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Anisotropic peak effect due to structural phase transition
in the vortex lattice
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Abstract

Ž .The recently observed new peak effect in YBCO is explained by softening of the vortex lattice VL due to a structural
phase transition in the VL. At this transition, square lattice transforms into a distorted hexagonal one. While conventional
peak effect is associated with softening of shear modes at melting, in this case the relevant mode is the point. The squash
mode is highly anisotropic and we point out some peculiar effects associated with this feature. q 2000 Published by Elsevier
Science B.V. All rights reserved.
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Conventional peak effect, sudden increase of the
critical current, has been observed in great variety of
both low and high T superconductors. In conven-c

tional superconductors, the peak effect was theoreti-
cally explained a long time ago by Larkin and

w xOvchinnikov 1 , while in high T superconductorsc

like untwinned YBCO, it is generally believed that
the peak is due to softening of the shear mode just
before the first order melting transition of the vortex

Ž . w xlattice VL takes place 2 . However, recently, an-
other peak in critical current in YBCO has been
discovered on a line almost parallel to the T-axis
starting from the melting line at H;9 T and contin-
uing to lower temperatures. First it appeared only as

w xa ‘‘fishtail’’ in magnetization hysteresis loops 3–5 ;
but recently, a direct measurement of the critical

w xcurrent 6 clearly established a line presumably cor-
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responding to some transition in vortex matter. As a
Ž .possible explanation, the transition or crossover

Ž .from the topologically ordered Bragg glass to vor-
Ž . w xtex glass or pinned liquid was proposed 7–10 .

Independently from these findings, both experi-
mental and theoretical advances indicated that in
YBCO there is a structural phase transition in VL:
‘‘distorted’’ hexagonal lattice stable at lower mag-
netic fields transforms into the square lattice oriented
at the angle of qs458 with respect to the crystallo-

w xgraphic 100 axis at higher fields. Experimental
evidence for a significantly distorted hexagonal phase

Ž .comes from scanning tunneling spectroscopy STM
w x Ž .11 and small angle neutron scattering SANS
w x12,13 . Theoretical evidence comes from the deriva-

Ž .tion of the d-wave Ginzburg–Landau GL equations
w xfrom certain microscopic models 14–16 . The the-
w xory was simplified by Franz et al. 17,18 and by one

w xof us 19,20 . Various properties of the VL solutions
were also studied. In borocarbide superconductors,
an analogous phase transition was firmly established

w xby SANS and STM experiments 24 . This formalism
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w xhad been proven adequate 21–23 . The location of
the phase transition line in YBCO, inferred from the

w xangle measured in SANS 19,20 , roughly coincides
with the line of ‘‘additional’’ peaks in critical cur-
rent.

In this note we explain the second line of peaks
by softening of the ‘‘squash’’ elastic mode of VL on
the line of the structural phase transition. All the
relevant elastic moduli of VL around the phase
transition are calculated. We find that the characteris-
tic width of vortex bundles depends on orientation.
This leads to a prediction that the peak current for

w xorientations along the crystallographic axes 100 and
w x w x010 is smaller then for orientations along 1,1,0

'w xand 1,1,0 by a factor of 2 .
We start with a description of the structural phase

transition in VL and an estimate of its location on
the phase diagram of untwinned YBCO. Qualita-
tively, anisotropy of the gap functions, in both the

Ž .d-wave the dominant component and the s-wave
channels, leads to asymmetric four-lobe shape of

w xvortex cores 14–16 . This, in turn, causes VL to
prefer the square arrangement. The asymmetric fea-
tures are most prominent closer to H where thec2

core is more important, but even away from the Hc2

line, the asymmetry of vortices still distorts the usual
hexagonal VL as was clearly demonstrated in experi-

w xments 11–13 .
We employ a simplified formulation of GL theory

for four-fold symmetric superconductors using only
Ž . w xone d-wave order parameter field c 17–20 . The

free energy in addition to usual GL terms contains a
term describing anisotropy:

< 2 2 < 2w xF c s´ DD yDD c . 1Ž .Ž .anis y x

Ž U .Here DD '= y i e rc A , isx, y is the covari-i i i

ant derivative and eU is the charge of the Cooper
pair. The material parameter ´ quantifies the devia-
tion from the exact rotational symmetry. The last
term is the only four-derivative term, which is four-
fold symmetric and violates rotational symmetry. We
assume that magnetic field is in the c-direction and

Žis constant far enough from H this is a goodc1
.approximation since k41 . At certain value of ´

there is a phase transition from distorted hexagonal
to a more symmetric square lattice first noticed in

Ž .simulations using the two-field d and s formula-

w xtion 25,26 . The present formulation was shown
w x19,20 to be essentially equivalent to the two-field
one. However, it contains just one parameter ´ char-
acterizing the anisotropy and is simple enough to
avoid numerical methods in the relevant regions of
the phase diagram.

