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Abstract Variations of ¯ow ®eld and heat transfer induced
by a body moving in the same direction as ¯owing ¯uids
in a channel were studied numerically. This situation is
cataloged to a kind of moving boundary problem and an
arbitrary Lagrangian±Eulerian description method with a
Galerkin ®nite element formulation is adopted to analyze
this problem. Several different moving velocities of the
body and Reynolds numbers are taken into consideration.
The results show that the ¯uids simultaneously comple-
ment the vacant space induced by the movement of the
body and new recirculation zones are formed near the
body. These phenomena are remarkably different from
those of the moving body regarded as a stationary body in
the ¯owing ¯uids by a relative velocity viewpoint. Heat
transfer rates of the body are enhanced signi®cantly as the
body moves rapidly, but the slight enhancement is indi-
cated as the body moves slower than the ¯owing ¯uids.
In the computing range, the mean global Nusselt numbers
Nu can be approximately expressed as the form of
Nu � 0:62 Re�1=2 ÿ 2:95.

List of symbols
h dimensional height of the channel, m
H dimensionless height of the channel
d dimensional distance from the outlet of the channel

to the bottom surface of the body, m
D dimensionless distance from the outlet of the

channel to the bottom surface of the body
L dimensionless length of the body
Ni shape function
ne number of elements
Nu average global Nusselt number
Nu mean global Nusselt number
NuX local Nusselt number on the top or bottom surface

of the body

NuX average local Nusselt number on the top or
bottom surface of the body

NuY local Nusselt number on the lateral surface
of the body

NuY average local Nusselt number on the lateral surface
of the body

p dimensional pressure, N/m2

p1 reference pressure, N/m2

P dimensionless pressure
Pr Prandtl number
Re Reynolds number
Re� special Reynolds number
t dimensional time, s
T dimensional temperature, K
Tb dimensional temperature of the body, K
T0 dimensional temperature of the inlet ¯uids, K
u; v dimensional velocities in x and y directions, m/s
U; V dimensionless velocities in X and Y directions
v0 dimensional velocity of the inlet ¯uids, m/s
vb dimensional moving velocity of the body

in y-direction, m/s
Vb dimensionless moving velocity of the body

in Y-direction
v̂ dimensional mesh velocity in y-direction, m/s
V̂ dimensionless mesh velocity in Y-direction
w dimensional width of the channel, m
W dimensionless width of the channel
x; y dimensional Cartesian coordinates, m
X; Y dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity, m2=s
/ computational variables
i dimensional length of the body, m
k penalty parameter
m kinematic viscosity, m2=s
h dimensionless temperature
s dimensionless time

Superscripts
(e) element
m iteration number
T transpose matrix

Others
[ ] matrix
f g column vector
h i row vector
j j absolute value
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1
Introduction
The variations of the ¯ow and thermal ®elds caused by the
interaction between a moving body and ¯owing ¯uids are
important and interesting in many practical engineering
applications. Previous studies related to this subject were
conventionally regarded the moving body as a stationary
body in ¯owing ¯uids by a concept of the relative velocity.
However, for holding the continuity equation, the ¯uids
near the body simultaneously complement the vacant
space induced by the movement of the body. Strictly
speaking, the moving body regarded as the stationary
body in the ¯owing ¯uids is different from that of the body
moving in the ¯owing ¯uids. Hence, the later situation
mentioned above is hardly analyzed by either the
Lagrangian or Eulerian description method solely, and can
be classi®ed into a kind of moving boundary problems.

In the past, Hirt et al. [1] adopted an arbitrary
Lagrangian±Eulerian (ALE) method, which combined the
characteristics of the Lagrangian and Eulerian formula-
tions, to solve ¯uid dynamics problems with moving
boundaries. The basic methodology, stability, accuracy,
and rezoning of the ALE method were described in detail.
Hughes et al. [2], Ramaswamy [3] and Soulaimani and
Saad [4] utilized the ALE method to solve the incom-
pressible ¯ow with free surface. A general kinematic
theory for the ALE method was discussed clearly.

