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Distance-Spectrum Formulas on the Largest
Minimum Distance of Block Codes

Po-Ning Chen, Member, IEEE, Tzong-Yow Lee, and Yunghsiang S. Han, Member, IEEE

Abstract—A general formula for the asymptotic largest min-
imum distance (in block length) of deterministic block codes under
generalizeddistance functions (not necessarily additive, symmetric,
and bounded) is presented. As revealed in the formula, the largest
minimum distance can be fully determined by the ultimate statis-
tical characteristics of the normalized distance function evaluated
under a properly chosen random-code generating distribution. In-
terestingly, the new formula has an analogous form to the general
information-spectrum expressions of the channel capacity and the
optimistic channel capacity, respectively derived by Verdú–Han
[29] and Chen–Alajaji [7], [8]. As a result, a minor class of distance
functions for which the largest minimum distance can be derived is
characterized. A general Varshamov–Gilbert lower bound is next
addressed. Some discussions on the tightness of the general Var-
shamov–Gilbert bound are also provided. Finally, lower bounds
on the largest minimum distances for several specific block coding
schemes are rederived in terms of the new formulas, followed by
comparisons with the known results devoted to the same codes.

Index Terms—Block codes, information spectrum, Varshamov–
Gilbert bound.

I. INTRODUCTION

T HE ultimate capabilities and limitations of error-cor-
recting codes are quite important, especially for code

designers who want to estimate the relative efficacy of the
designed code. In fairly general situations, this information is
closely related to the largest minimum distance of the codes
[24]. One of the examples is that for a binary block code em-
ploying the Hamming distance, the error correcting capability
of the code is half of the minimum distance among codewords.
Hence, the knowledge of the largest minimum distance can
be considered as a reference of the optimal error correcting
capability of codes.

The problem on the largest minimum distance can be de-
scribed as follows. Over a given code alphabet, and a given mea-
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surable function on the “distance” between two code symbols,
determine the asymptotic ratio, the largest minimum distance
attainable among selected codewords divided by the code
block length , as tends to infinity, subject to a fixed rate

.
Research on this problem has been done for years. Up to

the present, only bounds on this ratio are established. The best
known bound on this problem is the Varshamov–Gilbert lower
bound, which is usually derived in terms of a combinatorial ap-
proximation under the assumption that the code alphabet is fi-
nite and the measure on the “distance” between code letters is
symmetric [20]. If the size of the code alphabetis an even
power of a prime, satisfying , and the distance measure
is the Hamming distance, a better lower bound can be obtained
through the construction of the Algebraic-Geometric code [14],
[28], the idea of which was first proposed by Goppa. Later, Zi-
noviev and Litsyn proved that a better lower bound than the Var-
shamov–Gilbert bound is actually possible for any [32].
Other improvements of the bounds can be found in [12], [21],
and [30].

In addition to the combinatorial techniques, some researchers
also apply the probabilistic and analytical methodologies to
this problem. For example, by means of the random coding
argument with expurgation, the Varshamov–Gilbert bound in
its most general form can be established by simply using the
Chebyshev inequality ([3] or cf. Appendix A), and restrictions
on the code alphabet (such as finite, countable,) and the
distance measure (such as additive, symmetric, bounded,)
are no longer necessary for the validity of its proof.

Recently, channels without statistical assumptions such
as memoryless, information stability, stationarity, causality,
and ergodicity, , etc., have been successfully handled by
employing the notions ofliminf in probability and limsup in
probability1 of the information spectrum. As a consequence,
the channel capacity is shown to equal the supremum,
over all input processes, of the input–outputinf-information
rate defined as the liminf in probability of the normalized
information density [29]. More specifically, given a channel

1If fA g is a sequence of random variables, then itsliminf in probability
is the largest extended real numberU such thatlim Pr[A < U ] = 0.
Similarly, its limsup in probabilityis the smallest extended real number�U such
that lim Pr[A > �U ] = 0 [17].
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where and are, respectively, the-fold input process
drawn from

and the corresponding output process induced byvia the
channel , and

is the normalized information density. If the conventional defini-
tion of channel capacity, which requires the existence of reliable
block codes forall sufficiently large block lengths, is replaced
by that reliable codes exist forinfinitely many block lengths, a
newoptimisticdefinition of capacity is obtained [29]. Its in-
formation-spectrum expression is then given by [7], [8]

