under the LRU replacement algorithm, the pri-
ority for replacement of a BTB entry can be determined
by the position of the entry in the BTB. (Under other
stack algorithms, a priority ®eld may be needed to hold
the priority level.) By sorting the entries in the replace-
ment order, a total ordering set, called the prioritized
BTB Entries, is obtained. The prioritized BTB entries
are de®ned as follows:

De®nition 2. Prioritized BTB entries ± The prioritized
BTB entries, abbreviated the BTB entries, is a total or-
dering set:

Et�c� � �et�1; c�; et�2; c�; . . . ; et�c; c��;
where et�i; c� � �eat�i; c�; etat�i; c�; estt�i; c�� is the ith
entry in the BTB of size c at time t, for 16 i6 c, whose
branch address is eat�i; c�, target address is etat�i; c�, and
prediction state is estt�i; c�. We say that et�i; c� is at the
level i of the BTB entries. If i > j, the entry et�i; c� is
likely to be replaced before et�j; c�. We assume that Et�0�
is empty.

3.3. Branch prediction automata

The maintenance of the prediction states of a BTB is
regular and can be represented with a Moore machine
with some modi®cations. We de®ne a Branch Prediction
Automata (BPA) to specify the maintenance procedure.
An n-bit prediction pattern can be used to represent 2n

states of the BPA. When an entry is created in the BTB,

Fig. 3. Stack update with the LRU algorithm.

R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78 69

the prediction state associated with the entry is initial-
ized by a state initialization function m in the BPA. Ac-
cording to the prediction state, one can predict the
branch behavior using a branch prediction function q in
the BPA. The input to the BPA is the branch taken ®eld
btt of the branch trace. If the branch at time t is taken,
the input is true; otherwise, the input is false. According
to the input, the state is translated by a state transition
function d in the BPA. That is, given a state sttÿ1 at time
t ÿ 1, one can predict the branch behavior by the value
of q�sttÿ1� and get the state at time t by stt � d�sttÿ1; btt�.
The BPA is formally de®ned in the following:

De®nition 3. Branch prediction automata ± A Branch
Prediction Automata (BPA) is a quintuple �Q;R; d; q; m�,
where

(1) Q is the set of states, denoted as Q �
fq0; q1; . . . ; q2nÿ1g, where n is the number of bits used
in the prediction state ®eld.
(2) R � ffalse; trueg, is the branch outcome.
(3) d : Q� R! Q, is a state transition function.
(4) q : Q! ffalse; trueg, is a branch prediction func-
tion.
(5) m : R! Q, is a state initialization function.

An example of a 1-bit predictor is given below. Here
Q � fq0; q1g;R � ffalse; trueg, and the functions d; q,
and m are given as follows:

d : d�q0; false� � q0; d�q0; true� � q1; d�q1; false� � q0;

d�q1; true� � q1;

q : q�q0� � false; q�q1� � true; m : m�false� � q0;

m�true� � q1:

Fig. 4 shows the transition diagram of the BPA. The
initialization arrows are determined by m, and the tran-
sition arrows are determined by d. The inputs to the
BPA are marked by the side of the transition arrows,
and the outputs associated with the states are deter-
mined by the branch prediction function q.

3.4. General simulation for BTBs

The following presents the general algorithm to sim-
ulate the BTBs with di�erent sizes, called the general
simulation for BTBs. This algorithm, shown in Fig. 5, is
then used as the basis to develop our stack simulation
for BTBs in Section 4. The input to the algorithm is the
branch trace as de®ned in Section 3.1. The most im-
portant metric to evaluate the BTB performance is the
prediction accuracy ratio. The BTB hit ratio may also be
inspected to see if the performance is limited by the BTB
size. The outputs of this algorithm are the two counts
de®ned as follows:Fig. 4. The transition diagram for the BPA of a 1-bit predictor.

Fig. 5. The general simulation algorithm for BTBs.