Furthermore, the ALE method was adopted to simulate
the ¯uid-structure interaction [5±8], material forming
process [9, 10] and solid mechanics problems [11, 12].
The solutions obtained by ALE method were consistent
well with the previous or experimental results.

Based upon the literature mentioned above, most of the
studies were focused on the variations of the ¯ow ®elds.
However, in many engineering applications, such as heat
exchanger, moving machine and ¯uid machinery, the
variations of both the ¯ow and thermal ®elds of the
moving boundary problems are important, but little
attention has been devoted to this subject.

Hence, in this study, the ALE method is adopted to
investigate the variations of the ¯ow and thermal ®elds
induced by a body moving in the same direction as ¯owing
¯uids numerically. For avoiding the distortion and de-
formation of computational meshes due to a long move-
ment of the body, an interpolation method is used to
reconstruct the distortion and deformation computational
meshes if necessary. A Galerkin ®nite element method and
an implicit scheme dealing with the time terms are
adopted to solve the governing equations. The results
show that the moving body dominates the variations of the
¯ow ®elds, and heat transfer rates are increased apparently
as the velocity of the moving body is fast.

2
Physical model
A two-dimensional vertical channel with height h and
width w, respectively, as sketched in Fig. 1 is used. A
square body with length i is set within the channel. FH and
EG are the top and bottom surfaces of the body, respec-
tively, FE and HG are the lateral surfaces of the body. The
distance from the outlet of the channel to the bottom

surface of the body is d. The inlet velocity and temper-
ature of the ¯uids are constant and equal to v0 and T0,
respectively. The body is maintained at temperature Tb,
which is higher than T0. Initially �t � 0�, the body is
stationary and ¯uids ¯ow steadily. As time t > 0, the body
starts to move downward with a constant velocity vb,
which is in the same direction as the inlet ¯uids. The
behavior of the body and ¯uids are then affected mutually,
and the variations of the ¯ow and thermal ®elds become
time-dependent and can be classi®ed into a kind of
moving boundary problems. As a result, the ALE method
is properly utilized to analyze this problem.

In order to facilitate the analysis, the following
assumptions and the dimensionless variables are made.

1. The ¯uid is air and the ¯ow ®eld is two-dimensional,
incompressible and laminar.

2. The ¯uid properties are constant and the effect of the
gravity is neglected.

3. The no-slip conditions is held on the interface between
the ¯uids and body.

X � x

i
; Y � y

i
; U � u

v0
; V � v

v0
;

V̂ � v̂

v0
; Vb � vb

v0
; P � pÿ p1

qv2
0

; s � tv0

i
;

h � T ÿ T0

Tb ÿ T0
; Re � v0i

m
; Pr � m

a
:

�1�

Based upon the above assumptions and dimensionless
variables, the dimensionless ALE governing equations
[2±4] are expressed as the following equations:
Continuity equation

oU

oX
� oV

oY
� 0 �2�

Momentum equations

oU

os
� U

oU

oX
� �V ÿ V̂� oU

oY
� ÿ oP

oX
� 1

Re

o2U

oX2
� o2U

oY2

� �
�3�

Fig. 1. The physical model
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oV

os
� U

oV

oX
� �V ÿ V̂� oV

oY
� ÿ oP

oY
� 1

Re

o2V

oX2
� o2V

oY2

� �
�4�

Energy equation

oh
os
� U

oh
oX
� �V ÿ V̂� oh

oY
� 1

Pr Re

o2h
oX2
� o2h

oY2

� �
�5�

As s > 0, the boundary conditions are as follows:
on the surfaces AB and CD

U � V � 0; oh=oX � 0 �6�
on the surface BD

U � 0; V � 1; h � 0 �7�
on the surface AC

oU=oY � oV=oY � oh=oY � 0 �8�
on the interfaces EF, FH, EG and GH between the ¯uids
and body