Inspired by such probabilistic methodology, together with
the random-coding scheme with expurgation, a spectrum for-
mula on the largest minimum distance of deterministic block
codes forgeneralizeddistance functions2 (not necessarily ad-
ditive, symmetric, and bounded) is established in this work.
As revealed in the formula, the largest minimum distance is
completely determined by the ultimate statistical characteris-
tics of the normalized distance function evaluated under a prop-
erly chosen random-code generating distribution. Interestingly,
the new formula has an analogous form to the general infor-
mation-spectrum expressions of the channel capacity and the
optimistic channel capacity. This somehow confirms the con-
nection between the problem of designing a reliable code for a
given channel and that of finding a code with sufficiently large
distance among codewords, if the distance function is properly
defined in terms of the channel statistics.

With the help of the new formula, we characterize a minor
class of distance metrics for which the ultimate largest minimum
distance among codewords can be derived. Although these dis-
tance functions may be of secondary interest, it sheds some light
on the determination of the largest minimum distance for a more
general class of distance functions. Discussions on the general
properties of the new formula will follow.

We next derive a general Varshamov–Gilbert lower bound di-
rectly from the new distance-spectrum formula. Some remarks
on its properties are given. A sufficient condition under which
the general Varshamov–Gilbert bound is tight, as well as exam-
ples to demonstrate its strict inferiority to the distance-spectrum
formula, are also provided.

Finally, we demonstrate that the new formula can be used to
derive the known lower bounds for a few specific block coding

2Conventionally, adistanceor metric [19], [26, pp. 139] should satisfy the
properties of i) nonnegativity; ii) being zero iff two points coincide; iii) sym-
metry; and iv) triangle inequality. The derivation in this paper, however, is appli-
cable to any measurable function defined over the code alphabets. Since none of
the above four properties are assumed, the measurable function on the “distance”
between two code letters is therefore termedgeneralized distancefunction. One
can, for example, apply our formula to situation where the code alphabet is a dis-
tribution space, and the “distance” measure is the Kullback–Leibler divergence.
For simplicity, we will abbreviate thegeneralized distancefunction simply as
thedistancefunction in the remaining part of the paper.

schemes of general interests, such as constant-weight codes and
the codes that corrects arbitrary noise [10]–[12], [15], [16], [18],
[23], [27], [31]. Transformation of the asymptotic distance de-
termination problem into an alternative problem setting over a
graph for a possible improvement of these known bounds is also
addressed.

The rest of the paper is organized as follows. The distance-
spectrum formula is derived in Section II. The determination
of the asymptotic largest minimum distances among codewords
for a class of distance functions is covered in Section III. Sec-
tion IV presents the general properties of the distance-spectrum
formula, followed by examples and remarks on these proper-
ties. Section V establishes the general Varshamov–Gilbert lower
bound directly from the distance-spectrum formula. Also cov-
ered in the same section is a sufficient condition under which
the general Varshamov–Gilbert bound is tight, as well as exam-
ples to demonstrate the strict superiority of the new formula to
the general Varshamov–Gilbert bound. Section VI shows that
the new formula can be used to derive the known bounds for
specific coding schemes of general interests. Final comments
appear in Section VII.

Throughout this paper, the natural logarithm is employed un-
less otherwise stated.

II. DISTANCE-SPECTRUM FORMULA ON THE LARGEST

MINIMUM DISTANCE OFBLOCK CODES

We first introduce some notations. The-tuple code alphabet
is denoted by . For any two elements and in , we
use to denote the -fold measure on the “distance”
of these two elements. A codebook with block lengthand size

is represented by

where , and each belongs to
. We define the minimum distance

and the largest minimum distance

Note that there is no assumption on the code alphabetand the
sequence of the functions .

