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Feedforward Active Noise Controller Design in Ducts
Without Independent Noise Source Measurements

Jwusheng Hu and Jyh-Feng Lin

Abstract—Feedforward control architectures have been widely
used in active noise control systems to achieve broad-band noise re-
ductions. The basic principle of the control algorithm requires that
the feedforward signal, usually the noise source, be independent
from the actuator's output. Failure to meet this requirement im-
plies that the overall system contains an acoustic feedback loop and
stability and robustness issues become important. This paper inves-
tigates this problem in a one-dimensional sound field (e.g., ducts)
using a unidirectional sound wave as the feedforward signal. Con-
troller design based on a distributed parameter model is studied.
Several experiments are conducted to illustrate the design proce-
dure as well as verify the effectiveness of broad-band noise reduc-
tions.

Index Terms—Acoustic noise, distributed parameter systems,
feedforward systems, frequency domain analysis, propagation.

I. INTRODUCTION

T HE idea of active noise cancellation (ANC) was first raised
by Lueg in 1936 [15] and has received much attention

since the 1980’s due to the availability of fast and cost-effective
electronics [16]. To achieve a broad-band performance, feed-
forward control architectures are usually employed. A typical
schematic diagram of feedforward duct noise control is shown
in Fig. 1.

If the feedforward signal is independent of the control signal
(i.e., ), many feedforward types of control algorithms can be
applied [e.g., least mean squares (LMS) [22], or model matching
[11]]. However, when an independent signal is difficult to obtain
(e.g., wind noise), the most commonly used approach is to in-
stall feedforward sensors at upstream locations (i.e.,). As a re-
sult, from a control system viewpoint, the structure is no longer
a pure feedforward one because the feedforward signal contains
the feedback part from the control signal (called acoustic feed-
back). Therefore, modifications to the control algorithm must
be made in order to maintain stability.

Removing the influence of acoustic feedback is a very prac-
tical problem. Earlier work was geared toward generating a uni-
directional sound wave either from microphone measurements
or a multiple actuator arrangement [4], [2], [13], [19]. Another
direction is to apply digital signal processing techniques to ei-
ther subtract the acoustic feedback signal from the sensor mea-
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Fig. 1 A schematic diagram of the feedforward noise control in ducts.

Fig. 2. A two-microphone measurement in a one-dimensional field where
P (s) andP (s) are the Laplace transforms of the measured signalsd is the
distance between microphones,H (s) is the wave propagating downstream
at microphone 1's location, andH (s) is the wave propagating upstream at
microphone 2's location.

surement directly (called feedback neutralization [21]) or com-
pensate for its influence (the Filter-U algorithm [3]). The latter
one requires knowing the dynamics of the feedback path. An
on-line identification is not easy since the measurement con-
tains the noise signal, which highly depends on the input (i.e.,
the actuator's output) to the path. Second, the parameter space
associated with these algorithms is usually quite large which
may induce problems such as slow convergence and parameter
drift (see [14]).

At first glance, obtaining a unidirectional sound measurement
does not solve the acoustic feedback problem completely be-
cause the wave generated by the actuator also propagates down-
stream (i.e., reflection from the boundary, see Fig. 1). It can only
eliminate the first path. However, it has been shown [10] that
under ideal conditions, the reflection has no effect on the cancel-
lation principle. Second, there are limitations to generate unidi-
rectional sound measurements by using ordinary microphones.
Consider a two-microphone measurement in a one-dimensional
(1-D) field as shown in Fig. 2. From Fig. 2, the microphone mea-
surements are

(1.1)
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where is the speed of sound. Then both upstream and down-
stream propagating waves can be solved as

(1.2)

Equation (1.2) shows that at certain frequencies
, the transfer functions are unstable (or

marginally stable). In practice, the distancecan be selected to
constrain the control bandwidth below , much like
the scenario in digital control. However, as shown in this paper,
this does not guarantee stability unless a modification is done.
The analysis can be easily extended to an arbitrary number of
sensors. Essentially, singularities occur at integer-multiples of
the distances of all sensor pairs. Unless the distances are all
irrational numbers, the situation cannot be avoided.