U � 0; V � Vb; h � 1 �9�

3
Numerical method
A Galerkin ®nite element method and an implicit scheme
dealing with the time terms are adopted to solve the
governing equations (2)±(5). Newton±Raphson iteration
algorithm and a penalty function [13] are utilized to
handle the nonlinear and pressure terms in the momen-
tum equations, respectively. The velocity and temperature
terms are expressed as quadrilateral and nine-node
quadratic isoparametric elements. The discretization
process of the governing equations is similar to the one
used in Fu et al. [14]. Then, the momentum equations (3)
and (4) can be expressed as follows:Xne

1

�A��e� � �K��e� � k�L��e�
� �

fqg�e�s�Ds �
Xne

1

ff g�e�

�10�
in which

fqg�e�s�Ds

� �T
� hU1;U2; . . . ;U9; V1;V2; . . . ;V9im�1

s�Ds

�11�
where, �A��e� including the �m�th iteration values of U and

V at time s� Ds. �K��e� including the shape function, V̂

and time differential terms. �L��e� including the penalty
function terms. ff g�e� including the known values of U and
V at time s and �m�th iteration values of U and V at time
s� Ds.

The energy equation (5) can be expressed as follows:Xne

1

�M��e� � �Z��e�
� �

fcg�e�s�Ds �
Xne

1

frg�e� �12�

where

fcg�e�s�Ds

� �T
� hh1; h2; . . . ; h9is�Ds �13�

in which, �M��e� including the values of U and V at time
s� Ds. �Z��e� including the shape function, V̂ and time

differential terms. frg�e� including the known values of h at
time s.

In Eqs. (10) and (12), the terms which include the
penalty function are integrated by 2� 2 Gaussian quadr-
ature, and the other terms are integrated by 3� 3 Gaussian
quadrature. The value of penalty parameter, k, used in this
study is 106 and the frontal method is utilized to solve
Eqs. (10) and (12).

For holding the boundary conditions to be satis®ed
at the inlet and outlet of the computational domain as
shown in Fig. 1, the displacement of the body is then
limited, and do not disturb the boundary conditions
mentioned previously.

Concerning the mesh velocity V̂ , it is linear distri-
bution and inverse proportion to the distance between
the node of the computational meshes and the body in
this study. The mesh velocity near the body is faster
than that near the boundary of the computational
domain. In addition, the boundary layer thickness on
the body surface is extremely thin and can be approx-
imately estimated by Reÿ1=2 [15]. To avoid the compu-
tational nodes in the vicinity of the body to slip away
the boundary layer, the meshes velocities adjacent to the
body are expediently assigned equal to the velocity of
the body.

A brief outline of the solution procedure are described
as follows:

1. Determine the optimal mesh distribution and number
of the elements and nodes.

2. Solve the values of the U , V and h at the steady state
and regard them as the initial values.

3. Determine the time increment Ds and the mesh
velocities of the computational meshes.

4. Update the coordinates of the nodes and examine the
determinant of the Jacobian transformation matrix to
ensure the one-to-one mapping to be satis®ed during
the Gaussian quadrature numerical integration, execute
the mesh reconstruction if necessary.

5. Solve Eq. (10), until the following criteria for conver-
gence are satis®ed:����/m�1 ÿ /m

/m�1

����
s�Ds

< 10ÿ3; where / � U;V �14�

6. Substitute the U and V into Eq. (12) to obtain h.
7. Continue the next time step calculation until the

assigned time reaches.

4
Results and discussion
The working ¯uid is air with Pr = 0.71. For matching the
boundary conditions at the inlet and outlet of the channel
mentioned previously, at the time s � 0:0 the dimension-
less lengths of H��h=i� and D��d=i� are determined by
the numerical tests and equal to 30 and 20, respectively.
The dimensionless width W��w=i� of the channel is 10,
and the dimensionless length L�� i=i� of the body is 1.