Based on the above definitions, the problem considered in this
paper becomes to find the limit, as , of under a
fixed rate . Since the quantity is investigated as

goes to infinity, it is justified to take as integers.
The concept of our method is similar to that of the random

coding technique employed in the channel reliability function
[2]. Each codeword is assumed to be selected independently of
all others from through a generic distribution . Then the
distance between codewords and becomes a random
variable, and so does . For clarity, we will use to
denote the random variable corresponding to . Also
note that are identically distributed. We therefore
have the following lemma.
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Lemma 1: Fix a triangular-array random process

Let

be defined for the random codebook of block lengthand size
, where each codeword is drawn independently according to

the distribution . Then

1) for any , there exists a universal constant
(independent of block length) and a code-

book sequence such that

(2.1)

for infinitely many ;

2) for any , there exists a universal constant
(independent of block length) and a code-

book sequence such that

(2.2)

for sufficiently large .

Proof: We will only prove (2.1). (2.2) can be proved by
simply following the same procedure.

Define

Let be the indicator function of a set, and let

By definition of

Let

Then for infinitely many

For those that satisfy the above inequality

which implies that among all possible selections, there exist (for
infinite many ) a codebook in which codewords
satisfy , i.e.,

for at least codewords in the codebook

The collection of these codewords is a desired codebook
for the validity of (2.1).

Our second lemma concerns the spectrum of .

Lemma 2: Let each codeword be independently selected
through the distribution . Suppose that is independent
of, and has the same distribution as, . Then

Proof: Let denote the th randomly selected code-
word. From the definition of , we have

(2.3)

where (2.3) holds because

is conditionally independent given . Hence

(2.4)

where (2.4) follows from Lyapounov's inequality [1, p. 76], i.e.,
for a nonnegative random variable.

We are now ready to prove the main theorem of the paper.
For simplicity, throughout the article, and are used
specifically to denote two independent random variables having
common distribution .
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Theorem 1 (Distance-Spectrum Formula):

(2.5)

and

(2.6)

for every , where

and

Proof:

1) Lower bound. Observe that in Lemma 1, the rate only
decreases by the amount when employing a
code . Also note that for any
for sufficiently large . These observations, together with
Lemma 2, imply the validity of the lower bound.

2) Upper bound. Again, we will only prove (2.5), since (2.6)
can be proved by simply following the same procedure.

To show that the upper bound of (2.5) holds, it suffices
to prove the existence of such that

Let be uniformly distributed over one of the optimal
codes . (By “optimal” we mean that the code has the
largest minimum distance among all codes of the same
size.) Define

and

Then for any

for infinitely many (2.7)

For those satisfying (2.7)

which implies

Consequently, . Since can be made
arbitrarily small, the upper bound holds.

Observe that is nonincreasing in , and hence,
the number of discontinuities is countable. This fact implies that

except for countably many . Similar argument applies to
. We can then rephrase the above theorem as

appeared in the next corollary.

Corollary 1:

resp.,

except possibly at the points of discontinuities of
(resp., ), which are countable.

From the above theorem (or corollary), we can characterize
the largest minimum distance of deterministic block codes in
terms of the distance spectrum. We thus name itdistance-spec-
trum formula. For convenience, and will be, re-
spectively, called thesup-distance-spectrum functionand the
inf-distance-spectrum functionin the remainder of the paper.

We conclude this section by remarking that the distance-spec-
trum formula obtained above indeed has an analogous form to
the information-spectrum formulas of the channel capacity and
the optimistic channel capacity. Furthermore, by taking the dis-
tance metric to be the-fold Bhattacharyya distance [2, Defini-
tion 5.8.3], an upper bound on channel reliability [2, Theorem
10.6.1] can be obtained, i.e.,

and

where is the -dimensional channel transition distri-
bution from code alphabet to channel output alphabet ,
and is the average probability of error for optimal
channel code of block length and size . (The proof of this
sphere-packing-type bound is given in Appendix C for the sake
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of completeness.) Note that the formula of the above channel re-
liability bound is quite different from those formulated in terms
of the exponents of the information spectrum (cf. [5, Sec. V]
and [25, eq. (14)]).

III. D ETERMINATION OF THE LARGESTMINIMUM DISTANCE

FOR A CLASS OFDISTANCE FUNCTIONS

In this section, we will present a minor class of distance func-
tions for which the optimization input for the distance-spec-
trum function can be characterized, and thereby, the ultimate
largest minimum distance among codewords can be established
in terms of the distance-spectrum formula.