70 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

De®nition 4. BTB hit count and prediction correct
count±For a BTB with size c, where 16 c6C, the BTB
hit count, denoted as Nhit�c�, is the number of BTB hits,
and the prediction correct count, denoted as Ncorrect�c�, is
the number of predictions which are correct.

Thus the prediction accuracy ratio for a BTB with
size c is equal to Ncorrect�c�=T , and the hit ratio is
Nhit�c�=T . The average penalty caused by mispredictions
can be represented by p � �1ÿ Ncorrect�c�=T �, where p is
the penalty caused by a misprediction. In this paper, we
assume that all the penalties caused by mispredictions in
di�erent conditions are the same for simplicity and
clarity. It is an easy task to modify the algorithm to
simulate with di�erent penalties in di�erent conditions if
necessary.

This algorithm simulates the behavior of BTBs with
sizes from 1 to C. For an arbitrary size c, this algorithm
works as follows: Each time a branch �bat; btat; btt� is
encountered, Etÿ1�c� is searched to see if there is an
etÿ1�d; c� in it such that eatÿ1�d; c� � bat. If the entry is
found, the BTB hit count will be increased and the
branch will be predicted using the value of
q�esttÿ1�d; c��. This entry is then given the lowest pri-
ority to be replaced, and becomes the ®rst entry of Et�c�.
Its prediction state is also updated to d�esttÿ1�d; c�; btt�.
The order of the other entries of Et�c� keeps unchanged.

On the other hand, if the search of Etÿ1�c� for
etÿ1�d; c� is a miss, a new entry is created at the top of
the BTB with its prediction state initialized to m�btt�.
Other entries in the Et�c� still keep the original order,
and the previously last entry is replaced. In case of a
BTB miss, the prediction is still correct if the branch
happens to be not taken.

In this algorithm, we use a Predict_Verify function
shown below to check if the prediction is correct.

function Predict_Verify (pred, bt: boolean, bta, eta:
address): boolean;

begin
Predict Verify :� �pred � bt� and

�bt � false or �bt � true and bta � eta��;
end

This function also appears in the next algorithm
presented in this paper. The inputs to this function are
the prediction result pred, the branch taken ®eld bt, the
branch target address bta of the branch trace and
the target address ®eld eta of the BTB entries. If the
branch is not taken, a prediction is said to be correct
only if it also predicts that the branch will not be
taken. However, if the branch is taken, a prediction is
said to be correct only when it predicts a taken branch
and the predicted target address agrees with the real
target address.

This algorithm scans the branch trace once for every
BTB size evaluated. Since the trace is either read from a
®le or obtained during program execution, the time

needed to scan the trace is critical. We develop a stack
simulation technique for the BTB in the following sec-
tion to overcome this defect.

4. Stack simulation for the BTBs

In this section, we develop a stack simulation tech-
nique to evaluate the performance of BTBs. We ®rst
show that the BTBs have the inclusion property if their
entries do not contain the prediction state ®eld, or if the
prediction state ®eld contains a 1-bit predictor. Then we
point out that the BTBs have not the inclusion property
if their prediction state ®eld contains more than 1 bit.
Finally, we propose a stack vector method to mimic the
inclusion property for multi-bit predictors, and develop
the stack simulation for the BTBs.

4.1. Inclusion property of the BTBs with no prediction
state ®eld

To apply the stack simulation technique to evaluate
the BTBs, the inclusion property of the BTBs must ®rst
be guaranteed. A typical BTB entry contains the fol-
lowing three ®elds: the branch address ®eld eat, the
target address ®eld etat, and the prediction state estt.
The behaviors of the ®rst two ®elds are similar to that of
an ordinary memory, thus their inclusion property can
easily be proved. If the BTB entries contain no predic-
tion state ®eld, conventional stack simulation algorithm
can easily be applied to evaluate such BTBs.

To show that these two ®elds, eat and etat, have the
inclusion property, we must show that each entry con-
tained in any BTB will also be contained in a BTB of
larger size. Moreover, since the entries in a BTB are
ordered, thus the ®rst i entries of any arbitrary BTB
must all be the same. We show this fact in Theorem 1.

