IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000 869

Distance-Spectrum Formulas on the Largest
Minimum Distance of Block Codes

Po-Ning ChenMember, IEEETzong-Yow Lee, and Yunghsiang S. Haviember, IEEE

Abstract—A general formula for the asymptotic largest min-  surable function on the “distance” between two code symbols,
imum distance (in block length) of deterministic block codes under determine the asymptotic ratio, the largest minimum distance
generalizedlistance functions (not necessarily additive, symmetric, attainable among/ selected codewords divided by the code

and bounded) is presented. As revealed in the formula, the largest P . .
minimum distance can be fully determined by the ultimate statis- block lengthn, asx tends to infinity, subject to a fixed rate

tical characteristics of the normalized distance function evaluated R 2 log (M)/n.
under a properly chosen random-code generating distribution. In- Research on this problem has been done for years. Up to
terestingly, the new formula has an analogous form to the general o hresent, only bounds on this ratio are established. The best

information-spectrum expressions of the channel capacity and the - . .
optimistic channel capacity, respectively derived by Verdi—Han known bound on this problem is the Varshamov-Gilbert lower

[29] and Chen-Alajaji [7], [8]. As a result, a minor class of distance bound, which is usually derived in terms of a combinatorial ap-
functions for which the largest minimum distance can be derived is proximation under the assumption that the code alphabet is fi-
characterized. A general Varshamov-Gilbert lower bound is next npjte and the measure on the “distance” between code letters is
addressed. Some discussions on the tightness of the general Var : ;
shamov-Gilbert bound are also providgd. Finally, Iowgr bounds symmetric [2(.)]' I the_ siz€ of the code alph_akqeis an even
on the largest minimum distances for several specific block coding power ofa prlme,_satlsfylng > 49, and the distance measure
schemes are rederived in terms of the new formulas, followed by IS the Hamming distance, a better lower bound can be obtained
comparisons with the known results devoted to the same codes. through the construction of the Algebraic-Geometric code [14],
Index Terms—Block codes, information spectrum, Varshamov— 28], the idea of which was first proposed by Goppa. Later, Zi-
Gilbert bound. noviev and Litsyn proved that a better lower bound than the Var-
shamov—Gilbert bound is actually possible for gany 46 [32].
Other improvements of the bounds can be found in [12], [21],
I. INTRODUCTION and [30].
HE ultimate capabilities and limitations of error-cor- Inaddition to the combinatorial techniques, some researchers
recting codes are quite important, especially for coddso apply the probabilistic and analytical methodologies to
designers who want to estimate the relative efficacy of tlibis problem. For example, by means of the random coding
designed code. In fairly general situations, this information &gument with expurgation, the Varshamov—Gilbert bound in
closely related to the largest minimum distance of the codiés most general form can be established by simply using the
[24]. One of the examples is that for a binary block code en-hebyshev inequality ([3] or cf. Appendix A), and restrictions
ploying the Hamming distance, the error correcting capabilign the code alphabet (such as finite, countable), and the
of the code is half of the minimum distance among codeword$istance measure (such as additive, symmetric, bounded,
Hence, the knowledge of the largest minimum distance care no longer necessary for the validity of its proof.
be considered as a reference of the optimal error correctingRecently, channels without statistical assumptions such
capability of codes. as memoryless, information stability, stationarity, causality,
The problem on the largest minimum distance can be dgRd ergodicity.. .., etc., have been successfully handled by
scribed as follows. Over a given code alphabet, and a given meaploying the notions oliminf in probability and limsup in
probability® of the information spectrum. As a consequence,
the channel capacity” is shown to equal the supremum,
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where X™ and Y™ are, respectively, the-fold input process schemes of general interests, such as constant-weight codes and

drawn from the codes that corrects arbitrary noise [10]-[12], [15], [16], [18],
X — {Xn _ (an)v . .7X7(Ln)>}°° [23], [27], [31]. Transformation of the asymptotic distance de-

_ /4 n=1 ) termination problem into an alternative problem setting over a
and the corresponding output process inducediyvia the .45 for a possible improvement of these known bounds is also
channelW"™ = Py.| x», and addressed.

1. (25 al loe Py | xn(y"|2") The rest of the paper is organized as follows. The distance-
R XWrAE Y= e T (y) spectrum formula is derived in Section Il. The determination

is the normalized information density. If the conventional definisf the asymptotic largest minimum distances among codewords
tion of channel capacity, which requires the existence of relialfier a class of distance functions is covered in Section Ill. Sec-
block codes forll sufficiently large block lengthss replaced tion IV presents the general properties of the distance-spectrum
by that reliable codes exist famfinitely many block lengthsa  formula, followed by examples and remarks on these proper-
new optimisticdefinition of capacityC is obtained [29]. Its in- ties. Section V establishes the general Varshamov-Gilbert lower
formation-spectrum expression is then given by [7], [8] bound directly from the distance-spectrum formula. Also cov-
ered in the same section is a sufficient condition under which
} the general Varshamov—Gilbert bound is tight, as well as exam-

_ 1
Czsupsup{a € R:lminfPr | —ixny- (X" Y")<a
X n - L
ples to demonstrate the strict superiority of the new formula to
- o} .

n—oo
the general Varshamov-Gilbert bound. Section VI shows that
he new formula can be used to derive the known bounds for
rQeciﬁc coding schemes of general interests. Final comments
pear in Section VII.
Throughout this paper, the natural logarithm is employed un-
léess otherwise stated.

Inspired by such probabilistic methodology, together wit
the random-coding scheme with expurgation, a spectrum f
mula on the largest minimum distance of deterministic bloc
codes forgeneralizeddistance functiorts (not necessarily ad-
ditive, symmetric, and bounded) is established in this wor
As revealed in the formula, the largest minimum distance is
completely determined by the ultimate statistical characteris- ||. DISTANCE-SPECTRUM FORMULA ON THE LARGEST
tics of the normalized distance function evaluated under a prop- MINIMUM DISTANCE OFBLOCK CODES

erly chosen random-code generating distribution. Interestingly, — .
the new formula has an analogous form to the general infor_We firstintroduce some notations. Theuple code alphabet

n an n g n
mation-spectrum expressions of the channel capacity and ﬁs]genoted byt™. For any two elements™ andz" in A, we

optimistic channel capacity. This somehow confirms the coH-Se“"(in’xn) to denote the:-fold measure on the “dista_nce”
P pactty these two elements. A codebook with block lengtand size

nection between the problem of designing a reliable code foPg"
given channel and that of finding a code with sufficiently larg is represented by
distance among codewords, if the distance function is properly ¢ A {c(()n)’ cgn)’ cgn)’ . 65\7})_1}
defined in terms of the channel statistics. ’
With th.e help of thg new for.mula, we characterize a mi”%herecﬁ,’{’) 4 (Em1, Cm2, "+, cmn ), @nd €aCHE,; belongs to
class of distance metrics for which the ultimate largest minimu \we define the minimum distance
distance among codewords can be derived. Although these dis- A . ()
tance functions may be of secondary interest, it sheds some light A (€n,n) = o i (% 7‘353))
on the determination of the largest minimum distance for amore mEm
general class of distance functions. Discussions on the genewad the largest minimum distance
properties of the new formula will follow. A ]
We next derive a general Varshamov—Gilbert lower bound di- .1 = e <men -1 i (€n1)-

rectly from the new distance-spectrum formula. Some remar

S . .
on its properties are given. A sufficient condition under whicﬁOte that there is no assumption on the code alp dthe

the general Varshamov—Gilbert bound is tight, as well as exafa e € of the functiodge, (-, ) fn>1.