A simple example for which the largest minimum distance
can be derived in terms of the new formula is the probability-of-
error distortion measure, which is defined as

if
if

It can be easily shown that

for
for

and the upper bound can be achieved by lettingbe uniformly
distributed over the code alphabet. Similarly

for
for

Another example for which the optimizer of the distance-
spectrum function can be characterized is theseparable distance
functiondefined below.

Definition 1 (Separable Distance Functions):

where and are real-valued functions.

Next, we derive the basis for finding one of the optimization
distributions for

under separable distance functionals.

Lemma 3: Define

where the infinum is taken over all pair having indepen-
dent and identical distribution on . Then for
and

In addition, is achieved by uniform distribution over

Proof:

Achievability of by uniform distribution over

can be easily verified, and hence, we omit here.

Lemma 4: For

where the infinum is taken over all pair having inde-
pendent and identical distribution on

and etc.
Proof: The lower bound follows immediately from

Lemma 3.
To prove the upper bound, let be uniformly distributed

over

where and is an integer satisfying

(Note that

)

Then
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Based on the above lemmas, we can then proceed to compute
the asymptotic largest minimum distance among codewords of
the following examples. It needs to be pointed out that in these
examples, our objective is not to attempt to solve any related
problems of practical interests, but simply to demonstrate the
computation of the distance spectrum function for general
readers.

Example 1: Assume that the -tuple code alphabet is
. Let the -fold distance function be defined as

where represents the number of's in . Then

Hence, the asymptotic largest minimum distance among block
codewords is zero. This conclusion is not surprising because the
code with nonzero minimal distance should contain the code-
words of different Hamming weights and the whole number of
such words is .

Example 2: Assume that the code alphabet is binary. Define

where

Then

(3.8)

By taking to be the one under which

has the distribution as used in the proof of the upper bound of

Lemma 4, where , we obtain

This proved the achievability of (3.8).

IV. GENERAL PROPERTIES OFDISTANCE-SPECTRUMFUNCTION

We next address some general functional properties of
and .

Lemma 5 (General Properties of and ):

1) and are nonincreasing and right-contin-
uous functions of .

2)

(4.9)

(4.10)

whereess infrepresentsessential infinum.3 In addition,
equality holds for (4.9) and (4.10), respectively, when

(4.11)

and

(4.12)

provided that

const

(4.13)

3For a given random variableZ , its essential infinumis defined as

ess inf Z = supfz : Pr[Z � z] = 1g:
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3)

for (4.14)

for (4.15)

where

and

In addition, equality holds for (4.14) and (4.15), respec-
tively, when and , provided that

has the large devia-
tion type of behavior, i.e., for all

(4.16)

where .
4) For . Similarly, for

.
Proof: Again, only the proof regarding will be

provided. The properties of can be proved similarly.

1) Property 1 follows by definition.
2) Formula

(4.9) can be proved as follows. Let

and, hence, . Observe that
for any and for infinitely many

Therefore, for arbitrarily small
. This completes the proof of (4.9).

To prove the equality condition for (4.9), it suffices to
show that for any

for (4.17)

By the assumption on the range of, there exists
such that

for sufficiently large

(4.18)

Then for those satisfying and
(4.18) (of which there are sufficiently many)

(4.19)

where (4.19) holds because (4.13). Consequently,

which immediately implies (4.17).
3) Formula (4.14) holds trivially if . Thus

without loss of generality, we assume that .
Formula (4.14) can then be proved by observing that for
any and sufficiently large

(4.20)

where (4.20) follows from Markov's inequality. Conse-
quently, for

To prove the equality holds for (4.14) at , it
suffices to show the achievability of to by

, since is right-continuous. This can
be shown as follows. For any , we note from (4.16)
that there exists such that for sufficiently large

Therefore, for infinitely many
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Accordingly, for

which, in turn, implies that

This completes the proof of achievability of (4.14) by
.

4) This is an immediate consequence of

Remarks:

• A weaker condition for (4.11) and (4.12) is

and

where

This indicates an expected result that when the rate is
larger than , the asymptotic largest minimum
distance among codewords remains at its smallest value

(resp., ), which is usually
zero.

• Based on Lemma 5, the general relation between
and the spectrum of

can be illustrated as in Fig. 1, which shows that
lies asymptotically within and

for
. Similar remarks can be made on .