Theorem 1. Inclusion property of the BTBs with no pre-
diction state field ± Under the LRU replacement algo-
rithm, for any time t and any BTB with size c ranged from
1 to C,

eat�i; c� � eat�i;C� and etat�i; c� � etat�i;C�
for all 16 i6 c:

Proof. We prove this theorem by induction. We ®rst
choose an arbitrary C. The equalities must hold at t � 1,
since there is only one entry in the BTB. Assume that at
time t ÿ 1,

for all 16 c6C and 16 i6 c; eatÿ1�i; c� � eatÿ1�i;C�:
Beginning with this induction hypothesis, the proof

must satisfy the three conditions shown below, accord-

R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78 71

ing to the assignment of eat in the general simulation for
BTBs shown in Fig. 5:

(1) For all 16 c6C, eatt�1; c� � bat by lines 8 and
14 of the general simulation algorithm for BTBs.
(2) If we can ®nd an etÿ1�d;C� in Etÿ1�C� such that
eatÿ1�d;C� � bat, then

(i) For all 16 c < d, eat�i; c� � eatÿ1�iÿ 1; c� �
eatÿ1�iÿ 1;C�, for all 26 i6 c, by line 15; besides,
eat�i;C� � eatÿ1�iÿ 1;C� for all 26 i6 c, by
line 9.
(ii) For all d 6 c6C,

eat�i; c� � eatÿ1�iÿ 1; c� � eatÿ1�iÿ 1;C�
for all 26 i6 d; by line 9; and

eat�i; c� � eatÿ1�i; c� � eatÿ1�i;C�
for all d � 16 i6 c; by line 10:

(3) If we cannot ®nd an etÿ1�d;C� in Etÿ1�C� such
that eatÿ1�d;C� � bat, then for all 16 c6C and
26 i6 c; eat�i; c� � eatÿ1�iÿ 1; c� � eatÿ1�iÿ 1;C�,
by line 15.

From the above conditions (1)±(3), we conclude that

for all 16 c6C and 16 i6 c; eat�i; c� � eat�i;C�:
In the similar way, we can get that

for all 16 c6C and 16 i6 c; etat�i; c� � etat�i;C�: �
By Theorem 1, we know that for the two ®elds eat and

etat, the ®rst i entries of any arbitrary BTB are the same.
Thus the contents of these two ®elds in the largest BTB
can be used to represent the entries of BTBs with dif-
ferent sizes. Since the contents of these two ®elds do not
change as a function of BTB size, we rename these ®elds
in the largest BTB and remove the index of size as
follows:

De®nition 5. Branch address ®eld and target address
®eld ± The content of the branch address field at level i
and time t is denoted as at�i� and is equal to eat�i;C�.
The content of the target address field at level i and time
t is denoted as tat�i� and is equal to etat�i;C�.

4.2. Inclusion property of BTB with 1-bit prediction state
®eld

If the prediction state ®eld of the BTB works as the
1-bit predictor shown in Fig. 4, then the BTB has the
inclusion property, and the general stack simulation
algorithm can be applied to evaluate such BTBs. This
fact is formally stated in Theorem 2.

Theorem 2. Inclusion property of the 1-bit prediction state
field ± Under the LRU replacement algorithm, for any
time t and any BTB size c ranged from 1 to C, if the est
field is 1-bit wide and works as the 1-bit predictor, then

estt�i; c� � estt�i;C� for all 16 i6 c:

Proof. The proof is very similar to the proof of Theorem
1, except that all the ea ®elds are changed to become the
est ®elds, and condition (1) of Theorem 1 should be
changed to
�1�0 (i) If we can ®nd an etÿ1�d;C� in Etÿ1�C� such
that eatÿ1�d;C� � bat, then estt�1; c� � m�btt� for all
16 c6 d, by line 14 of the general simulation algo-
rithm for BTBs, and estt�1; c� � d�esttÿ1�d; c�; btt�
for all d � 16 c6C, by line 8. Since the transition
function of the 1-bit predictor always sets estt�1; c�
to m�btt�, regardless of the previous esttÿ1�d; c� state,
estt�1; c� � estt�1;C�.
(ii) If we cannot ®nd an etÿ1�d;C� in Etÿ1�C� such
that eat�d;C� � bat, then for all 16 c6C; estt�1; c�
� m�btt� by line 14. So estt�1; c� � estt�1;C�: �

4.3. Finite automata problem

Here we show that the prediction state ®eld estt may
violate the inclusion property by giving an example.
Since the prediction state is maintained as a ®nite au-
tomata ± the BPA, we call such a violation the finite
automata problem.

Consider the instance shown in Fig. 6(a). The BTB
entries of BTB sizes ranging from 1 to 3 are shown by
concatenating the branch address and the states of the
three sizes in sequence. The states are maintained by a
2-bit shifter whose BPA is shown in Fig. 6(b). From
t � 1 to 6, the given sequence of branches are en-
countered and their addresses bat and taken ®elds btt

were shown on the following rows of Fig. 6(a). The
entries in E are modi®ed according to the general
simulation algorithm for BTBs, and the three branch
address ®elds are modi®ed separately. At t � 6, the
three branch address ®elds of the ®rst entry are in
di�erent states. These ®elds are shadowed in the ®gure.
So, the prediction state ®eld does not show the inclu-
sion property.

4.4. State vector

To solve the ®nite automata problem, we enumerate
the prediction states of all BTBs of di�erent sizes, and
manipulate the behavior of them using the BPA. By
concatenating the states of all sizes to be evaluated, we
de®ne a state vector as follows. The cth state of the
vector at level i is equal to the state of the ith entry of the
BTB of size c. When the size is smaller than the level, the
state does not exist in the BTB.

De®nition 6. State vector ± A state vector at level i and
time t is stvt�i� � �stt�i; 1�; stt�i; 2�; . . . ; stt�i;C��, where
16 i6C, and stt�i; c� � estt�i; c�, if i6 c; otherwise,
stt�i; c� can be discarded.

72 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

We modify the BTB entries to become the concate-
nation of the branch address ®eld, the target address
®eld, and the state vector. Since these three ®elds are all
size independent, we can remove the index of the BTB
size from the representations of the entries. We call the
modi®ed BTB entries the BTB entries with state vector,
and de®ne them in the following.

De®nition 7. BTB entries with state vector ± The BTB
entries with state vector, abbreviated as the extended
BTB entries, is a total ordering set

E0t�c� � �e0t�1�; e0t�2�; . . . ; e0t�c��;
where e0t�i� � �at�i�; tat�i�; stvt�i�� is the ith entry in a
BTB of size c at time t for all 16 i6 c, whose branch
address is at�i�, target address is tat�i�, and the associ-
ated state vector is stvt�i�. The order of these entries is
the same as that of the BTB entries. We assume that
E0t�0� is empty.

The way to turn the BTB entries into the extended
BTB entries is shown in Fig. 7. In Fig. 7(a), the extended

BTB entries with sizes ranging from 1 to C are listed.
Since the ®rst two ®elds eat�i; c� and etat�i; c� of a BTB
entry are ®xed independent of the BTB size, these two
®elds can be renamed to at�i� and tat�i�. The state vector
stvt enumerates the states of di�erent BTB sizes. The
extended BTB entries consist of the three ®elds: at, tat,
and stvt, as shown in Fig. 7(b). Note that the lower left
triangular portion of the stvt matrix which is shadowed
in Fig. 7(b) does not actually exist.

To develop the stack simulation algorithm for BTB, it
must be shown that the extended BTB entries have the
inclusion property. Since the contents of the ®elds of the
extended BTB entries are size independent, the ®rst i
entries of any arbitrary BTB are the same. Thus the
proof of the inclusion property of the extended BTB
entries is trivial.