ples to demonstrate its strict inferiority to the distance—spectrumBased onthe aboye defln!thns, the problem considered in this
formula, are also provided paper becomes to find the limit, as— oo, of d,, s /n under a

Finally, we demonstrate that the new formula can be usedf%ed rateft = log (M)/». Since the quantity is investigated as

. o -~ goes to infinity, it is justified to také/ = ¢™# as integers.
derive the known lower bounds for a few specific block coding The concept of our method is similar to that of the random

2Conventionally, aistanceor metric[19], [26, pp. 139] should satisfy the COdlng tEChmque employed in the channel re“.ab”'ty function
properties of i) nonnegativity; ii) being zero iff two points coincide; iii) sym-[2]. Each codeword is assumed to be selected independently of

metry; and iv) triangle inequality. The derivation in this paper, however, is appll| others fromt’™ through a generic distributiaRx~ . Then the
cable to any measurable function defined over the code alphabets. Since non&oi b d dgb) d (n) b d
the above four properties are assumed, the measurable function on the “dista giance between codeworgs® andc,,~ becomes a random

between two code letters is therefore terrgederalized distandeinction. One  variable, and so doek,, (€., /). For clarity, we will useD,,, to

can, for example, apply our formula to situation where the code alphabetis a fisnote the random variable correspondin@,t;(@,, M)_ Also

tribution space, and the “distance” measure is the Kullback—Leibler divergence. M—1 . . S
For simplicity, we will abbreviate thgeneralized distanciinction simply as note that{Dm, are 'dent'ca”y distributed. We therefore

m=0

the distancefunction in the remaining part of the paper. have the following lemma.



CHEN et al.: DISTANCE-SPECTRUM FORMULAS ON THE LARGEST MINIMUM DISTANCE OF BLOCK CODES 871

Lemma 1: Fix a triangular-array random process which implies that among all possible selections, there exist (for
. ) (m)yy00 infinite many n) a codebookZ,, s in which M codewords
X = {X = (Xl y " '7Xn )}n:l' SatiSfyd)rn = ]_, i,e,,
Let 1 .
Edrn(czn,l\l) > LX(R) -7
Dy = D (XT), 0<m<(M-1) for at leastM codewords in the codebod, ;.

be defined for the random codebook of block lengtand size The collection of thesexM codewords is a desired codebook
M, where each codeword is drawn independently accordingstg the validity of (2.1). n

the distribution”x~. Then
Our second lemma concerns the spectrurfigh)D,,.
1) for any~y > 0, there exists a universal constant=

a(y) € (0,1) (independent of block lengik) and a code- Lemma 2:Let each codeword be independently selected
book sequencée,, s }ns1 such that through the distributioPx~. Suppose thak™ is independent

. of, and has the same distribution &87?. Then

- min  dp(Cyan) 1 1 . M
n 0<m<aM-—1 , Pr |:_Drn > CL:| > <PI‘ {_Nn(XnaXn) > CL}) .
n n
> inf {a € R:limsupPr [—Dm > a} = 0} -
n

e 51 Proof: Let C'E,’j) denote thenth randomly selected code-
(2.1) word. From the definition oD,,,, we have

05:?}

for infinitely many n;

2) for any~ > 0, there exists a universal constant=

Pr { le >a
n
a(v) € (0,1) (independent of block length) and a code-

book sequencéc,, s }.>1 such that — Pr min lun (C(,.") C(n)) > al o™
0§ﬁ}</\/f—1 n m ' rm m
1 min = d (€ an) gt
n 0<m<aM—1 _ H Pr { lun (0;?,05,’?) > a 05,’?}
> inf {a eR: liér_l)icngr [%Dm > a} = 0} — Oéﬁ;;Mﬂ n

(2.2)

X”})M_l (2.3)

= <Pr{lun(X",X") >a
n

for sufficiently largen.
Proof: We will only prove (2.1). (2.2) can be proved byVhere (2.3) holds because

swgp;l%lr:‘gllowmg the same procedure. {(1/71)%(05;)7 C'E,?)}ogmgM—l,m;em
_ A 1 is conditionally independent giv@ﬁ,’j). Hence
Lx(R) =inf {a : lim sup Pr [—Dm > a} = 0} .
n—oo n 1
- . Pr {—Dm > a}
Let 1(.A) be the indicator function of a set, and let n
M-—1
& 1 7 :/ <Pr{lun X", z") > a}) dPxn(z"
Pm =1 <gDm > Lx(R) - ’y) : " i ) xn (")
M
By definition of Lx (R) > / <Pr {lun(f(",a:") > a}) dPxn (x™)
« [ n

1 _
lim sup Pr {—Dm > Lx(R) — ’y} > 0.
n

n—o0

Let 1
A B > EY, {Pr { — (X", X™) > a X"H
2c = limsup Pr[(1/n)D,, > Lx(R) — 7] n
n—oo M
1 on o oyn
Then for infinitely manyn - <Pr {E“”’(‘X KT > a}) (2:4)
1 7 where (2.4) follows from Lyapounov's inequality [1, p. 76], i.e.
Pr|-D,, > Lx(R) — > . . L, , l.e.,
g [n x(B) ’y} “ EYM[UM] > E[U] for a nonnegative random variatle [
For thosen that satisfy the above inequality We are now ready to prove the main theorem of the paper.

E Z bm| = Z E[¢m] > aM specifically to denote two independent random variables having

m=0

Mo1 ] Mo1 For simplicity, throughout the articleX™ and X™ are used

common distributionPx-.

m=0
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Theorem 1 (Distance-Spectrum Formula): Observe thatupy Ax(R) is nonincreasing iz, and hence,
the number of discontinuities is countable. This factimplies that

- ) An, M T
Ax(R) > 1 M sup Ax(R+ 6 2.5 _
sup Ax(R) 2 limsup == > sup Ax(R+6)  (25) sup Ax () = limsup (R +0)
X X

and 4 except for countably manyz. Similar argument applies to
sup Ay (R) > liminf n,M > sup Ay (R + 8) (2.6) supx Ax(R). We can then rephrase the above theorem as
X noee N X appeared in the next corollary.

for everyé > 0, where

Corollary 1:

A A . 1 oY R _

Ax(R) = inf {a € R : limsup <Pr {Eun()x ,X™) lim sup dn,p1 — sup Ax(R)
n X

n—o0
n—0o00

M d
> “}) :0} <resp.,hminf . :supr<R))
n—oo n X

and except possibly at the points of discontinuitiessopy Ax (R)
1. (resp.supx Ax(R)), which are countable.
< { pn (X7, XT)

From the above theorem (or corollary), we can characterize
M } the largest minimum distance of deterministic block codes in
)

n—oo

Ax(R) 2 int {a € R : liminf

terms of the distance spectrum. We thus nandéstince-spec-
trum formula For convenienceAx(-) and A x(-) will be, re-
Proof: spectively, called theup-distance-spectrum functi@nd the

1) Lower bound Observe that in Lemma 1, the rate onlynf-distance-spectrum functian the remainder of the paper.
decreases by the amountog (o) /n when employinga ~ We conclude this section by remarking that the distance-spec-
codeC,, .. Also note that for any > 0, — log(c) /n <6  trum formula obtained above indeed has an analogous form to
for Suff|c|ent|y largen. These observations, together wittihe information-spectrum formulas of the channel capacity and
Lemma 2, imply the validity of the lower bound. the optimistic channel capacity. Furthermore, by taking the dis-

2) Upper boundAgain, we will only prove (2.5), since (2.6) tance metric to be the-fold Bhattacharyya distance [2, Defini-
can be proved by simply following the same proceduretion 5.8.3], an upper bound on channel reliability [2, Theorem

To show that the upper bound of (2.5) holds, it sufficet0-6.1] can be obtained, i.e.,

to prove the existence df such that hmsup—— log P (n, M =c"")