The term “feedforward” in ANC usually means the control
signal is synthesized from the noise measurement before its
arrival at the actuator's location. However, if independent
feedforward signals cannot be obtained, the overall control
architecture is actually a very delicate feedback system regard-
less of the types of algorithms applied. Unfortunately, there is
not much work in the control field to analyze these problems.
Most research applying standard control design techniques for
ANC tend to focus on designing feedback controllers [9], [7],
[12], [18], [5]. Roughly speaking, the feedforward algorithms
mentioned above have a fundamental difference in the plant's
model. The approach of generating unidirectional waves ob-
serves the wave propagation properties, which are characterized
by distributed dynamics. On the other hand, lumped parameter
dynamics are treated when applying digital signal processing
techniques. An interesting point about generating unidirectional
waves in ducts is that, theoretically, the control law and its
performance is independent of the boundary conditions and
duct's length. It implies that the control method should have a
certain degree of robustness (e.g., under different boundaries).

In this paper, we will discuss the limitations and modifica-
tions of using unidirectional wave signals for noise cancellation
in ducts in a more rigorous control system design manner. To
simplify the problem, a two-sensor configuration (Fig. 2) is as-
sumed. Experimental results are also presented to demonstrate
the effect of noise reduction and the robustness of the control
system.

II. SYSTEM MODELING

Consider an active duct noise control system as shown in
Fig. 3. Using the one-dimensional approximation, the duct's re-
sponse can be modeled by solving for the Green's function of
the wave equation as (see [8] for more detail)
when (downstream segment with regard to)

(2.1a)

Fig. 3. A finite-length duct with lengthL; �N(s) the noise signal (primary
source),�U(s) the control signal (secondary source), and� (s) and� (s) the
boundary reflection coefficients.

and when (upstream segment)

(2.1b)

where , and denotes the dy-
namics of the sensors (e.g., microphones), actuators (e.g.,
speakers) and electronic components, and

(2.1c)

(2.1d)

(2.1e)

(2.1f)

The notations on the left-hand sides of (2.1c) to (2.1f) are de-
signed to represent the physical meanings of the right-hand sides
accordingly. Namely, subscript “” means a downstream loca-
tion (the duct's section of ) while “ ” means an upstream
one . Second, the superscript “” means wave prop-
agating in the downstream direction and “” in the upstream
direction. The representation can be easily checked by investi-
gating the delay operators. Finally, it can be verified that (2.1c)
to (2.1f) satisfy the following relations:

(2.2a)

(2.2b)
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Fig. 4. The feedforward control system using a two-microphone
measurement.

III. T HE FEEDFORWARDCONTROL SYSTEM

An ideal structure of feedforward control, as shown in Fig. 4,
consists of a unidirectional signal, a delay element and an
ideal compensation filter . Fig. 4 is nothing but feeding
a delayed downstream propagating wave (recovered at) into
the actuator directly. It is easy to see that if the boundary
reflection coefficient is zero (i.e., a semi-infinite duct), the
acoustic feedback signal from the actuator has no effect on
. Therefore, the principle of cancellation is applied. To explain

that this configuration still works for a nonzero is a little
bit subtle. To begin with, assume first that exists. The
controller of Fig. 4 takes the following form:

(3.1)

Using (2.1b), the recovered downstream propagating wave can
be written as

(3.2)

Combining (3.1) and (3.2), the control signal satisfies the fol-
lowing equation:

(3.3)

Further, it can be verified from (2.1e) that

(3.4)

Combining (3.3) and (3.4) and using the fact that

we have an alternative representation of the controller as

(3.5)

Equation (3.5) shows that the control law of (3.1) equivalently
cancels the downstream propagating wave of the noise. Ap-
plying (3.5) to (2.1a) and using the properties of (2.2a) and
(2.2b), the downstream response becomes

(3.6)

Second, the upstream response after applying the controller is
as shown in (3.7) at the bottom of the page (please see [10]),

It can be verified that (3.7), shown at the bottom
of the page, is exactly the solution of a duct whose length is
and boundary reflection coefficients are at and
at . In other words, a total reflection is achieved at the
actuator's location.

Equations (3.6) and (3.7) give the ideal closed-loop response
from disturbance to output. Therefore, to guarantee both
performance and stability, the characteristic roots of both

and
must lie on the left-hand side of the complex plane. These in
turn are satisfied if the following assumptions were observed.

Assumption 3.1: and are stable, proper rational
transfer functions, and

and

This assumption applies to passive boundaries where the
impedance functions are strictly positive real (see [17]).

(3.7)
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Fig. 5. Block diagram of the feedforward control system.