Theorem 3. Inclusion property of the extended BTB en-
tries:

E0t�cÿ 1� � E0t�c� for all 16 t6 T and 16 c6C:

Fig. 7. Turning the BTB entries into the extended BTB entries. (a) The BTB entries of di�erent BTB sizes. (b) The BTB entries with state vectors.

Fig. 6. An example of the ®nite automata problem. (a) Comparing states in BTBs with di�erent capacities. (b) The BPA of a 2-bit shifter.

R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78 73

Proof.

Since �e0t�1�; e0t�2�; . . . ; e0t�cÿ 1�� � �e0t�1�; e0t�2�; . . . ; e0t�c��

for all 16 t6 T and 16 c6C;

E0t�cÿ 1� � E0t�c� for all 16 t6 T and 16 c6C: �

4.5. Stack simulation for BTBs

With the extended BTB entries, we can combine the
features of conventional stack simulation and the
general simulation for BTBs, and propose a stack
simulation for BTBs to evaluate the BTBs of di�erent
sizes in a single simulation pass. The stack simulation
algorithm is shown in Fig. 8 and works as follows:
Each time a branch �bat; btat; btt� is encountered,
E0tÿ1�C� is searched for an e0tÿ1�D� such that
atÿ1�D� � bat, where D is the stack distance. If the
search is a miss, then D will be set to be C � 1. For the
BTBs of sizes smaller than D, the branch results in a
BTB miss, and the prediction is correct if the branch is
not taken. For the BTBs of sizes larger then or equal
to D, the BTB search is a hit and the prediction is
determined by the states enumerated in the vector
stvtÿ1�D�. The accuracy of these predictions is checked
by the Predict_Verify function. Since the branch just
encountered has the lowest priority to be replaced, it is
pushed onto the top of the stack, and its state vector
can be obtained by the following way: For the BTB

sizes smaller than D, the BTB search is a miss, and the
states are initialized by the state initialization function
m. For the BTB sizes larger than or equal to D, the
BTB search is a hit and the states are obtained by the
state transition function d, according to the previous
states obtained from the vector stvtÿ1�D�.

To reduce the time needed for simulation statistics,
we count the number of BTB search hits in a set of
partial BTB hit counts, denoted as Np hit�c�. Each time a
branch is encountered and its D is known, for all the
BTBs whose sizes are larger than or equal to D, we in-
crease the Np hit�D� to record this BTB hit. At the end of
the simulation, the BTB hit counts can be obtained by
summing up these partial BTB hit counts.

This algorithm scans the trace only once and evalu-
ates the BTBs of all sizes considered. Since the time to
scan the trace is always critical, the improvement due to
the stack simulation is enormous.

To prove the correctness of this algorithm, we must
show that the hit and correct counts of this algorithm
are the same as those of the general simulation algo-
rithm for BTBs. Since these counts are summed up in
the same way according to fEt�c�j16 c6Cg (the BTB
entries of di�erent sizes) and E0t�C� (the extended BTB
entries), we can prove the correctness of the stack
algorithm by showing that at any time t, the infor-
mation in fEi�c�j16 c6Cg and E0t�C� is the same. In
the following proof, we denote the nth-line statement
of the general simulation algorithm for BTBs in Fig. 5
with Gn, and the stack simulation algorithm for BTBs
in Fig. 8 with Sn, respectively.

Fig. 8. The stack simulation algorithm for BTBs.

74 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

Theorem 4. The correctness of the stack simulation al-
gorithm for BTBs ± In the stack simulation for BTBs, for
any time t and any BTB size c ranged from 1 to C,

at�i� � eat�i; c�; tat�i� � etat�i; c�; and

stt�i; c� � estt�i; c� for all 16 i6 c:

Proof. We prove this theorem by induction. We ®rst
choose an arbitrary C. The equalities must hold at t � 1,
since there is only one entry in the BTB and for all
16 c6C, et�1; c� :� �bat; btat; m�btt�� (by G14); while

at�1� :� bat; tat�1� :� btat�by S13�; stt�1; c� :� m�btt�
�by S14�:
Assume that at time t ÿ 1, for all 16 c6C and