_ dn n—oo
Ax(R) > limsup M
noee T < supinf { a:li Pr|——
Let X™ be uniformly distributed over one of the optimal — S;l(p ) 1713:501? o
codes;, ,,. (By “optimal” we mean that the code has the RV
largest minimum distance among all codes of the same xlog Z P |Xn Y| XM P, |xn (W XT)
size.) Define yreyn
MEL i dne,,) and 32 TimsupA "
" ogmenr—1 ST M - ,Iln_);p i >a =0
Then for anys > 0
An > A — 6 forinfinitely manyn. (2.7) and .
For thosen satisfying (2.7) liminf —~ log Pe(n, M =c" )
1 - - 1 .
- SN YN _ - SN YN 1
Pr{nﬂn()& ,)& )>)\ 6}2Pr{nﬂn(A ,)& )Z)\n} <Sup1nf a:liminf |Pr| = =
n—oo n
N 1
>Pr{X"£X" "1 =1-—
- . M XlOg Z P ann 7/ |Xn) }1/{12|Xn(un|Xn)
which implies yreYn
hrI],n—?o%p <Pr{gun(X",X") >)\—6}> >a -0
1 M 1 enft
z hffo‘ip <1 - M) = hjffo‘ip <1 - Cn—,R) where Py | x- is then-dimensional channel transition distri-
—elso bution from code alphabet™ to channel output alphabgt®,

- - and P.(n, M) is the average probability of error for optimal
ConsequentlyAx(R) > X — 6. Sinceé can be made channel code of block length and sizeM . (The proof of this
arbitrarily small, the upper bound holds. O sphere-packing-type bound is given in Appendix C for the sake
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of completeness.) Note that the formula of the above channel he-addition,G(«) is achieved by uniform distribution over

liability bound is quite different from those formulated in terms
of the exponents of the information spectrum (cf. [5, Sec. V]

and [25, eq. (14)]).

I1l. D ETERMINATION OF THE LARGESTMINIMUM DISTANCE
FOR A CLASS OF DISTANCE FUNCTIONS

In this section, we will present a minor class of distance func-
tions for which the optimization inpuX for the distance-spec-
trum function can be characterized, and thereby, the ultimate
largest minimum distance among codewords can be established

in terms of the distance-spectrum formula.

A simple example for which the largest minimum distance
can be derived in terms of the new formula is the probability-of-

error distortion measure, which is defined as
N 0
It can be easily shown that

sup Ax ()
X

if 2% = 2™
if 2™ £ 2™,

<Pr{lun(X"7X")

n—oo X"

<inf {a € R : limsupsup

L,
0,

for0 < R < log ||
for R > log | X|

{

and the upper bound can be achieved by letkhige uniformly
distributed over the code alphabet. Similarly

< .
supAX(R):{l’ for0 < R < log|X]
X

0, for R > log|X|.
Another example for which the optimiz&f of the distance-

j—2
7j_17

0 1 2 1
7j_17j_17 N
- N 1
Pr{|U - U] Sa}ZPr{|U—U| < —,}
J
i—2 X i
22Pr{(U,U)E {—
i=0 :

+Pr{(U,U)€ ["%1}2}

Proof:

Achievability of G(«) by uniform distribution over
j—2

0 ! 2 1
’j—]_’j—]_’ ’j—]_’

can be easily verified, and hence, we omit here.
Lemma4:Forl/j < o <1/(j—1)

1
n+ 0.5

1 .\ 1
S ilanr{|Un —Up<af < -+
J T J

where the infinum is taken over dll/,,, U/,,) pair having inde-
pendent and identical distribution on

1
andj = 2,3,4,--- etc.

Proof: The lower bound follows immediately from

n—1

n

spectrum function can be characterized issygarable distance Lemma 3.

functiondefined below.
Definition 1 (Separable Distance Functions):
oy 2 ST n
(2", 27) = ful|9n(27) = gn(2™)])

wheref,,(-) andg,(-) are real-valued functions.

Next, we derive the basis for finding one of the optimization

distributions for

sup Pr
Xn

{%un(f(",X") > a}
under separable distance functionals.
Lemma 3: Define
G(a) 2 inf Pr{|0 - U] < a}
where the infinum is taken over alﬂ?, U) pair having indepen-

dent and identical distribution df, 1]. Then forj = 2, 3,4, - - -
andl/j < a < 1/(j —1)

To prove the upper bound, Iét’ be uniformly distributed

over
{ £ 2f ke }
07_7—7"'7_71
n n n

wherel = |n«| + 1 andk is an integer satisfying

S A
n/(G-1+1 "7 "n/G-1)+1
(Note that
n
— 3+ 1> | — 1>7.
R P i KR
Then
il Pr{|0 — U] < o} < Pr{|Uy — U] < i}
1 1
-7 = il
k+27 gg—gm 1

1 N (j—1)? 1

J 2 n+ -1/
1 1

j n+05

O
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Based on the above lemmas, we can then proceed to compute 1 exp{nf}
the asymptotic largest minimum distance among codewords of = inf<{ a € ®:limsup | 1 — ——— =0
the following examples. It needs to be pointed out that in these n—0oo {22,?;_111
examples, our objective is not to attempt to solve any related R
problems of practical interests, but simply to demonstrate the =1 - —. (3.8)
computation of the distance spectrum function for general ) 1(?2 _
readers. By taking X~ to be the one under which
A n n
Example 1:Assume that thern-tuple code alphabet is Un = g2(X™)/(2" = 1)
{0, 1}". Let then-fold distance function be defined as has the distribution as used in the proof of the upper bound of
A o0 .
fin (87, ™) 4 [#1(3") — #1(z")] Lemma 4, whergd = 2" — 1, we obtain
where#1(z™) represents the number b inz™. Then _ ) ) 1
sup Ax (R) Ax<(R)>inf{ a € R:limsup |1 — T
. . 1 ~ exp{nR}
<inf< a € R :limsupsup <Pr{—|#1(X") 1
n—oo X7 n _— =0
K +0.5
M
— #1(X™)| > a}) = 0}
1
1 =inf < a € RN:limsup 1_T
:inf{ae R : limsup <1—anfPr{;|#1(X") nmee ’VQa—__l—I
e o exp{nR}
1
- n — - =0
#LUX")| < a}) 0} 27— 05
Sinf{aeﬂ?:limsup (1—ingr{|lAf—U| —1_ R
< a})e"l‘{"ﬂ} _ 0} This proved the achievability of (3.8).
. . 1 exp{nf} IV. GENERAL PROPERTIES OFDISTANCE-SPECTRUMFUNCTION
=inf<aecR:limsup |1 — —— =0 _ )
n—oo [1/a] We next address some general functional properties of

—0. Ax(R) andAy (R).

Hence, the asymptotic largest minimum distance among block_emma 5 (General Properties afx (R) andAx (R)):

codewords is zero. This conclusion is not surprising because thel) Ax(R) and Ay (R) are nonincreasing and right-contin-
code with nonzero minimal distance should contain the code- ~ 0.5 functions ofz.

words of different Hamming weights and the whole number of 2)
such words is, + 1.