IV. STABILITY ANALYSIS AND CONTROLLERMODIFICATION

Although the effectiveness of the simple control law can be
justified theoretically, it faces several challenges when imple-
mented. The main issue is the stability problem induced from
measurement noise and model uncertainty. From (3.1), the pa-
rameters required to calculate the control law are two delay pe-
riods and the compensation filter. In this paper, we only consider
the uncertainty of the filter because it is unlikely to implement
a precise inverse of (e.g., identification errors or non-
minimum phase zeros). Let and be the measurement errors
of and , respectively, the input noise (e.g.,
quantization error), and a stable approximation of
with a stable additive uncertainty as

(4.1)

The closed-loop control system described in the preceding sec-
tion can be arranged in the block diagram shown in Fig. 5. From
(2.1a) and (2.1b), each composition of the block diagram can be
found to be

(4.2)

(4.3)

(4.4)

(4.5)

and

(4.6)

Fig. 6 The block diagram for the stability analysis of Fig. 5.

For stability we need to consider the dynamics enclosed by the
dotted line in Fig. 5 (see Fig. 6). The input–output map of Fig. 6
can be derived as

(4.7)

In the absence of model uncertainty (i.e., in Fig. 6), the
closed-loop system is bounded input–bounded output (BIBO)
stable if and only if is BIBO stable
(since is stable by Assumption 3.1). Now

(4.8)

Due to poles located on the imaginary axis, the closed-loop feed-
back block diagram in Fig. 6 is not stable. As stated in Section I,
these poles are singular points when constructing unidirectional
waves. Obviously the performance at those frequencies have to
be sacrificed. From (4.8), the controller is modified by
adding a “notch filter,” , i.e.,

(4.9)

where

and (4.10)

It is obvious that is stable if the following condition is
satisfied:

(4.11)
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By making a stable filter, the closed-loop system of Fig. 6
is stable if and only if is stable, i.e.,

(4.12)

where

(4.13)

For analysis, (4.12) can be arranged as Fig 7. Since
is stable by Assumption 3.1, using the small-gain the-
orem the closed-loop system of Fig. 7 is BIBO stable if

where denotes the infinity norm.
This requires that lies in the right-hand side of
the complex plane. In other words, is responsible for
compensating the phase of . Denoting ,
the upper bound of, denoted by , can be easily found as

(4.14)

We summarize the stability analysis in the following lemma.
Lemma 4.1:Under Assumption 3.1, the closed-loop

system of Fig. 7 is BIBO stable if ,
and (4.14) hold.

Remark 4.1:A model-based design of the compensation
filter may not be easy since is distributed in nature.
Alternatively, if the phase of is confined in a small
region, we can design by using a simple phase lead/lag
filter. Notice that if the following condition holds [see (4.13)],
we have :

(4.15)

Fig. 7 A closed-loop block diagram equivalent to(1� F (s)P (s)) .

Fig. 8. The possible maximum difference between(1 � � (j!)
e ) and (1� � (j!)� (j!)e ).

A sufficient condition to satisfy the equation above is shown
graphically in Fig. 8 and this results in the following constraint
on boundary reflection coefficients:

(4.16)

Equation (4.16) is always true if since
by Assumption 3.1. In other words, making

small (i.e., more absorption of reflected wave) limits
the phase of and consequently reduces the effort of
designing . Second, a better robustness property can be
obtained when the application requires downstream boundary
changes (e.g., outlet airflow control of an air conditioning
duct).

Remark 4.2:To determine experimentally, observe first
that the transfer function at a downstream locationis shown
in (4.17) at the bottom of the page [see (2.1a)] Taking measure-
ments at two distinct locations and , we have

(4.18)

As long as the matrix on the left-hand side of (4.18) is well-
conditioned (e.g., frequency range between zero and

can be estimated. If more measurements were

(4.17)
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taken, optimal estimation such as the least-squares method can
be applied.

Remark 4.3:The performance degradation depends on the
size of [(4.10)]. Specifically, the residual downstream
noise can be calculated by replacing with in Fig. 5
as

where

and is a stable signal proportional to the measurement
noise. The signal represents the noise before cancella-
tion. Clearly, the degradation ratio also depends on
[(4.13)].

For a nonzero model uncertainty [Fig. 6], it can be
shown that the stability of the modified control law depends on
(4.19), shown at the bottom of the page. This equation can be
further arranged as Fig. 9 similar to Fig. 7. Similarly, using the
small-gain theorem the BIBO stability of Fig. 9 can be ensured
if where and

(4.20)

The value of in terms of is plotted in Fig. 10.
Clearly, to establish the inequality of (4.20), we must have

for every where

Or

(4.21)

Denoting the estimated uncertainty bound and
, the bounds on can be derived as

(4.22)

where

and

Lemma 4.2 summarizes the stability conditions in the presence
of model uncertainty.