The local Nusselt number NuX and the average local
Nusselt number NuX on the top surface (FH) and the
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bottom surface (EG) of the body at the time s are de®ned
as follows, respectively.

NuX � ÿ oh
oY

�15�

NuX � 1

L

ZL

0

NuX dX �16�

The local Nusselt number NuY and the average local
Nusselt number NuY on the lateral surface (EF or GH) of
the body at the time s are de®ned as follows, respectively.

NuY � ÿ oh
oX

�17�

NuY � 1

L

ZL

0

NuY dY �18�

The average global Nusselt number Nu on the surfaces of
the body at the time s is de®ned as

Nu � 1

4L

Z
FH

NuX dX �
Z
EG

NuX dX �
Z

EF�GH

NuY dY

0@ 1A
�19�

The mean global Nusselt number Nu in the duration of
the transient developments on the surface of the body is
de®ned as

Nu � 1

s

Zs

0

Nu ds �20�

In order to obtain the optimal computational meshes,
three different nonuniform element distributions of 1872,
2672 and 3904 (corresponding to 7720, 10952 and 15944
nodes) are used for the grid tests at steady state and
Re = 500 situation. The results of U , V and h distributed
along the lines MM0 and NN0 as shown in Fig. 1 are
indicated in Fig. 2. According to the results of the grid
tests, the meshes with 3904 elements (15944 nodes) are
adopted for the computation. Besides, the time step
Ds � 5� 10ÿ3 is adopted by the time step tests and the
total computational time s changing from 0 to 1 is
considered in this study.

Due to the limitation of contents, the ¯ow and heat
transfer mechanisms are mainly focused on the velocities
of the body Vb � ÿ0:5 and ÿ2.0 under Re = 500 situation.
For illustrating the ¯ow and thermal ®elds more clearly,
the phenomena in the vicinity of the body are presented
only.

The transient developments of the velocity vectors
around the body for Vb � ÿ0:5 case are shown in Fig. 3.
At the steady state �s � 0:0�, recirculation zones neigh-
boring the bottom surface of the body and reverse ¯ow
zones near the lateral surface of the body are observed
apparently. At the beginning of the transient state, the
body moves downward and presses the ¯uids of which
the ¯owing direction is upward near the bottom surface
of the body, and the ¯owing direction of these ¯uids is

forced to change drastically and turned to the two sides of
the bottom surface of the body. From a relative velocity
viewpoint, the behavior is similar to the ¯uids impinging
on the bottom surface of the body, which is advantageous
to heat transfer.

As for the ¯uids near the top surface of the body,
because the approaching velocity of the ¯uids is ¯owing
downward which is in the same direction as the moving
body, the impinging effect caused by the ¯uids
impinging on the top surface at the steady state is more
apparent than that during the transient development,
which is disadvantageous to heat transfer.

Concerning the behavior of the ¯uids near the lateral
surface of the body, as the body begins to move downward,
the ¯uids near the corner of the bottom surface of the body
are pressed by the body which causes the reverse ¯ow near
the lateral surface of the body to be more apparent at ®rst.
Afterward, recirculation zones appear around the lower
corners of the lateral surface, and reattachment regions
exist on the lateral surface, which is pro®table for the heat

Fig. 2. Comparison of the steady U , V and h distributions along
the lines MM0 and NN0 and Re = 500 for various grids
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transfer mechanism. As the time increases, the movement
of the body affects the ¯uids near the lateral surface
and the ¯ow direction of the ¯uids is forced to change
gradually. Finally, most of the ¯uids close to the lateral
surface are ¯owing with the lateral surface.