_ 1 ~
Ax(R) > Do(X) 2 limsup ess inf = i, (X", X™)
n

Example 2: Assume that the code alphabet is binary. Define n—oo
(27, 5™) 2 0519 (27) — g (&™)] + 1) . @

where Ax(R) 2 Do(X) = liminf ess inf —p, (X", X™)

gn(z™) = zp_1 - "l 52" gy - 24 . (4.10)
Then whereess infrepresentgssential infinumd In addition,

sup Ax(R) equality holds for (4.9) and (4.10), respectively, when

X ) R > Ro(X) 2 limsup —% log Pr{X" = X"} (4.11)

<inf {a eR: lirllrisolipijl{? <Pr {E logs(|gn(X™) and n—0o0
M R > Ry(X) 2 liminf _1L logPr{X" = X"} (4.12)
n—oo n
= gn(X")[+1) > “}) = 0} provided that

(V" e X™) lnilxl pn (2™, ™) = pp (2™, ™) = const
x’ﬂ,c‘ 727,

Sinf{aeg%;limsup <1—i%f Pr{|U—U| (4.13)

n—o0

ona _ 1)\ eplnk} SFor a given random variablg, its essential infinunis defined as
< =
- 2n—-1 0 essinf Z 2 sup{z: Pr[Z > 2] = 1}.
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3) Then for those: satisfyinge,,(X™) < Do(X)+6/2and
- - 4.18) (of which there are sufficiently man
Ax(R) < D,(X) (4.18) ( y many)

A 1 oY n oY n 1 o = M
2 b sup B, (X7, X7) [ 1, (X7, X7) < ], (pr{2unxx7) > Do) +6})
n

o for R > Ry(X) (4.14) 1 on om S AR
. < <Pr{gun(X , X™) > en(X )+§}>
AX(R) < Qp( ) < (Pr{Xn # Xn})]\l

AT 1 - n o n n
_hmlnfEE[un(X LX) e (X7, X)) < o0, _(1—Pr{%" = x"pM (4.19)

forR > R,(X) (4.15)
where (4.19) holds because (4.13). Consequently,

where 1 o

7 AL D >n n 1 ~ —

Ry(X) = hrlln_)solip_g log Pr{p,(X™, X™) < oo} lim sup <Pr {gun(X",X") > Do(X) + 5}) =0
and

which immediately implies (4.17).
R,(X) 2 hminf_llOgPr{un(X"’X") < oo} 3) Formula (4.14) holds trivially ifD,(X) = oo. Thus
noee n without loss of generality, we assume tHaf(X) < oc.
In addition, equality holds for (4.14) and (4.15), respec-  Formula (4.14) can then be proved by observing that for

tively,A whenR = RQ(X) andR = R,(X), provided that anyé > 0 and sufficiently large:
[pn (X7, X™) | 11 (X7, X™) < 0] has the large devia- M
tion type of behavior, i.e., for alf > 0 <Pr {lYn > (146)2- DP(X)}>
n
lim inf _1 logPr {l (Y, — ElY, | Y, <o) 1 1 M
n—oo N n < <Pr {—Yn >(1+6) - —E[Y,|Y, < oo]})
n n
<=61Y, < OO} >0 (4.16) = (Pr{Y, > (14 68)-E[Y, |V, < OO]})M

= (Pr{Y, = oo} + Pr{Y, < oo}

A A'n/ n
whereYy, = yin (X, X™). X Pr{Y, > (14 6) - E[Y, |Y, < 00] |V, < o)™

4) For0 < R < R,(X), Ax(R) = oo. Similarly, for

M
0 < R < R,(X), Ax(R) = . ) < <Pr{Yn = oo} + Pr{Y;, < oo} )
Proof: Again, only the proof regardind.x (R) will be 1+46
provided. The properties df 5 (R) can be proved similarly. § M
1) Property 1 follows by definition. - <1 146 Pr{¥,, < OO}) (4.20)
2) Formula

where (4.20) follows from Markov's inequality. Conse-

(4.9) can be proved as follows. Let quently, for it > Rp (xX)

en(X) £ essint %un (X", X™)

1 . _ M
_ lim sup <Pr{—un,(X",X") > (1+5)2.DP(X)}> =0.
and, henceDy(X) = limsup,,_, ., e,(X). Observe that n—oo n

for any$ > 0 and for infinitely manyn To prove the equality holds for (4.14) & = R,(X), it
1. _ M suffices to show the achievability dfy (R) to D, (X) by
<Pf [gﬂn(Xann) > Do(X) — 25}) R | R,(X), sinceAx(R) is right-continuous. This can
M be shown as follows. For arfy>> 0, we note from (4.16)
> <Pr EM(X",X") > en(X) — 5D -1 that there existy = ~(6) such that for sufficiently large
n

Therefore, Ax(R) > Do(X) — 26 for arbitrarily small
6 > 0. This completes the proof of (4.9).

1 1

Pr{—Yn — —E[, Y, <] £ —6‘ Y, < oo} < e 7,
n n

To prove the equality condition for (4.9), it suffices to

show that for any > 0 Therefore, for infinitely many:
_ _ M
Ax(R) < Do(X) +6 <Pr {lyn > Dp(X) — 25})
for R > limsup,,_, ., —% logPr{X™ # X"}. (4.17) n

M
By the assumption on the range Bf there existgy > 0 > <Pr {lYn > EE[Y,,, Y, < o] — 6})
such that n n
1 . = (Pr{Y, = oo} + Pr{Y¥,, < o0}
R>——logPr{X"#X"}+~ for sufficiently largen.
n

M
1 1
(4.18) x Pr {gYn > B, |V, <o) =8|V < oo}>
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1 1 =
= <1 —Pr {gYn - ;E[Yn |Yn < OO] < = | Y, < OO} AX(R) Probability mass
M X of (1/n)un (X", X™)
Pr{Y, < OO}) ess inf(1/n) (X7, X™) s

> (1—e™™ - Pr{Y, < co})M.

Accordingly, forR,(X) < R < R,(X) +~

M Ynoyn vn yn
lim sup <Pr {%Yn > Dy(X) - 26}) >0 (/) Blu(X", X} (X", X7) < o]

n—oo

. . . . Fig. 1. Ax(R) asymptotically lies betweenss inf(1/n)u(X™, X™) and
which, in turn, implies that (l/n)E[u:((X”-,X”) [ o (X7, X™)] for R, (X) < R < Ro(X).
Ax(R) > Dp(X) — 26.
Property 3 of Lemma 5, however, provides a slightly better

This completes the proof of achievability of (4.14) Ry| form for the general Plotkin bound.

R,(X). .
4) This is an immediate consequence of We now, based on Lemma 5, calculate the distance-spectrum
o function of the following examples. The first example deals with
(VL > 0) <Pr {lun(f(", X" > L}) the case of infinite code alphabet, and the second example de-
n rives the distance-spectrum function under unbounded general-

>(1-— Pr{un(X",X") <M., O ized distance measure.
. Example 3 (Continuous Code Alphabetlet X = [0,1),
Remarks: and let the marginal distance metric be
« A weaker condition for (4.11) and (4.12) is 9

1 1 z1,22) = min{l — |z1 — x|, |21 — 22|}
R > limsup —log|S,,| and R > liminf —log|S,| e, @) {1 = e =2l oy — l}
n—oo N n—oo N

Note that the metric is nothing but treatiffyy 1) as a circle ¢
and1 are glued together), and then to measure the shorter dis-
S, 4 (& € X" : Pyn(a™) > 0. tance between two positions. Also, the additivity property is as-

o sumed for thex-fold distance function, i.e.,
This indicates an expected result that when the rate is

where

n

larger thanlog|X|, the asymptotic largest minimum (&, ™) éz (21,24)

distance among codewords remains at its smallest value P& 800 = — pATE Ti)-

supx Do(X) (resp., supx Dy (X)), which is usually =

Zero. Using the productX of uniform distributions overY, the

« Based on Lemma 5, the general relation betwégiiR) sup-distance-spectrum function becomes
and the spectrum of

lun(X",X") Ax(R)=infq a € R: limsup <1
n

can be illustrated as in Fig. 1, which shows tha¢(R)

" M
lies asymptotically withiness inf(1/n)u(X™, X™) and — Pr 1 ZN(XiaXi) <a -0
(1/m) Elun (X7, X7) | 1 (X7, X")for By(X) < R < n & -
Ro(X). Similar remarks can be made an, (R).