16 i6 c,

atÿ1�i� � eatÿ1�i; c�; tatÿ1�i� � etatÿ1�i; c� and

sttÿ1�i; c� � esttÿ1�i; c�:
Beginning with this induction hypothesis, the proof
must satisfy the three conditions shown below, accord-
ing to the assignment of eat in the stack simulation al-
gorithm for BTBs shown in Fig. 5:

(1) For all 16 c6C, eat�1; c� � bat; etat�1; c� � btat

(by G8 and G14); while at�1� � bat; tat�1; c� � btat

(by S13).
(2) If we can ®nd an e0tÿ1�d� in E0tÿ1�C� such that
atÿ1�d� � bat, then

(i) For all 16 c < d, by the induction hypothesis,
we cannot ®nd an etÿ1�d; c� in Etÿ1�c� such that
eatÿ1�d; c� � bat. Hence

(1) For all 16 i6 c, etst�1; t� � m�btt� (by G14);
while stt�1; i� � m�btt� (by S14).
(2) For all 26 i6 c; et�i; c� � etÿ1�iÿ 1; c� (by
G15); while e0t�i� � e0tÿ1�i1� (by S16).

(ii) For all d 6 c6C, by the induction hypothesis,
we can ®nd an etÿ1�d; c� in Etÿ1�c� such that
eatÿ1�d; c� � bat. Hence

(1) For all c6 i6C; estt�1; i� � d�esttÿ1�d; i�; btt�
(by G8); while stt�1; i� � d�esttÿ1�d; i�; btt� (by
S15).
(2) For all 26 i6 d; et�i; c� � etÿ1�iÿ 1; c� (by
G9); while e0t�i;C� � e0tÿ1�iÿ 1;C� for all
26 i6 d (by S16).
(3) For all d � 16 i6 c; et�i; c� � etÿ1�i; c� (by
G10); while e0t�i� � e0tÿ1�i� for all d � 16 i6 c
(by S17).

(3) If we cannot ®nd an e0tÿ1�d� in E0tÿ1�C� such that
atÿ1�d� � bat, then by the induction hypothesis, for
all 16 c6C, we cannot ®nd an etÿ1�d; c� in Etÿ1�c�
such that eatÿ1�d; c� � bat. Hence

(i) For all 16 c6C; esttt�1; c� � m�btt� (by G14);
while stt�1; c� � m�btt� (by S14).
(ii) For all 26 i6 c; et�i:c� � etÿ1�iÿ 1; c� (by
G15); while e0t�i� � e0tÿ1�i� for all d � 16 i6 c
(by S17).

From the above conditions (1)±(3), we conclude that for
all 16 c6C and 16 i6 c, at�i� � eat�i; c�, tat�i� �
etat�i; c� and stt�i; c� � estt�i; c�. �

5. Experiments

To show the speedup of the stack simulation over the
general simulation for BTBs, we build a trace-driven
simulator to obtain their simulation times. In this sec-
tion, we ®rst describe the overview of the simulator
built. Then the bene®ts of our approach are demon-
strated by comparing the simulation times of the dif-
ferent methods.

5.1. Simulator overview

We build a trace-driven simulator to measure the
simulation times of the general simulation and the stack
simulation for BTBs. An input ®le is used to specify the
simulation options, including the BPA, the algorithm
mode, and the range of the BTB sizes to be simulated.
To simplify the process of simulation without losing
generality, we assume that the sizes of BTBs to be sim-
ulated are powers of 2. And the only BPA used in this
simulator is the 2-bit saturation counter.

Six benchmark programs, as listed in Table 1, are
selected from the SPEC CINT95 benchmark suite (Re-
illy, 1995) and compiled to the MIPS code for experi-
ments. The original benchmark traces are obtained by
the pixie (Smith, 1991) utility which runs on an MIPS
machine. The branch traces are then ®ltered from the
original traces.