On the other hand, the general curve of (sim-
ilarly for ) can be plotted as shown in Fig. 2. To
summarize, we remark that under fairly general situations
-4pt-4pt

for
at
for
for

• A simple universal upper bound on the largest minimum
distance among block codewords is the Plotkin bound. Its
usual expression is given by [13] for which a straightfor-
ward generalization (cf. Appendix B) is

Fig. 1. �� (R) asymptotically lies betweeness inf(1=n)�(X̂ ;X ) and
(1=n)E[� (X̂ ;X ) j� (X̂ ;X )] for �R (XXX) < R < �R (XXX).

Property 3 of Lemma 5, however, provides a slightly better
form for the general Plotkin bound.

We now, based on Lemma 5, calculate the distance-spectrum
function of the following examples. The first example deals with
the case of infinite code alphabet, and the second example de-
rives the distance-spectrum function under unbounded general-
ized distance measure.

Example 3 (Continuous Code Alphabet):Let ,
and let the marginal distance metric be

Note that the metric is nothing but treating as a circle (
and are glued together), and then to measure the shorter dis-
tance between two positions. Also, the additivity property is as-
sumed for the -fold distance function, i.e.,

Using the product of uniform distributions over , the
sup-distance-spectrum function becomes

By Cramér Theorem [4]

where

is the large deviation rate function.4 Since is convex in ,
there exists a supporting line to it satisfying

4We take the range of supremum to be[t > 0] (instead of[t 2 <] as con-
ventional large deviation rate function does) since what concerns us here is the
exponent of thecumulativeprobability mass.
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Fig. 2. General curve of�� (R).

which implies

for ; or, equivalently, the inverse function of
is given as

(4.21)

where5 the last step follows from the observation that (4.21) is
also a supporting line to the convex . Consequently,

(4.22)

which is plotted in Fig. 3.
Also from Lemma 5, we can easily compute the marginal

points of the distance-spectrum function as follows.

and

and

5One may notice the analog between the expression of the large deviation
rate functionI (a) and that of theerror exponent function[2, Theorem 4.6.4)]
(or the channel reliability exponent function[2, Theorem 10.1.5]). Here, we
demonstrate in Example 3 the basic procedure of obtaining

inffa 2 < : sup(�ta� logE[e ]) < Rg

= supf�sR � s � logE[e ]g

for a random variableZ so that readers do not have to refer to literatures re-
garding to error exponent function or channel reliability exponent function for
the validity of the above equality. This equality will be used later in Examples
4 and 5, and also (5.26) and (5.27).

Fig. 3. Function ofsup f�sR� s log[2s(1� e )]g.

Example 4: Under the case that and is
additive with marginal distance metric ,

, and , the sup-distance-spectrum func-
tion is obtained using the product of uniform (on) distribu-
tions as

(4.23)

where

This curve is plotted in Fig. 4. It is worth noting that there exists
a region that the sup-distance-spectrum function is infinity. This
is justified by deriving

and

and
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One can draw the same conclusion by simply taking the
derivative of (4.23) with respect to, and obtaining that the
derivative

is always positive when . Therefore, when
, the distance-spectrum function is infinity.

From the above two examples, it is natural to question
whether the formula of the largest minimum distance can be
simplified to thequantile function6 of the large deviation rate
function (cf. (4.22) and (4.23)), especially when the distance
functional is symmetric and additive. Note that the quantile
function of the large deviation rate function is exactly the
well-known Varshamov–Gilbert lower bound (cf. the next
section). This inquiry then becomes to find the answer of an
open question:under what conditions is the Varshamov–Gilbert
lower bound tight?Some insight on this inquiry will be dis-
cussed in the next section.

V. GENERAL VARSHAMOV–GILBERT LOWER BOUND

In this section, a general Varshamov–Gilbert lower bound
will be derived directly from the distance-spectrum formulas.
Conditions under which this lower bound is tight will then be
explored.

Lemma 6 (Large Deviation Formulas for and
):

and

where and are, respectively, the sup- and the inf-
large deviation spectra of , defined as

and

Proof: We will only provide the proof regarding .
All the properties of can be proved by following similar
arguments.