On the other hand, the general curve/of(R) (sim- By Crameér Theorem [4]

ilarly for Ax(R)) can be plotted as shown in Fig. 2. To n
summarize, we remark that under fairly general situations lim 1 Pr 1 Z“(Xf X)) <ap=Ix(a)
-4pt-4pt nTee g T

=00, for 0K R<R,(X) where

) —D,(X), atR=R,(X) )

Ax U\ € (Do(X), Dy(X)], for By(X) < R< Ro(X) Tx(a)  sup { ~ta — log & [~ 40|}
= Dy(X), for R= Ro(X). i

« A simple universal upper bound on the largest minimur§ the large deviation rate functiérSince/x (a) is convex ina,
distance among block codewords is the Plotkin bound. [{3ere exists a supporting line to it satisfying
usual expression is given by [13] for which a straightfor- Ix(a) = —t*a—logE [Cft“u(f(,X)}
ward generalization (cf. Appendix B) is

1 4We take the range of supremum to pe> 0] (instead oflt € ] as con-
sup lim sup —E[Nn (X", X")] ventional large deviation rate function does) since what concerns us here is the
n

X n—oo exponent of theumulativeprobability mass.
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Rp(X) Ry(X)
R
Fig. 2. General curve ok x(R).
which implies T T v x x 1 T |
a=—-s5"Ix(a)—s"-logFE [6_“(5(’)()/5*} 1/4 - s

for s* 2 1/¢* > 0; or, equivalently, the inverse function of
Ix(-)is given as

LHR) = —5"R— 5" log B |50/

= sup {—SR —s-logFE [efu(X’X)/S} } (4.21)

5>0

1 1 1 1 1 1 (

0
wheré the last step follows from the observationthat (4.21)i 0 05 1 15 2 25 3 35 4 45 5
also a supporting line to the convé;‘gl(R). Consequently, R

AX(R) —inf{a € R: [x(a) < R} Fig. 3. Function obup, . o{—sR — slog[2s(1 — e=1/22)]}.

= sup{—sR — 5 -log[2s- (1 — ¢"2*)]} (4.22)

50 Example 4: Under the case that = {0,1} and,(-,-) is

additive with marginal distance metrig0,0) = 1(1,1) = 0,

which is plotted in Fig. 3. 1(0,1) =1, andu(1,0) = oo, the sup-distance-spectrum func-
Also from Lemma 5, we can easily compute the margindbn is obtained using the product of uniform (& distribu-
points of the distance-spectrum function as follows. tions as

Ax(R) =inf{a € R: Ix(a) < R}

RO(X)z—logPr{XzX}zoo 94 o 1/s
andDy(X) = essinf (X, X) =0 = §1>1I0) {_SR —s-log T} (4.23)

B ) where

R,(X) = —logPr{i(X,X) < o0} =0 Ix(a) 2 sup {—ta _log E [e—t-u(f(,X)}}

_ . . 1 t>0
andD,(X) = E[u(X, X)| u(X.X) < oc] = 7. g op ot
:sup{—ta—log }
t>0 4

°One may notice the analog between the expression of the large deviatiphjs curve is plotted in Fig. 4. Itis worth noting that there exists

rate function/ x (a) and that of therror exponent functiof2, Theorem 4.6.4)] . . L .
(or the channel reliability exponent functiof2, Theorem 10.1.5]). Here, we aregion that the Sup'd'Stance'SpeCtrum function is 'nf'n'tY- This

demonstrate in Example 3 the basic procedure of obtaining is justified by deriving
inf{a € R : sup(—ta —log Ele”*]) < R} Ro(X) = —logPr{X = X} =log?2
= sup{—sR — s - log E[e~%/°]} andDo(X) = essinf N(X, X) =0
s>0

. . - 5 4
for a random variableZ so that readers do not have to refer to literatures rd?p(X) = —logPr{u(X,X) < oo} =log =
garding to error exponent function or channel reliability exponent function for ) ' 3

the validity of the above equality. This equality will be used later in Examples — 5 5 1
4 and 5, and also (5.26) and (5.27). ande(X) = E[p(X, X) | (X, X) < o0] = 3
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One can draw the same conclusion by simply taking th | <
derivative of (4.23) with respect te, and obtaining that the 13 infinite region |
derivative

e—l/s

—R—log(2+¢1/?) - st 173

+ log(4)
is always positive wherR < log(4/3). Therefore, when
0 < R < log(4/3), the distance-spectrum function is infinity.

From the above two examples, it is natural to questio
whether the formula of the largest minimum distance can t L !
simplified to thequantile function of the large deviation rate 0 log(4/3) log(2)
function (cf. (4.22) and (4.23)), especially when the distanc _ R
functional is symmetric and additive. Note that the quantillgz_ 4 Function of CuR — alogl(3 4 o172 /4
function of the large deviation rate function is exactly th&'% 4 Function obup, {=sft = slog[(2 4 e=1*)/4]}.

well-known Varshamov-Gilbert lower bound (cf. the nex;ﬂ

equality (5.24) ensures the existenceSof §() > 0 such

section). This inquiry then becomes to find the answer of o
at for sufficiently largen

open questiorunder what conditions is the Varshamov—GiIberE
lower bound tight?Some insight on this inquiry will be dis-

1 N -
K . — n ny « > o~ n(R=6)
cussed in the next section. br {nu"(X RARES )\+7} =¢

which, in turn, implies
V. GENERAL VARSHAMOV—GILBERT LOWER BOUND P

M
In this section, a general Varshamov-Gilbert lower boungn sup <Pr {lun(Xann) > A +’Y}>
will be derived directly from the distance-spectrum formulas.»—e° n

v R

Conditions under which this lower bound is tight will then be < limsup (1 B efn(R76)>e .
explored. n—oo
Lemma 6 (Large Deviation Formulas foAx(R) and HenceAx(R) < A+ +.On the other hand, (5.25) implies the
Ax(R)): existence of subsequenge; }52, satisfying
Ax(R) =inf{a € R: Ix(a) < R} lim L log Pr {iunj (X7, X)) < A — ’y} >R
andAx(R) =inf{a € R: Ix(a) < R} Jmee My i
_ ) _which, in turn, implies
where/x (a) and{x (a) are, respectively, the sup- and the inf- v
large deviation spectra ¢1 /n)u,,(X™, X™), defined as i sup <Pr {lun(X", X7y > - 7})
n—oo n
- AL 1 1 S
Ix(a) = hrILrLSolip_E log Pr {Eun(X , XM < a} > lim sup (1 3 e*"jR)e I gy
j—oo

and

Accordingly, Ax(R) > X — ~. Sincev is arbitrary, the lemma

05 (@) 2 limin 1 log Pr {lun(Xn7Xn) < a} ' therefore holds. O
nTee " The above lemma confirms that the distance spectrum func-
Proof: We will only provide the proof regardingx(R). tion Ax(-) (resp.,Ax(-)) is exactly the quantile of the sup-
All the properties of\x () can be proved by following similar (resp., inf-)large deviation spectrum of
etine {1/ (X7, X7
A B Thus if the large deviation spectrum is known, so is the distance
A =inf{a € R: lx(a) < R}. spectrum function.
By the generalized Gartner—Ellis upper bound derived in [6,
Theorem 2.1], we obtain

Ix(@) 2 il Lx(@) = Lx(o)