The simulation times of the two algorithms are
measured by the UNIX time command. This simulator
is run on a lightly loaded DECstation 5133. In the
simulation, we assume the fully associative BTBs with
LRU replacement algorithm. There are two algorithmic
modes in the simulator, the general mode and the stack
mode. In the general mode, we run the general simula-
tion algorithm shown in Fig. 5 in only one iteration with
C � 212. In the stack mode, we run the stack simulation
algorithm shown in Fig. 8 to measure the BTBs whose
sizes range from 20 to 212. Since only the BTB sizes of

Table 1

Benchmark programs selected from SPEC CINT95

Benchmark Description

Go Application for arti®cial intelligence

Gcc GNU C compiler

Compress File compression

Li LISP interpreter

Ijpeg Graphic compression and decompress

Vortex A database program

R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78 75

powers of 2 are considered, the number of sets of pa-
rameters that the stack mode evaluates in one pass is 13.

5.2. Simulation time

We list the number of branches simulated for the six
benchmarks in Fig. 9.

In Fig. 10, we show the simulation time of the two
algorithmic modes together with the trace read time of
each benchmark, where the trace read time is the time
needed to read the trace ®les while the simulator does
nothing else. The simulation time of all benchmarks are
proportional to the branch counts. On average, the
simulation time of the stack mode is only 1.17 times that
of the general mode. Nevertheless, with only this slight
amount of increase in simulation time, this proposed
stack simulation algorithm can simulate the behaviors of
13 various-sized BTBs, as opposed to only 1.

Note that the trace read time is dependent on the
environment of the simulator. We calculate the net

simulation times of the two algorithmic modes by
subtracting the trace read time from the original total
simulation times. In our environment, the trace read
time is 8.16 times the net simulation time on average in
the general mode. We list the net simulation times of
the two algorithmic modes in Fig. 11. The net simula-
tion time of the stack mode is 2.58 times that of the
general mode.

For each set of parameters, the speedup of the stack
mode over the general mode in terms of the net simu-
lation time is shown in Fig. 12. On average, this speedup
of the stack mode over the general BTB algorithm is
4.68. The speedups are obtained assuming that the trace
read time is zero, and that 13 sets of parameters are
evaluated in one simulation pass in the stack mode.
These speedups would have been higher if the ratio of
the trace read time is much higher, or if more sets of
BTB sizes are to be evaluated in one simulation pass.
This justi®es the bene®ts of the stack simulation tech-
nique for the BTBs that we have proposed.

Fig. 9. Dynamic branch counts of the benchmarks.

Fig. 10. Simulation times for the two algorithmic modes and the trace read time.

76 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

6. Conclusions

In this paper, we have developed a stack simulation
technique for evaluating the performance of BTBs of
di�erent sizes. The stack simulation dramatically reduces
the simulation time of multi-pass simulation. Simulation
results show that the speedup provided by the stack
simulation over the traditional method is 4.68 when
simulate 13 di�erent BTB sizes in one simulation pass. In
this paper, we focused our attention on fully associative
BTBs. With some modi®cations, our technique can be
extended to evaluate the BTBs of di�erent associativities.

As the design of BTB has increasing performance
impact on modern microprocessors with ever higher
instruction level parallelism, its design parameters need
to be more carefully tuned in the early design phase.
Furthermore, as the application program trace lengths
grow, the trace read time will become a increasingly
critical issue in BTB simulation. The single-pass BTB
simulation technique proposed in this paper can dra-
matically speedup the simulation of BTB evaluation by
amortizing the trace read time.

The state vector method can be used to facilitate the
single-pass simulation for other applications whose be-
havior does not abide by the inclusion property, but can
be maintained in a regular way. These applications in-
clude the memory consistency protocols and communi-
cation protocols. In the future, we plan to extend our
one-pass simulation techniques to cover the applications
of these applications and other more sophisticated BTBs.

References

Case, B., 1995. SPEC95 retires SPEC92, MicroProcessor Report, 21

August, pp. 11±14.

Chame, J., Dubois, M., 1993. Cache inclusion and processor sampling

in multiprocessor simulations. Proceedings of the 1993 ACM
SIGMETRICS, May 1993, pp. 36±47.