Define

Then for any

(5.24)

and

(5.25)

6Note that the usual definition [1, p. 190] of the quantile function of a non-
decreasing functionF (�) is defined assupf� : F (�) < �g. Here we adopt its
dual definition for a nonincreasing functionI(�) asinffa : I(a) < Rg. Re-
mark that ifF (�) is strictly increasing (resp.,I(�) is strictly decreasing), then
the quantile is nothing but the inverse ofF (�) (resp.,I(�)).

Fig. 4. Function ofsup f�sR � s log[(2 + e )=4]g.

Inequality (5.24) ensures the existence of such
that for sufficiently large

which, in turn, implies

Hence, . On the other hand, (5.25) implies the
existence of subsequence satisfying

which, in turn, implies

Accordingly, . Since is arbitrary, the lemma
therefore holds.

The above lemma confirms that the distance spectrum func-
tion (resp., ) is exactly the quantile of the sup-
(resp., inf-)large deviation spectrum of

Thus if the large deviation spectrum is known, so is the distance
spectrum function.

By the generalized Gärtner–Ellis upper bound derived in [6,
Theorem 2.1], we obtain

and

where the equalities follow from the convexity (and hence, con-
tinuity and strict decreasing) of

and
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and

and

Based on these observations, the relation between the distance-
spectrum expression and the Varshamov–Gilbert bound can be
described as follows.

Corollary 2:

and

where

(5.26)

and

(5.27)

Some remarks on the Varshamov–Gilbert bound obtained
above are given below.

Remarks:
• One can easily see from [2, p. 400], where the Var-

shamov–Gilbert bound is given under Bhattacharyya
distance and finite code alphabet, that

and

are indeed the generalization of the conventional Var-
shamov–Gilbert bound.

• Since for , the func-
tion is always integrable. Hence, (5.26)
and (5.27) can be evaluated under any nonnegative mea-
surable function . In addition, no assumption on the
alphabet space is needed in deriving the lower bound.
Its full generality can be displayed using, again, Examples
3 and 4, which result in exactly the same curves as shown
in Figs. 3 and 4.

• Observe that and are both the pointwise
supremum of a collection of affine functions, and hence,
they are both convex, which immediately implies their
continuity and strict decreasing property on the interior of
their domains, i.e.,

and

However, as pointed out in [6], and are not
necessarily convex, which, in turn, hints the possibility
of yielding nonconvex and . This clearly
indicates that the Varshamov–Gilbert bound is not tight
whenever the asymptotic largest minimum distance
among codewords is nonconvex.

An immediate improvement from [6] to the Var-
shamov–Gilbert bound is to employ thetwisted large
deviation rate function (instead of )

and yields a (potentially) nonconvex Varshamov–Gilbert-
type bound, where is a continuous real-valued func-
tion, and

The question of how to find a proper for such im-
provement is beyond the scope of this paper and hence is
deferred for further study.

• We now demonstrate that by a simple
example.

Example 5: Assume binary code alphabet , and
-fold Hamming distance

Define a measurable function as follows:

if
if
if

where is a universal constant. Let be the

product of uniform distributions over , and let
for .

Then

where

(which is exactly the large deviation rate function of ).
Hence

for

for

for
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We next derive . Since

for

for

we obtain

if
if
if

Consequently,

for

• One of the problems that remain open in the combinato-
rial coding theory is the tightness of the asymptotic Var-
shamov–Gilbert bound for the binary code and the Ham-
ming distance [3, p. vii]. As mentioned in Section I, it
is already known that the asymptotic Varshamov–Gilbert
bound is in general not tight, e.g., for algebraic-geometric
code with large code alphabet size and Hamming dis-
tance. Example 5 provides another example to confirm the
untightness of the asymptotic Varshamov–Gilbert bound
for simple binary code and quantized Hamming measure.

By the generalized Gärtner–Ellis lower bound derived
in [6, Theorem 2.1], we conclude that

or equivalently

if

(5.28)

Note that although (5.28) guarantees that
, it dose not by any means ensure the tightness of

the Varshamov–Gilbert bound. An additional assumption
needs to be made, which is summarized in the next
observation.

Observation 1: If there exists an such that

and (5.28) holds for , then the asymptotic Varshamov–Gilbert
lower bound is tight.