_ and ﬁx(a) > inf Ix(.’lj) = Ix(a)
Ix(A—v)>R. (5.25) [#<a]
SNote that the usual definition [1, p. 190] of the quantile function of a non\f_\lhe_re the eql’_'a“tles folloyv from the convexity (and hence, con-
decreasing functio'(-) is defined asnp{# : F(#) < }. Here we adopt its tinuity and strict decreasing) of
dual definition for a nonincreasing functidii-) asinf{a : I(a) < R}. Re- A _ A
mark that if F'(-) is strictly increasing (respiy(-) is strictly decreasing), then lX(:L') = sup [93; — @ (9)] and]X(x) = sup [93; — @X(Q)]
the quantile is nothing but the inverse Bf-) (resp..I(-)). [6<0] =X [6<0]

Then for anyy > 0
Ix(A+v) <R (5.24)
and



CHEN et al.: DISTANCE-SPECTRUM FORMULAS ON THE LARGEST MINIMUM DISTANCE OF BLOCK CODES 879

and and yields a (potentially) nonconvex Varshamov-Gilbert-
(6) 2 liminf 1 log E [Ce-un ()”(”,X”)} type bound, wheré(-) is a continuous real-valued func-
£x oo n o tion, and

andgx (6 )_hffis;ip 108E[ Orpn (XX )} : e (6:1) 2 Timsup 1ogE[ n@-h(un(f(”,X”)/N)} ,
Based on these observations, the relation between the distance- nee
spectrum expression and the Varshamov-Gilbert bound can be The question of how to find a propéi(-) for such im-
described as follows. provement is beyond the scope of this paper and hence is

deferred for further study.

Corollary 2 - » We now demonstrate thaty (R) > Gx(R) by a simple
sup Ax(R) =z Sup Gx(R) and S}l{péx(R) > s;pQX(R) example.
where Example 5: Assume binary code alphab&t = {0,1}, and
Gx(R) 2inf {aeR:Ix(a) <R} n-fold Hamming distance
= sup[—sR — s - o, (—1/3)] (5.26) n
s>0 e ™ = T:. T
and (2", 2") = ;u(wz,wz)-

G = 111f acR: [ )< R
Gx(R) { x(a } Define a measurable function as follows:

=sup[—sR — s-@gx(—1/s)]. (5.27)
520 0, if 0 < pp(2™,2™) < an
Some remarks on the Varshamov—Gilbert bound obtained i, (2", z") 2 an, if an < pp (37, 27) < 2an
above are given below. 00, if 2an < p, (2", 2™)

Remarks:
where0 < < 1/2 is a universal constant. LeY be the
» One can easily see from [2, p. 400], where the Var- “ /

shamov—Gilbert bound is given under BhattacharyﬂOduzt°f<un'f°rm distributions over, and lett; = u(X;. X;)
distance and finite code alphabet, that lsismn

Gx(R) and supGyx(R) Then

Sup x an Sup Gx o

Py 1/3)_11m1nf—10gE[ —hn (XX )/S}

Pr <0 < XX )

are mdeed the generallzatlon of the conventional Var

shamov-Gilbert bound.
= lim 111f log

* Sincel < exp{—p, (2™, 2™)/s} < 1fors > 0, the func- n—oo N n
tion exp{—pn(-,-)/s} is always integrable. Hence, (5.26) (X" X7
and (5.27) can be evaluated under any nonnegative mea- + Pr <a < Pl 2 ) o 2a> —on/ ]
surable function,, (-, -). In addition, no assumption on the

alphabet spacg’ is needed in deriving the lower bound. — iginf 1 oo |Px (0 < Yi+---4+Y,

Its full generality can be displayed using, again, Examples e n 08 | Tt = n <«
_3 an_d 4, which result in exactly the same curves as shown Yi+---+Y, an/s
in Figs. 3 and 4. +Pr < — <2al)e

+ Observe thatGx(R) andGx(R) are both the pointwise
supremum of a collection of affine functions, and hence,
they are both convex, which immediately implies theijyhere
continuity and strict decreasing property on the interior of
their domains, i.e.,

:max{—fy( ), —Iy(2a) — a_:}

A S
{R:Gx(R) <o} and {R:Gx(R) < xo}. Ly (o) = suptsor = log[(1 + 7)/2]}

However, as pointed out in [6]x(-) and£x(-) are not (which is exactly the large deviation rate functiondfn)Y ™).
necessarily convex, which, in turn, hints the possibilityence

of yielding nonconvexAx(-) and Ax(-). This clearly
indicates that the Varshamov—Gilbert bound is not tigI@X(R)
whenever the asymptotic largest minimum distance an

among codewords is nonconvex. Iigré [_SR_S e {_IY( ) IY(ZQ)_?H

An immediate improvement from [6] to the Var- = supmin{s[ly () —R], s[Iy(2a)— R]+a}

shamov—Gilbert bound is to employ thwisted large 5>0
deviation rate function (instead é%(-)) 00, for0<R<Iy(2c)
67
- —{ ——— (Iy(a)—R), fory(20)<R<Iy(«
Tx.n(z) 2 sup [0 h(z) — @x(6;h)] Iy () Iy (2a) (1) v(2a) vie)

{8CR:@x (8:h)>—o0} 0, for R> Iy ().
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We next deriveAx (R). Since to meet the lower bound, one could show that (5.28) holds for a
fairly general class of random-code generating processes, which
1 A S A
Pr <—ﬂn(X",X") < a) the optimization process surely lies in.
n
Pr <0 Nt At a) . for0<a<a VI. BOUNDS FORSPECIFICBLOCK CODING SCHEMES
n
= Yi+---+Y, A long-standing problem in coding theory is to find codes

IA

<2a), fora<a<2o  thathave as many codewords as possible while their code length
and minimum distance are given [3], [20], [22]. Many previous
we obtain works were devoted to find bounds of the largest size that any
code can achieve [12], [15], [16], [18], [23], [31]. Here, we are
o0, If0<R<Iy(2a) interested in the behavior of codes when their code lengths tend
Ax(R) =< o,  if y(20) S R<Iy(a) to infinity.
0, if Iy () < R. Enforced by the new formula established in Section Il, some
known lower bounds on the largest minimum distance of a few
Consequently, specific codes can be rederived. Comparisons with the known
results devoted to the same problem are made next.

Pr <0

Ax(R) > Gx(R)

A. AverageNumber of Codewords in a Sphere

for Iy (2a) < R< I . O i
v (29) v(@) We first relate our formula to the average number of code-

* One of the problems that remain open in the combinaterords in a sphere, which is a quantity frequently used in com-
rial coding theory is the tightness of the asymptotic Vabinatorial coding techniques.
shamov-Gilbert bound for the binary code and the Ham- Let S,, € &A™, and .. (-, -) be a nonnegative integer-valued
ming distance [3, p. vii]. As mentioned in Section |, itdistance function defined ove, x S,,. We want to find a code
is already known that the asymptotic Varshamov-Gilbe#,,, a subset 05,,, with the largest minimum distance at least
bound is in general not tight, e.g., for algebraic-geometrig;. Define
code with large code_alphabet size and Hammln_g dis- V(&™) A " € Sn : (@™, 2™) < 1}
tance. Example 5 provides another example to confirm the
untightness of the asymptotic Varshamov-Gilbert bouﬁﬁnd the average volume

for simple binary code and quantized Hamming measure. ave 2 1 V.(@™).
By the generalized Gartner—Ellis lower bound derived |Snl S,
in [6, Theorem 2.1], we conclude that Let the generic distributio®x» be uniformly distributed over
S, e,
Ix(R) = Ix(R) (orequivalentlyAx(R) = Gx(R 1
X( ) —X( ) ( q )/ X( ) X( )) PXn(.Z‘n) _ |S |7 for all z" c Sn
if Then /
_ _ 0+1)— 0 1 .
D), D01 € U [pmeny X000, e )
p<o L HO t "
0 (0)— @ (6—1) = > Pxa(@")Pxo{a" € St (3", 2") > na}
liminf =X =X . anES,
t10 t v (af:")
(5.28) = > Pxa(@") <1 - "|$ | )
Note that although (5.28) guarantees thgg(R) = aesy v am
Gx(R), it dose not by any means ensure the tightness of — 1 _ Z "“(xQ)
the Varshamov—Gilbert bound. An additional assumption % 1Sl
needs to be made, which is summarized in the next 1
observation. =1- —| Sa| Ve
Observation 1: If there exists aX such that Thus foré > 0 arbitrarily small
sup Ax(R) = AX(R) lim sup M
X n—oo n

and (5.28) holds foX , then the asymptotic Varshamov-Gilbert > sup Ax (R + 6)
lower bound is tight. X