Lemma 4.2:Under Assumption 3.1, the closed-loop
system of Fig. 9 is BIBO stable

and (4.21) and (4.22) hold.

V. EXPERIMENTAL VERIFICATION

An experiment was conducted to verify the feedforward con-
trol law. The experimental procedure is summarized in the fol-
lowing steps:

Step 1) Determine the combined dynamics of speaker and
microphone .

Step 2) Determine the transfer function using (4.18).
If , design a filter such that

.
Step 3) Use and (4.21) to find the uncertainty

bound .
Step 4) Solve the inverse filter by the model

matching techniques (as explained latter).
Step 5) Determine the estimated uncertainty bound(i.e.,

) using (5.6). This bound can be lowered by in-
creasing the distance of .

Step 6) Use and (4.22) to find the upper and lower bound
of and determine an appropriate value (i.e., mid-
point).

Step 7) Use (5.4) to implement the control law.

A. Identification and Design

Fig. 11 shows the experimental setup. The duct's dimensions
are 18 cm 18 cm 200 cm and its cutoff frequency for
or mode is about 945 Hz. For frequency smaller than 945
Hz, only the plane-wave mode is propagating. A digital signal
processor (DSP)-based system was used to perform real-time

(4.19)
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Fig. 9. A closed-loop block diagram equivalent to[1 � F (s)P (s)(1 + �(s))] .

Fig. 10. The plot ofj1� kT (j!)j vs,k for every! whereR (!) andI (!) denote the real and imaginary part ofT (j!).

calculations and the sampling rate was chosen to be 5000 Hz.
The loudspeaker's diameter used in this experiment was 16 cm.
The design was implemented directly in the digital domain by
matching various frequency domain criteria described in pre-
vious sections.

The cutoff frequency represents the control bandwidth of the
system approximated by a one-dimensional (1-D) wave equa-
tion. Although it can be calculated (945 Hz), we are interested
to see if it can be found experimentally. To begin with, notice
that pure delay operations characterize the wave propagation be-
havior in the 1-D model. Therefore, if three measurements were
taken at , and where , we have

or

(5.1)

where . The left-hand side of (5.1) can be
determined experimentally. Fig. 12 shows the verification of this
equation by setting cm, cm and

cm. Clearly, the 1-D model approximation is no longer

accurate beyond 800 Hz. The mismatch between this value and
the theoretical one (945 Hz) is probably due to the short distance
between the sound source and measurement points where some
evanescent modes still have strong influences. Notice thatis
selected such that (see Fig. 11). Therefore,
by limiting our control bandwidth to 800 Hz, the plane wave
model should be an accurate representation to investigate the
feedforward control law.

The next step is to determine the combined dynamics of
speaker and microphone ( of (2.1). Placing the speaker
and microphones in a reflection-free environment (i.e., a full
anechoic chamber), is approximated digitally (at 5
kHz) by a standard least-squares procedure as (see Fig. 13),

(5.2)
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Fig. 11 Block diagram of the control system (x = 50:3 cm,x = 57:2 cm andx = 140 cm).

Fig. 12. Experimental verification of the delay operation in the duct described by (5.1) (solid line: experimental data; dashed line theoretical value).

To determine the transfer function [(4.13)], we used the
measurements at , and again. By solving (4.18) at
each frequency, the frequency response of is calculated as
shown in Fig. 14. The three results match very well between
50 and 800 Hz. Below 50 Hz, the results are not consistent
due to the performance limitation of the loudspeaker used
in this experiment. However, Fig. 14 shows that, within the
bandwidth, the phase of is confined within 90 except
in two small regions. The phase compensation filter can
be easily found to make (see Lemma
4.1 and Remark 4.1). From Fig. 14, should provide phase

lag at low frequency region. Fig. 15 shows the phase response
of the filters and . A digital filter to match this
response is selected as

(5.3)

Rewrite again the control law
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Fig. 13. Magnitude and phase response of�Q (z ).

Fig. 14. Bode plot ofT (s) calculated by (4.13) and data measured aty = 181:4 cm y = 188:3 cm andy = 195:2 cm (solid line:y andy ; dashed line:
y andy ; dash-dot line:y andy ).

