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Abstract

In superclean limit, the Magnus force on Abrikosov vortices is stronger than friction. Due to this nondissipative force,
vortex segments rotate around pinning centers. Waves of such rotations under certain conditions are only weakly damped
Ž .not overdamped as is usually the case and lead to resonances in ac response. Excitation of such waves by applied ac field
near the surface is considered. Surface impedance, ac resistivity and magnetic permeability are calculated using elasticity
theory of the vortex lattice. q 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Abrikosov vortex dynamics in type II supercon-
ductors under magnetic field is usually thought to be
overdamped. Due to large vortex viscosity, the dis-
placement waves in vortex lattice do not propagate.
In high-T superconductors, the situation under cer-c

tain conditions might be different. The dissipation
during the vortex motion is, at least, to large extent
due to excitation of quasiparticles inside the vortex
core. At small temperatures, this process is frozen
and instead of the usual Bardeen–Stephen friction
force, hz, one only has a non-dissipative Magnus
force hz=z perpendicular to the vortex velocity,ˆ
where z is the direction of external magnetic field.
As evidence to the increasing role of the Magnus

w xforce is the famous Hall anomaly 1,2 . In a series of

) Corresponding author.

w xdirect experiments 3 , it was shown that in YBCO
single crystals at low temperatures, the Hall angle

Ž . X y1tan u 'h rh diverges as T and clearly exceedsH

1 below 4 K reaching 2.5 at 3 K. This regime was
w xtermed by authors of Ref. 3 ‘‘superclean limit’’.

Theoretically, such a behavior was predicted in Refs.
w x4–8 . In such a superclean regime, vortex dynamics
might be non-overdamped and, for example, dis-
placement waves in the vortex lattice can propagate.

w xThis type of phenomenon was used recently 9,10 to
w xexplain the magneto-absorption in BSCCO 11–14 ,

although alternative explanations based on the
w xJosephson plasma oscillations exist 15,16 .

In this paper, we consider dynamics of vortices in
‘‘superclean’’ superconductors under applied ac field.
We argue existence of weakly damped ‘‘rotation’’
waves in the pinned vortex lattice, calculate its dis-
persion law, and consider linear vortex response on
applied ac field. We show that excitation of the
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non-overdamped waves by applied ac field modify in
an essential way the theory of the linear response

w xdeveloped by Brandt 17,18 and Coffey and Clem
w x19,20 and point out possible resonance effects in
the surface impedance and ac resistivity.

2. Dispersion relation for waves in vortex lattice

For small magnetic induction values, BrF -0

ly2 , one can neglect exponentially small interactions
between vortices and consider single vortex dynam-

Ž .ics. Assuming that the vortex is pinned Fig. 1 , we
describe it by equation of motion for displacement u:

muqhuqh
X z=uqa us0. 1Ž .¨ ˙ ˙

Here, a is the Labousch parameter describing
restoring pinning force in the x–y plane. Neglecting

Ž .Fig. 1. a Positions and displacements of vortices caused by
Ž .external Lorentz force. b Displacement of a vortex segment

Ž .under influence of ac field in the superclean limit. c Displace-
ment of a vortex segment under influence of ac field in the
conventional overdamped case.

Ž .the vortex mass in Eq. 1 for single vortex dynam-
Ž .ics, one obtains the following periodic solution: u ti

se iV " t u where:i

ih"h
X

V sa . 2Ž ." X 22h qh

When the friction coefficient, h, is small, one ob-
Ž .tains clockwise and counterclockwise circular vor-

Ž .tex motion around the pinning center see Fig. 1b
with the frequency v sarh

X.M

Contribution of interactions between vortices to
the vortex dynamics can be taken into account within
harmonic approximation:

u Ra h
X
e u Ra qa u Rah Ž . Ž . Ž .˙ ˙i i j j i

q F Ra yRb u Rb.s0. 3Ž . Ž Ž .Ý i j j
b

Here F is the dynamical matrix and R a are loca-i j

tions of vortices usually arranged in the lattice and
e is the totally antisymmetric tensor. Since we arei j

using elasticity theory, the detailed nature of the
vortex matter is not very important as long as correct
elastic moduli are used and most of the considera-
tions are valid in vortex liquid or glass. We will
consider only external forces homogeneous in y and
z directions; therefore, the only nonzero component
of momentum is k 'k. When external force isx

absent displacement vector for frequency, V , satis-
fies:

2 X Ž .u kŽ . Ž .iVhq a qc k k iVh x11
X 2 Ž .ž /u kž / yŽ . Ž .y iVh iVhq a qc k k66

' A u s0, 4Ž .i j j

Ž .where c and c are possibly dispersive elastic11 66
w xmoduli of the vortex matter. In London limit 21 :

B2 1 c11
c k s ' ;Ž .11 2 2 2 24p 1ql k 1ql k

BF 0
c s . 5Ž .66 24 4plŽ .
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Ž .The eigenfrequencies in Eq. 2 now become
branches. In the superclean limit hs0, one has
non-damped waves with dispersion law:

2 2 4(a qa k cqk c k cŽ .11 66
V k s" , 6Ž . Ž .X"

h

Ž .where c'c k qc . In the general case, when11 66

both h and h
X are nonzero, the eigenfrequencies

Ž .V k are complex values and dispersion law be-pm
w xcomes rather complicated 22 .