The problem in applying the above observation is the dif- = inf{a en: h;n_)solip
ficulty in finding the optimizing procesX. However, it does ’ Men
provide an altgrnative to prove the tigh'Fne.ss of the asymptotic . <Pr {l i X X" > a}) -0
Varshamov—Gilbert bound. Instead of finding an upper bound n
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. . 1 en (e Letlim,, . ..(w/n) = v. Then by using typical asymptotic ap-
=infqa€R:limsup <1 TS vaE ) = proximations for binomial coefficients, we obtain
/ .1 ISy, | a
S, lim = log 2oL — hy(v) — v hy (2
zinf{aemzliiisipw < 1}. ngr;on og Ve p(v) —v b(2v)
a
The above derivation indeed indicates that a lower bound to —(1—wv)-hy <m> .

the asymptotic largest minimum distance can be established
simply calculating|S,,|/V,2¥&. In the sequel, we will then pro- J
ceed to derive the corresponding lower bounds for a few specific limsup =M > dowe
coding schemes. . m—oo T
wheredawe satisfies

B. Lo_v_ver Bounds on the Largest Minimum Distance for Some , _ ho () — v - hy <dcwc> S (1—v)-he < dowe )
Specific Codes 2v 2(1 —w)

For the sake of simplicity, the Hamming distance is assum&ich is equivalent to the result given in [12].

in this subsection, except when otherwise stated. 3) Codes of Correcting Arbitrary Additive Noises (CAN_):
1) Simple Binary Code (SBCWhenS, = {0,1}", the The problem of constructing the maximal codes for correction

of an arbitrary set of additive errors can be summarized as
na follows [10], [11].
Ve = Z <”) Let S,, = {0,1}" be a vector space of dimensienover
i—o \! GF(2). Denote a noise set by, € {0,1}™, and assume that
A known fact to this quantity is that the exponentif¥¢ is the all-zero elemen@always belong téC,,. Then a cod&,, €

Ipc}ilowing the same procedure as (6.29), we get

average volume beconfes

hy(a), i.e., {0,1}™ is said to have the capability of correcting the ndige
if, and only if, for everyz™ # 2" in &, z" Gk # 2" k"
limn 1 log V&8 = by (a) for all k™ andk™ in KC,,, where ‘®” represents the-fold ad-
noeen dition operator ovesS,,. This condition is indeed equivalent to
where (€, 8¢,)Nn(K,eKk,) = {0}, where
hy(a) é—aloga—(l—a)log(l—a), 0<a<l1 ¢, o¢, é{a}"@f:" cxt, @t e €, )
is the binary entropy function. Therefore, and “©” is the reverse operator ta#.” Then the problem of
lim sup dn, vt finding the maximal codes which correct arbitrary, but fixed,
n—oo N types of noise, is exactly the one to locate the larggst €
] ] 1S, that corrects the noig€,,. An interesting query that follows the
z 3‘;10’ inf {“ eR: hfl_)solip VB n(R+5) = 1} previous problem will be the determination of the asymptotic
7 log(2) behavior of(1/n)log|€%| for a sequence of given noise sets
c
= suplnf {CL c R : limsup m S 1} {ICn}nZl ] )
6>0 n—oo CTHATC This query can be transformed to the problem of finding the
= Sup inf{a € RN : hy(a) > log(2) — R — 6} largest minimum distance among codewords by defining
= dspo (6.29) i, (37, 2") 2 { n, it (&% @ K,) N (2" @ K,) = empty set
- L 0, otherwise
wheredspc satisfiesk = log(2) — ki (dspc), which is exactly where

the Varshamov—Gilbert bound for simple binary codes.
2) Constant-Weight Codes (CWClet us now turn to the
constant-weight codes.

Fora™ € {0,1}", letweight (+™) be the number of's in=™.  \wjith this definition, the query then reduces to finding the largest
Define A R such that
S, ={z" € {0,1}" : weight(z") = w}.
For any two codewords} andz% in S,,, for which their weights liminf
(1's) coincide with each other in exaciypositions, the Ham- e "
ming distance betweerf' andz} is equal t®2(w — d). Observe A lower bound for this largesk can then be obtained through
that the total number of codewords, whose Hamming distanite following procedure.

x"@lCné{x"@k":k"EICn}.

dnJ\/[:ﬁnR

=1>0.

with respect tar? equals2(w — d), is Fora € [0,1)
<w> <n - w) Via(3") = {2™ € Sy ¢ pn (@™, 2™) < nall
d)\w—d :|{a:"€$nza:"®/€"=§7"®/%n

Therefore, .
na/2 na/2 for somek™, k" € K, }|

av w n—w w\ {n—w —|fm Con o an g in o n
Vnag:Z<w—i>< i >:Z<L>< i ) o € S =8 SRS
i=0 i=0 for somek™, k™ € K, }
Without loss of generalitya can be treated as an integer. = |{z" @ (k" & k™):for somek™, k" € K,.}|
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< k" e k™ for k™ k" € K, } except for countably mani. A straightforward approach to de-
=K. &K, termine the quantity dim sup,,_, ., d,, pr—enn/n iS to directly
optimize the code selecting process, as we did in Section lll. We,
however, find that it may be advantageous by converting the de-
termination oflimsup,, ., d,, pr=.»=/n into a graph problem
described below.

which implies

Via® < IKn e Kol

Also note that for > 1, Vo (2") = 2". Thus Let G be a graph whose vertices are the elementSgf
- 23“ ' Two verticesz™ andx™ are connected by an edge, denoted by
|Snl Zm, fora €[0,1) e(&m, z™), if, and only if, ;u, (2™, 2™) < na, wherep,(-,-) is
was | 29" fora> 1 the Hamming distance. Denote the set of all edge& byhen
Since ’ - the number of edges ifi (including loops on vertices) is
1 ~n 1 av,
limn inf Z2:M 2 Waali) 11 = 5 (SuVERE + 1S,
n—oo n ﬁ”esn
> sup inf {a € R :liminf W < 1} By assigning vertex™ a probability weightPx~ (z™), we ob-
>0 n—o0 Vnpg

tain

Cnlog(?)
> 3 - 15 ] ]_ A~
> supmf{a €1[0,1): hér_l)lcgf Ty M) < 1} Pr{;un(X",X") < a}

6>0
=2 ) Pxo(#)Pxn(@™) = D Pra(a).

a sufficient condition fotiminf,, . d, a/n > 0is

nlog(2) L= oG
(V6 >0) Diminf —————=>1 (6.30) e(@n am e <
n=oo K © Kyle One can then analyze the original probabilistic optimization
It can be verified that (6.30) is valid if problem through an alternative problem setting over a graph.
1
R < log(2) — limsup — log |K,, & K,,|. (6.31)

n—0o00 n

The right-hand-size of (6.31) then provides a lower bound to

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we use the distance-spectrum methodology to
derive the formulas of the largest minimum distance of deter-