Shown in Fig. 4, there are transient developments of the
isothermal lines around the body for Vb � ÿ0:5 case.
Since the ¯uids impinge on the bottom surface of the
body during the transient state mentioned above, the
distributions of the isothermal lines are dense near the
bottom surface of the body. As for the distribution of

the isothermal lines near the top surface of the body, these
distributions become sparse gradually, the reason is that
the impinging effect of the ¯uids on the top surface be-
comes weak, which is disadvantageous to heat transfer.
As for the distributions of the isothermal lines near the
lateral surface of the body, the ¯ow ®elds near the lateral
surface is affected by the movement of the body remark-
ably, which results in the density of the isothermal lines
distributed near the lateral surface varying drastically.
Moreover, the isothermal lines near the reattachment
region are denser in the neighborhood of the lateral
surface.

The results of the transient developments of the local
Nusselt numbers NuX and NuY on the surfaces of the body
for Vb � ÿ0:5 case are indicated in Figs. 5 and 6,
respectively. The solid and dashed lines in Fig. 5 indicate
the results of the top and bottom surfaces of the body,
respectively. As the body starts to move downward, the
¯uids near the bottom surface of the body pressed by the
body mentioned earlier are similar to an impinging ¯ow
that enhances the heat transfer rate on the bottom surface.
On the top surface of the body, most of the ¯uids no longer
strongly impinge on the top surface during the transient
developments. Consequently, the distributions of the local
Nusselt numbers on the top surface during the transient
developments are smaller than those at the steady state.
The magnitude of decrement of the local Nusselt numbers
at both the corners of the top surface are remarkable
because of the edge effect of the corners being weak in
the duration of the transient developments.

In Fig. 6, the results of the local Nusselt number NuY on
the lateral surface of the body are shown. At the steady
state (Fig. 6a), the situation is similar to the ¯uids ¯owing
through a plate with ®nite length, and the larger local

Fig. 3a±d. The transient developments of the velocity vectors
around the body for Re = 500 and Vb � ÿ0:5 case a s � 0:0,
b s � 0:05, c s � 0:5, d s � 1:0

Fig. 4a±d. The transient developments of the isothermal lines
around the body for Re = 500 and Vb � ÿ0:5 case a s � 0:0,
b s � 0:05, c s � 0:5, d s � 1:0

Fig. 5a±d. The transient developments of the local Nusselt
numbers NuX on the top and bottom surfaces for Re = 500 and
Vb � ÿ0:5 case a s � 0:0, b s � 0:05, c s � 0:5, d s � 1:0
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Nusselt numbers are distributed on the upper and lower
edges of the lateral surface of the body. As the body starts
to move downward, the relative velocity of the ¯uids
¯owing over the upper edge of the lateral surface is re-
duced, then the local Nusselt numbers on the upper edge
of the lateral surface are decreased remarkably at ®rst.
Oppositely, the local Nusselt numbers on the lower edge of
the lateral surface of the body are increased signi®cantly
due to the ¯uids with higher velocity ¯owing over the
corner of the bottom surface of the body mentioned
earlier. A rising distribution of the local Nusselt numbers
on the center regions indicates the reattachment regions
and varies with time.

The transient developments of the average local Nusselt
numbers NuX and NuY on the surfaces of the body for
Vb � ÿ0:5 case are shown in Fig. 7. Based upon the rea-
sons mentioned above, the average local Nusselt numbers
on the bottom surface of the body during the transient
developments are larger than those at the steady state.
Oppositely, the average local Nusselt numbers on the top
surface of the body under the transient state are smaller
than those at the steady state. As for the lateral surface of
the body, the average local Nusselt numbers decrease at
®rst and increase a little with the increment of time.
According to the variations of heat transfer mentioned
above, the mean increment of the average global Nusselt
numbers Nu is not signi®cant.