Under 5 kHz sampling, equals 13 digital delay steps
and equals one delay step where m/s.
Therefore, the control law is implemented digitally as

(5.4)

where is a stable inverse of [(5.2)]. Before
calculating , the uncertainty bound of (4.21) is found
first to access the inversion accuracy within the control band-
width. Using the frequency responses of and , the
bound is calculated as

(5.5)
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Fig. 15. The phase response of (a) the compensation filter"(s); (b) the filter"(s)T (s) whereT (s) is the average of the data shown in Fig. 14.

Fig. 16. Broad-band results of the feedforward active control in the duct (open-ended at the downstream boundary).

is then solved by the model matching techniques
[1], [6]. Notice that (5.4) contains 13 steps of delay, allowing

to be noncausal with a maximum 13 steps of preview
[20] [11]. Therefore, the matching formulation is devised as

(5.6)

where denotes the infinity norm and
. The optimal solution of is then calcu-

lated as
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Fig. 17. Broad-band results of the feedforward active control in the duct (downstream boundary covered with bubble floss).

Fig. 18. Broad-band results of the feedforward active control in the duct (downstream boundary covered with a wind screen).

(5.7)

The optimal value of in this case is 0.001 575 which is below
the uncertainty bound given in (5.5). This value is then used as
the estimated uncertainty bound, i.e., [see (4.21)
and (4.22)].1 Finally, the upper and lower bound of((5.4)) can
be calculated from (4.22) as and .

1In this experiment, we did not consider the model uncertainty induced from
identification errors. There is a chance that (5.5) will be violated. In that case,
one can redesign"(s) in (5.3) to give a more relaxed upper bound.
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Fig. 19. Broad-band results of the feedforward active control in the duct (250 cm duct’s length).

Fig. 20. Magnitude response from primary source to the upstream sensor with different boundary conditions, (solid line) boundary atx = L is open, (dashed)
the duct's length is changed, (dash dot) boundary atx = L is filled with bubble floss, (dot) boundary atx = L is filled with wind screen.

B. Experimental Results

Equation (5.4) was implemented on the duct Fig. 11 by setting
(the mid-point between and ). A pseudo random

noise was generated to test the effect of noise reduction. Fig. 16
shows the noise spectrum measured at a downstream location
(see Fig. 11). The result indicates a significant broad-band re-
duction within the control bandwidth.

The robustness of the control law is dependent upon the phase
of the transfer function [(4.13)]. Further, as explained in
Remark 4.1, the phase could possibly remain in the acceptable
region when the downstream boundary changes. In other words,
the controller designed in the experiment may still work for dif-
ferent boundaries at the duct's outlet. One can repeat the same
procedure as described in Section IV for a precise check. In this



HU AND LIN: FEEDFORWARD ACTIVE NOISE CONTROLLER DESIGN IN DUCTS WITHOUT INDEPENDENT NOISE SOURCE MEASUREMENTS 455

paper, we simply present the results directly, i.e., changing the
boundary condition and duct's length as follows:

1) the boundary at cm is covered with bubble floss;
2) the boundary at cm is covered by a wind screen;
3) the duct's length is changed from 200 cm to 250 cm and

the boundary at outlet is open.
Figs. 17–19 show the cancellation performance, all using the
same controller. As a final note, the changes made in 1)–3)
could drastically change the behavior of the dynamic if the mea-
surement is taken at a single point. Fig. 20 shows the transfer
functions between the control input and the microphone 1 (see
Fig. 11) of the cases tested. The difference at certain frequency
range could be quite large. Therefore, from the control system
viewpoint, the two-sensor measurement has the effect of re-
ducing the uncertainty. This advantage, however, does not ap-
pear in the design process if the wave propagation properties
were not observed (e.g., using a lumped parameter model).

VI. CONCLUSION

A study of active noise cancellation in finite-length ducts
using a feedforward structure is presented in this paper. The
feedforward signal is the unidirectional wave obtained by a
two-sensor measurement. Since the feedforward signal contains
the influence from the actuator, the overall system can be cast as
a feedback control problem from the time-domain perspective.
It is shown that the ideal control law needs modification in
the presence of measurement noise and model uncertainty.
A frequency-domain based design procedure is proposed to
calculate the modified control law. An experimental procedure
is described to implement the proposed design and results are
demonstrated. Further, experiments with different boundary
conditions and duct lengths were conducted to verify the
robustness of the control law.
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