The problem in applying the above observation is the dif-
ficulty in finding the optimizing process . However, it does
provide an alternative to prove the tightness of the asymptotic
Varshamov–Gilbert bound. Instead of finding an upper bound

to meet the lower bound, one could show that (5.28) holds for a
fairly general class of random-code generating processes, which
the optimization process surely lies in.

VI. BOUNDS FORSPECIFICBLOCK CODING SCHEMES

A long-standing problem in coding theory is to find codes
that have as many codewords as possible while their code length
and minimum distance are given [3], [20], [22]. Many previous
works were devoted to find bounds of the largest size that any
code can achieve [12], [15], [16], [18], [23], [31]. Here, we are
interested in the behavior of codes when their code lengths tend
to infinity.

Enforced by the new formula established in Section II, some
known lower bounds on the largest minimum distance of a few
specific codes can be rederived. Comparisons with the known
results devoted to the same problem are made next.

A. AverageNumber of Codewords in a Sphere

We first relate our formula to the average number of code-
words in a sphere, which is a quantity frequently used in com-
binatorial coding techniques.

Let , and be a nonnegative integer-valued
distance function defined over . We want to find a code

, a subset of , with the largest minimum distance at least
. Define

and the average volume

Let the generic distribution be uniformly distributed over
, i.e.,

for all

Then

Thus for arbitrarily small
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The above derivation indeed indicates that a lower bound to
the asymptotic largest minimum distance can be established by
simply calculating . In the sequel, we will then pro-
ceed to derive the corresponding lower bounds for a few specific
coding schemes.

B. Lower Bounds on the Largest Minimum Distance for Some
Specific Codes

For the sake of simplicity, the Hamming distance is assumed
in this subsection, except when otherwise stated.

1) Simple Binary Code (SBC):When , the
average volume becomes7

A known fact to this quantity is that the exponent of is
, i.e.,

where

is the binary entropy function. Therefore,

(6.29)

where satisfies , which is exactly
the Varshamov–Gilbert bound for simple binary codes.

2) Constant-Weight Codes (CWC):Let us now turn to the
constant-weight codes.

For , let be the number of's in .
Define

For any two codewords and in , for which their weights
( 's) coincide with each other in exactlypositions, the Ham-
ming distance between and is equal to . Observe
that the total number of codewords, whose Hamming distance
with respect to equals , is

Therefore,

7Without loss of generality,na can be treated as an integer.

Let . Then by using typical asymptotic ap-
proximations for binomial coefficients, we obtain

Following the same procedure as (6.29), we get

where satisfies

which is equivalent to the result given in [12].
3) Codes of Correcting Arbitrary Additive Noises (CAN):

The problem of constructing the maximal codes for correction
of an arbitrary set of additive errors can be summarized as
follows [10], [11].

Let be a vector space of dimensionover
GF . Denote a noise set by , and assume that
the all-zero elementsalways belong to . Then a code

is said to have the capability of correcting the noise
if, and only if, for every in ,
for all and in , where “ ” represents the -fold ad-
dition operator over . This condition is indeed equivalent to

, where

and “ ” is the reverse operator to “.” Then the problem of
finding the maximal codes which correct arbitrary, but fixed,
types of noise, is exactly the one to locate the largest
that corrects the noise . An interesting query that follows the
previous problem will be the determination of the asymptotic
behavior of for a sequence of given noise sets

.
This query can be transformed to the problem of finding the

largest minimum distance among codewords by defining
if empty set
otherwise

where

With this definition, the query then reduces to finding the largest
such that

A lower bound for this largest can then be obtained through
the following procedure.

For

for some

for some

for some
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for

which implies

Also note that for . Thus

for

for
Since

a sufficient condition for is

(6.30)

It can be verified that (6.30) is valid if

(6.31)

The right-hand-size of (6.31) then provides a lower bound to

4) Runlength-Limited Codes (RLC):The asymptotic value
of for a runlenth-limited code has been investigated
in [18], [23], in which an upper bound on is character-
ized by the generating function of pairwise distances in. With
their results, a lower bound for the asymptotic largest minimum
distance among codewords can be established through the same
procedure as used in the previous three codes. Details are there-
fore omitted here.

C. Alternative Transformation for Problem of Finding the
Largest Minimum Distance Among Codewords

The results obtained in terms of a uniform generic distribu-
tion over in the previous subsections basically show no im-
provements over the known ones. A natural query following this
observation is whether or not a better bound can be achieved in
terms of a more general class of generic distributions.