ŽPolarization of the waves which follows from
Ž ..Eq. 4 is as follows:

u k aqc k 2Ž .y 11y1sytan u q i . 7Ž .XHu k V k hŽ . Ž .x "

The fact that the ratio is imaginary means that
vortices move on elliptic trajectories.

3. Linear response under applied ac field

In this section, we consider the pinned vortex
system response to surface ac current caused by
alternating field h e iv t in direction parallel to dcac

field, H, and to the surface of the superconducting
half space, see Fig. 1a. Linear response for such
geometry for the case h

X s0 was considered by
w x w xBrandt 17,18 and Coffey and Clem 19,20 , also

taking into account pinning, viscosity and creep.
Since we are interested mostly in the low tempera-
ture regime, flux creep can be neglected while the

ŽMagnus force term is important creep can be taken
w x.into account in a similar manner as in Refs. 17–20 .

When one performs similar calculation for h
X
)0,

new resonant phenomena are readily seen. We im-
pose proper boundary conditions using the ‘‘bulk

w xconcept’’ methods of Refs. 17,18 , which allow
referring the problem to an equivalent problem in
whole space.

The external force is:

Bhac y < x < _ l i v tF x ,t s e e , 8Ž . Ž .ext 4pl

Bhac
F k ,v s . 9Ž . Ž .ext 2 22p 1ql kŽ .

The displacement in momentum space is obtained
Ž . Ž Ž ..from Eq. 4 with external force Eq. 9 . Very often

both c and k are ‘‘small’’. If c k 2 is small66 66
Ž .compared to vhqa , one can readily obtain dis-

placements in the form:

Bhac
u k ,v sŽ .x 2 22pa v 1qk c ra v qlŽ . Ž .Ž .11

2h l2 vŽ .ac C
s , 10Ž .2 2B 1qk l vŽ .ac

ivh
X

u k ,v s u k ,v , 11Ž . Ž . Ž .y xivhqa

Ž . wŽ 2 X 2 . Ž .xwhere a v ' ivhqay v h r ivhqa and
2 Ž .the modified Campbell penetration depth l v is:C

c B2 ivhqaŽ .112l v ' sŽ .C 2 X 22a vŽ . 4p ivhqa yv hŽ .

B2 ivq tanu v cos2uŽ .H M H
sy .

4ph vyV 0 vyV 0Ž . Ž .q q

12Ž .

The frequency-dependent complex ac penetration
Ž .depth was introduced in Eq. 8 :

l2 v 'l2 ql2 v . 13Ž . Ž . Ž .ac C

w x XAs is in the usual case 17–20 , h s0, this quantity
determines both the surface impedance:

Z v s 4p irc2 vl v 14Ž . Ž . Ž .Ž .s ac

Ž . Ž . Ž .and the ac resistivity r v ' E x rJ x sac
Ž 2 . 2 Ž .4p irc vl v . These two quantities exhibit res-ac

onance in the clean limit. On Fig. 2, real and imagi-
nary parts of surface impedance for various values of
cosu and b'BrH s10 are shown.H c1

The general case, when k 2c is not negligible,66
w xwas also studied in our work 22 . Qualitative behav-

Ž .ior of the Z v dependence, shown in Fig. 2, does
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ŽFig. 2. Frequency dependence of the surface impedance real and
.imaginary parts for cosu s0.1, 0.3, 0.6, 1. Magnetic inductionH

Bs10 H .c1

not change, while resonance peak becomes even
more pronounced in this case.

4. Discussion

In this work, we determined conditions under
Žwhich a non-overdamped ‘‘rotation’’ around pin-

.ning centers waves exist in clean type II supercon-
ductors. There are clear indications that these condi-
tions can be met in non-twinned YBCO single crys-

w xtals 2 , and some resonance effects due to vortex
motion were really observed in ac experiments on

w xHTS materials 23,24 . Excitation of such waves by
applied ac field near the surface is considered. The
simplest realistic geometry is the superconducting
half space with the dc magnetic field creating vor-
tices parallel to the surface. We considered the direc-
tion of the surface ac field parallel to the dc mag-
netic field. In this case, linear response character-
istics, such as surface impedance and ac resistivity,
were calculated using the elasticity theory of the
vortex lattice. The most pronounced effect of the
rotation waves is resonance at characteristic fre-
quency of order V sarh

X. It is comparable ors

larger than the depinning frequency, V sarh,depin
w xwhich is of order 10–100 GHZ 25 .
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