4) Runlength-Limited Codes (RLCJthe asymptotic value ministic block codes. The major advantage of this method is that

of |S,.|/V2& for a runlenth-limited code has been investigatell® a@ssumptions on code alphabet and “distance” measure be-
in [18], [23], in which an upper bound oK' is character- tween codewords are needed. Besides, the concept behind this

ized by the generating function of pairwise distances,inwith Method is quite simple. _
their results, a lower bound for the asymptotic largest minimum We also address a ggr)eral Vars.hamov—Gllber.t onvgr bpund,
distance among codewords can be established through the saRfbremark on the sufficient condition under which it is tight.

procedure as used in the previous three codes. Details are th&f2f0r the open question on its tightness under binary codes and
fore omitted here Hamming distance, we conjecture that it might be profitable to

consider the distance spectrum, and carry out estimations either
directly through the probabilistic optimization (as in Section I11)

C. Alternative Transformation for Problem of Finding the g . !
Largest Minimum Distance Among Codewords or by means of a graph developing. It would be interesting to
have a theory along these lines.

The results obtained in terms of a uniform generic distribu-
tion overs,, in the previous subsections basically show no im-

limsup(1/n)log |€} .

provements over the known ones. A natural query following this APPENDIX A
observation is whether or not a better bound can be achieved m\LTERNATlVE PROOE OEGENERAL VARSHAMOV—GILBERT
terms of a more general class of generic distributions. LOWER BOUND

Recall that the determination of the asymptotic largest min- . .
imum distance among codewords actually involves an optimiza-The idea employed below has actually appeared before in the

tion of the code selecting process. Specifically literature [3, pp. 9-11]. As a result of the simple probabilistic
method, the well-known Varshamov—Gilbert lower bound can

dp pi—en ! . ) ) .
lim sup —nM=en? be obtained for generalized distance function (no necessarily
nTee 1{1 (R) additive, symmetric, and bounded) and infinite code alphabet.

= Sup ix !

X Lemma A.1:For allt < 0, there exists a codebod, /-

{ such that the minimum distance satisfies
=supinf< a € RN : limsup 1
n—oo i d,rn Q:n —1 X 2E tDn,
X 0o Sbiyay) P Emtj2) > 7 log(2E[])

M
Pr lun(Xn’Xn) >a -0 whereD,,,, 0 < m < (M — 1),.are defined for the random
n codebook of block length and sizeM .
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Proof: Let1(.A4) be the indicator function of a set, and where

let Gx(R) 4 sup[—sR — s - <pX( 1/s)]
$m 2 1P < 2E[tPr]). 20 )
andG+(R) =sup[—sR — s-ov(—1/s)].
Then, the Chebyshev inequality yields Gx(R) S>IO>[ ox(—1/s)]
Eldm] > Proof: By lettings = —1/t in Lemma A.2, the theorem
moe then follows by noting that the rate only decreases by the
Therefore, amount (log2)/n when employing a codeZ,, ;> from
M—1 M-1 Lemma A.1, and bothZx(R) and Gx(R) are convex and
Z (/)m] Z El¢n] > = hence continuous. O
mr m=0 The estimate in the proof of Lemma A.2 may make one sus-

which implies that among all the possible selections, there myptious that Lemma A.2 can be improved. Yet, it is shown in

exist a codebook in which//2 codewords satisfy,,, = 1,i.e., our previous work ([9], Theorem 4) that when the distance is
M additive andX is a product measure with identically distributed

e'* < 2E[e" P for at Ieast? codewords in this codebook marginal, which is independent af the bound in Lemma A.2

s actually tight.
The collection of thes&//2 codewords is a desired codebdak. | Haly t

Lemma A.2:Let each codeword be independently selected APPENDIX B
through the distributionPx». For anys > 0 and0 < m < GENERAL PLOTKIN UPPERBOUND
(M —-1)
1
lim inf {—3 C= log(E[e_Dm/S])} Lemma B.1:
n—oo n
dy . 1 ;
and lim sup M < sup lim sup — Efp, (X", X™)]
1 n—oo n X n—ooo N
li —s- = log(E[e=Pm/
1}3:8;:}1){ s+ —log(Ele ])} and
where Iiminf ! < Suphmlnf E[un(X" XM
. n—oo n n—oo 1
ox(6) £ limsup — 108E[ Grpn (RTX )} Proof: Suppose
é 1 1 1 r - n(Xn:Xn) % n
P () = 11,§E)l£>fg103E [C ! } ) nM = {c(() Ve 1}
and is one of the optimal code books of block lengthThen

d M-1 M-—1 )
n,M n
Mo 2 S Y ()
is a given triangular-array distribution. " R aEm o
Proof: Let O’E,’l”) denote thenth randomly selected code- Me1 M—1
word for block lengthn. From the definition ofD,,,, we have & el
J <nM2Z Z“"(m’cm ))

B . [ 1 ) n N m=0 m=0
B =E exp{‘gmgzl% N (st ))H

Atm

X={x" =X, XM }as

IA

=FE - max exp{ (C'(" O(")>/S ] Hence

0< A<M —1 m
MEm

lim sup .Mt < lim sup sup lE[un (X", XM

n—oo n n—oo Xn T

__ j
j

<B| 3 ewiom (G000)/s R %E[unm,ml
L~
= 0<%1 FE [exp{ (C'm ,C )/SH < supll;risolip E[u (X XM,

ey where X represents one of the optimizers of
= (M = DB [ (XD ‘

sup(1/n) Ep, (X", X™)].
Lemma A.2 then follows. O Xm

Theorem A.1: Similar procedure can be used to prove that

limsup = > sup Gx(R) and lim inf M > sup Gx(R) liminf —™ < supliminf — E[un (X", X™). O

n—oo n D. ¢ n—oo n X n—oo n D¢ n—oo
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APPENDIX C Then, from Steps 1 and 2, there exists at least one
PrROOF OF THEGENERAL SPHEREPACKING BOUND pair of codewordse;,, ¢,,,) in € such that
Step 1) Hypothesis testing.For any code Pos+Poyp > e~ dn,arFo(n)
{eo,€1,---,en—1} Since for allg; in €,
given, we can form a maximum-likelihood partitions Py > max{P.|m, Pem}
at the output asf;,ls, - - -, Uy, Which is known
to be optimal. LetA,, ,, be the optimal acceptance and hence
region for alternative hypothesis under equal prior Poji+Poi; 2 Popu 4 Puyn 2 26" Iarto

for
. . for anye; ande; in €. Accordingly
testingHo : Pyn | x (- | ¢y) againstdy : Py xu(- | )

2M—-12M—-1
- . 1
and denote byP.|,, the error probability given Pe(n,2M) = o0 DD DRCATED AT
codewordm is transmitted. Then i=0 j=0
P P U P A 1 2M—-1 2M-1
=Py xn (U | €0)> Py xon (AS | €m
tim = P00 | )2 B0 (b ) sz Y Y BBy
where the superscript" represents the set comple- =M j=M,j#
mentary operation. Consequently, ML 2M
yop (1 A d 28% Z Z (Pe|ﬁl+Pe|rn)
Poim=Pyo | xn (A5 €m) i=M =M, ji
2M—-1 2M-1
Zexp{—D (PY; Pyn|Xn(-|cm))—|—o(n)} > 1\14 S Y aemtharke
and i=M j=M,j#i
M-1 —dyp, m+o(n)
P€|ﬁ12PY”|X”(AﬁL,nl|cﬁl) = AM ¢ M ’
zexp{_p (Py\n Py )y (] c,;l))—i—o(n)}
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