Shown in Fig. 8, there are the transient developments of
the velocity vectors around the body for Vb � ÿ2:0 case.
The variations of the ¯ow ®elds near the body are more
drastic since the moving velocity of the body in this case is
greater than that of the above case �Vb � ÿ0:5�. The ¯ow
®elds near the bottom and lateral surfaces of the body
in this case are similar to those of the Vb � ÿ0:5 case. As

for the ¯uids near the top surface of the body, since the
moving velocity of the body is greater than the ap-
proaching velocity of the ¯uids, the ¯uids complement
the vacant space induced by the movement of the body not
only from the approaching ¯uids but also from the ¯uids
near the lateral surface of the body in the early stages of
the transient developments. The ¯uids can not catch up
with the top surface of the body and new recirculation
zones are formed around the corners of the top surface,
which is disadvantageous to heat transfer. After that,
most of the ¯uids that complement the vacant space in-
duced by the movement are provided from the ap-
proaching ¯uids, which is like the situation of the ¯uids
impinging on the top surface of the body. As a result,
the recirculation zones are vanished, and the phenomena
are different from those of the above case as shown
in Fig. 3 and enhance the heat transfer rate.

The transient developments of the average local Nusselt
numbers NuX and NuY for Vb � ÿ2:0 case are shown in
Fig. 9. Based upon the reasons mentioned above,
the variations of the average local Nusselt numbers on
the bottom surface of the body are similar to those of

Fig. 6a±d. The transient developments of the local Nusselt
numbers NuY on the lateral surface of the body for Re = 500 and
Vb � ÿ0:5 case a s � 0:0, b s � 0:05, c s � 0:5, d s � 1:0

Fig. 7. The transient developments of the average local Nusselt
numbers on the surfaces of the body for Re = 500 and Vb � ÿ0:5
case

Fig. 8a±d. The transient developments of the velocity vectors
around the body for Re = 500 and Vb � ÿ2:0 case a s � 0:0,
b s � 0:25, c s � 0:5, d s � 1:0
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the case of Vb � ÿ0:5. As for the top surface of the body,
because the ¯uids hardly impinge on the top surface and
the recirculation zones are formed around the corner of
the top surface at ®rst, the average local Nusselt numbers
distributed on the top surface are decreased. As the time
increases, the recirculation zones around the corner of the
top surface are vanished, and the average local Nusselt
numbers distributed on the top surface then increase a
little. As for the lateral surface, the average local Nusselt
numbers are increased at the beginning. As the time s is
about larger than 0.7, the ¯uids near the lateral surface
¯ow with the lateral surface and the reattachment region is
destroyed, which causes the heat transfer rates reduced.
From the variations of heat transfer mentioned above, the
mean increment of the average global Nusselt numbers
Nu in the computing range is about 105%, which is larger
than that of Vb � ÿ0:5 case.

Furthermore, three different Reynolds numbers of
Re = 100, 500 and 750 with three different body moving
velocities of Vb � ÿ0:5, ÿ1.0 and ÿ2.0 are taken into
consideration to determine the relationships among the
three variables of the mean global Nusselt number Nu,
Reynolds number Re and the moving velocity of the body
Vb in the computing range. For convenience of expression,
the results shown in Fig. 10 are presented in terms of a
special Reynolds number Re�,

Re� � v0i
m
�
���� vb

v0

���� � RejVbj �21�

The relationships can be approximately correlated by
Eq. (22).

Nu � 0:62 Re�1=2 ÿ 2:95 �22�

5
Conclusions
Flow ®elds and heat transfer of a body moving in the same
direction as the ¯owing ¯uids are investigated numeri-
cally. The results can be summarized as follows:

1. The ¯uids near the top and lateral surfaces of the body
simultaneously complement the vacant space induced
by the movement of the body, and new recirculation
zones are formed near the corners of the top and lateral
surfaces of the body. These phenomena are apparently
different from those of the body ®xed in the ¯owing
¯uids.

2. The heat transfer rates of the body moving in the same
direction with the ¯owing ¯uids are enhanced signi®-
cantly as the body moving faster, but almost without
enhancement as the moving velocity of the body is
slower.

3. The relationships between the mean global Nusselt
number Nu of the body and the special Reynolds
number Re� is a positive correlation.
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