Dubey, P.K., Flynn, M.J., 1991. Branch strategies: modeling and

optimization. IEEE Trans. Comput. 40 (10), 1159±1167.

Gecsei, J., 1974. Determining hit ratios for multilevel hierarchies. IBM

Syst. J. 8 (4), 316±327.

Hill, M.D., Smith, A.W., 1989. Evaluating associativity in CPU

caches. IEEE Trans. Comput. 38 (12), 1612±1630.

Fig. 11. Net simulation times for the two algorithms.

Fig. 12. Speedups of the net simulation time that stack BTB algorithm over the general BTB algorithm.

R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78 77

Laha, S., Patel, J.H., Iyer, R.K., 1988. Accurate low-cost methods for

performance evaluation of cache memory systems. IEEE Trans.

Comput. 37 (11), 1325±1335.

Lee, J.K., Smith, A.J., 1984. Branch prediction strategies and branch

target bu�er design. Computer 7 (1), 6±22.

Mattson, R.L., 1971. Evaluation of multilevel memories. IEEE Trans.

Magnet. Mag-7 (4), 814±819.

Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L., 1970. Evaluation

techniques for storage hierarchies. IBM Syst. J. 9 (2), 78±117.

Reilly, J., 1995. SPEC discusses the history and reasoning behind

SPEC95. SPEC Newsletter 7 (3), 1±3.

Silberman, G.M., 1983. Stack processing techniques in delayed-staging

storage hierarchies. Commun. ACM 26, 999±1007.

Smith, M.D., 1991. Tracing with pixie. Technique Report of Stanford

CA 94305-4070, April.

Sugumar, R.A., Abraham, S.G., 1995. Set-associative cache simulation

using generalized binomial trees. ACM Trans. Comput. Syst. 13

(1), 32±56.

Tompson, J.G., Smith, A.J., 1989. E�cient. algorithms for write-back

and sector memories. ACM Trans. Comput. Syst. 7 (1), 78±115.

Wang, W.H., Baer, J.L., 1991. E�cient trace-driven simulation

methods for cache performance analysis. ACM Trans. Comput.

Syst. 9 (3), 222±241.

Wu, Y.W., Muntz, R., 1995. Stack evaluation of arbitrary set-

associative multi-processor caches. IEEE Trans. Parallel Distrib-

uted Syst. 6 (9), 930±942.

R-Ming Shiu received the B.E. degree in computer science and infor-
mation engineering from the Fu Jen Catholic University, Taiwan,
Republic of China in 1993. Currently he is pursuing the Ph.D. degree
in computer science and information engineering at the National
Chiao Tung University. His research interests include computer ar-
chitecture and parallel processing.

Neng-Pin Lu received the B.E. and M.E. degrees from the National
Chiao Tung University, Taiwan, Republic of China in 1989 and 1991,
respectively, all in computer science and information engineering.
Currently he is pursuing the Ph.D. degree in computer science and
information engineering at the National Chiao Tung University. His
research interests include computer architecture, interconnection net-
work, and parallel processing.

Chung-Ping Chung received the B.E. degree from the National Cheng-
Kung University, Taiwan, Republic of China in 1976, and the M.E.
and Ph.D. degrees from the Texas A&M University in 1981 and 1986,
respectively, all in electrical engineering. He was a lecturer in electrical
engineering at the Texas A&M University while working towards the
Ph.D. degree. Since 1986 he has been with computer science and in-
formation engineering at the National Chiao Tung University, Tai-
wan, Republic of China, where he is a professor. From 1991 to 1992,
he was a visiting associate professor of computer science at Michigan
State University. Currently, he is on leave and served as the director of
Advanced Technology Center, Computer and Communications Re-
search Laboratories, Industrial Technology Research Institute (CCL,
ITRI), ROC, and then the consultant of CCL, ITRI. His research
interests include computer architecture, parallel processing, and par-
allel compiler design.

78 R.-M. Shiu et al. / The Journal of Systems and Software 52 (2000) 67±78