Recall that the determination of the asymptotic largest min-
imum distance among codewords actually involves an optimiza-
tion of the code selecting process. Specifically

except for countably many. A straightforward approach to de-
termine the quantity of is to directly
optimize the code selecting process, as we did in Section III. We,
however, find that it may be advantageous by converting the de-
termination of into a graph problem
described below.

Let be a graph whose vertices are the element of.
Two vertices and are connected by an edge, denoted by

, if, and only if, , where is
the Hamming distance. Denote the set of all edges by. Then
the number of edges in (including loops on vertices) is

By assigning vertex a probability weight , we ob-
tain

One can then analyze the original probabilistic optimization
problem through an alternative problem setting over a graph.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we use the distance-spectrum methodology to
derive the formulas of the largest minimum distance of deter-
ministic block codes. The major advantage of this method is that
no assumptions on code alphabet and “distance” measure be-
tween codewords are needed. Besides, the concept behind this
method is quite simple.

We also address a general Varshamov–Gilbert lower bound,
and remark on the sufficient condition under which it is tight.
As for the open question on its tightness under binary codes and
Hamming distance, we conjecture that it might be profitable to
consider the distance spectrum, and carry out estimations either
directly through the probabilistic optimization (as in Section III)
or by means of a graph developing. It would be interesting to
have a theory along these lines.

APPENDIX A
ALTERNATIVE PROOF OFGENERAL VARSHAMOV–GILBERT

LOWER BOUND

The idea employed below has actually appeared before in the
literature [3, pp. 9–11]. As a result of the simple probabilistic
method, the well-known Varshamov–Gilbert lower bound can
be obtained for generalized distance function (no necessarily
additive, symmetric, and bounded) and infinite code alphabet.

Lemma A.1:For all , there exists a codebook
such that the minimum distance satisfies

where , , are defined for the random
codebook of block length and size .
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Proof: Let be the indicator function of a set, and
let

Then, the Chebyshev inequality yields

Therefore,

which implies that among all the possible selections, there must
exist a codebook in which codewords satisfy , i.e.,

for at least codewords in this codebook

The collection of these codewords is a desired codebook.

Lemma A.2:Let each codeword be independently selected
through the distribution . For any and

and

where

and

is a given triangular-array distribution.
Proof: Let denote the th randomly selected code-

word for block length . From the definition of , we have

Lemma A.2 then follows.

Theorem A.1:

and

where

and

Proof: By letting in Lemma A.2, the theorem
then follows by noting that the rate only decreases by the
amount when employing a code from
Lemma A.1, and both and are convex and
hence continuous.

The estimate in the proof of Lemma A.2 may make one sus-
picious that Lemma A.2 can be improved. Yet, it is shown in
our previous work ([9], Theorem 4) that when the distance is
additive and is a product measure with identically distributed
marginal, which is independent of, the bound in Lemma A.2
is actually tight.

APPENDIX B
GENERAL PLOTKIN UPPERBOUND

Lemma B.1:

and

Proof: Suppose

is one of the optimal code books of block length. Then

Hence

where represents one of the optimizers of

Similar procedure can be used to prove that
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APPENDIX C
PROOF OF THEGENERAL SPHERE-PACKING BOUND

Step 1) Hypothesis testing.For any code

given, we can form a maximum-likelihood partitions
at the output as , which is known
to be optimal. Let be the optimal acceptance
region for alternative hypothesis under equal prior
for

testing against

and denote by the error probability given
codeword is transmitted. Then

where the superscript “” represents the set comple-
mentary operation. Consequently,

and

where is the tilted distribution between
and with

is the Kullback–Leibler divergence, and
is the Bhattacharya distance between

and . We thus have

Note that the above inequality holds for anyand
with .

Step 2) Largest minimum distance. By the definition of
, there exists an pair for the above code

such that

which implies

Step 3) Probability of error. Suppose we have found the
optimal code with size , which
minimizes the error probability. Index the codewords
in ascending order of , namely,

Form two new codebooks as

and

Then, from Steps 1 and 2, there exists at least one
pair of codewords in such that

Since for all in

and hence

for any and in . Accordingly
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