It is important for calculation of elastic moduli to
consider the energy of VL of most general form. It is

Žcharacterized by the lattice vectors a and b with an
.angle q between them and by an angle w specify-

ing the orientation of VL with respect to the crystal-
w xlographic 1,0,0 axis. One solves the linearized GL

equation perturbatively in dimensionless anisotropy
parameter h'´ m eUH. Finally, we minimize theab

Žfree energy analytically with respect to w clearly
.wspr4 is one of the minima and numerically over

r and s to find the lattice structure.
w xIt was found 19–23 that the transition occurs at

h s0.00238. For every h-h , there are two de-c c

generate minima. One is at rs1r2, sss and,
Ž .correspondingly, qsarctan 2s . The other minima

correspond to the lattice rotated by pr2. On the
mean field level the phase transition is a second
order phase transition with mean field critical expo-
nents. For example, we calculated the dependence of
the angle q on h close to the transition point and

Ž .1r2found that qs3.3 h yh . At lower fields andc

temperatures, one can use the London approximation
w x17,18 to study the triangular lattice. However, the
peak effect is prominent at fields sufficiently close to
H .c2

The line of the structural phase transition in VL is
parallel to the T axis and goes at certain H sstr

Ž U .h r ´ m e . We estimate this field using input ofc ab
w xqs53.5"0.58 for Hs2T 12,13 that for the sam-

ple of 6H (6T.str

Using thermodynamic arguments, we calculate all
the relevant non-dispersive elastic moduli. The only

w xmodulus that has a dispersion 27,30 , the tilt modu-
lus c , is not changed significantly compared to the44

usual case without the asymmetry term. In order to
obtain all the 2D elastic moduli of the flux line
lattice, we first choose a particular form of distortion
and then express the excess free energy correspond-
ing to this distortion in terms of elastic moduli. We
obtain following two useful combinations of the four
elastic moduli: the shear c and the ‘‘squash’’66

c 'c qc y2c .sq 11 22 12
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The dependence of the shear modulus on anisotro-
py is weak. On the other hand, the squash modulus

< <vanishes on the transition line linearly in hyh . Itc

is noteworthy that above and below the point hshc

the coefficients are different:

h 2° < <8.7 1y HyH T , h -hŽ .c2 c
hc~c s 2Ž .sq h 2

< <5.5 1y HyH T , h )h .Ž .c2 c¢ hc

This is similar to the behavior of the soft moduli at
structural phase transitions in solids.

Because of vanishing of squash elastic modulus of
VL we expect some anomalies in physical properties
of the superconductor. For example, vanishing of an
elastic modulus in the ferroelastic phase transitions
in usual crystals manifests itself via softening of the
speed of corresponding branch of the sound. Below
we argue that in our case, a peak in critical current
should appear once one crosses the transition line.

To determine critical current j we use the ‘‘dy-c
w xnamical approach’’ 28–30 . The VL equation of

motion:

s B2 Eu dF dF 1elast pin
sy y y j=B 3Ž .2 Et du du cc

is solved perturbatively in the disorder energy F spin
3 Ž . 3 ² Ž . Ž .: i K r Ž . Ž .Hd r´ r , Hd r ´ r ´ 0 e s 2pF rB W K .0

Here s is the normal state conductivity, c is the
speed of light and K is the reciprocal lattice vector.
The critical current is found to be:

7r224cW 2p BrFŽ .0 2j u s f u 4Ž . Ž . Ž .c Bc c c44 66 sq

Ž . < Ž . < 3r 2 < Žwhere f u s cos u q pr4 q cos u y
. < 3r2

pr4 . Therefore, the critical current along the
crystalline axes a or b is smaller by factor of
4

2' ' w x w x2 s 2 compared to the one along 110 or 110 .
w xFor untwinned YBCO, one estimates 2 Ws

U 2Bj 2 n , where n is point pinning centers density0 p p

and U is the depth of an individual pinning poten-0
w xtial. As in the melting peak effect 28,29 , the effect

of thermal depinning is taken into account by an
Ž .y11r2additional factor 1qTrT where T is thedp dp

depinning temperature. The case of ‘‘small bundles’’
where dispersion of c is important can be treated44

w xanalogously 2,30 .
Due to different slopes of the moduli c assq

Ž Ž ..function of hyh see Eq. 2 the peak shape isc

asymmetric provided the general 1rB trend is elimi-
nated:

1°
, B-Bstr8.7 ByBŽ .str~j B; 5Ž .c 1
, B)B .str¢5.5 B yBŽ .str

Of course cutoff is understood when the size of the
Larkin domain is no longer large compared to the
distance between vortices. In this case, the elasticity
theory becomes inapplicable.

To determine the applicability region of the elas-
ticity theory, we calculate the correlation length
which is the most important characteristics of the
mixed state in the collective pinning theory. It is

² 2Ž .:deduced from the displacement correlator u r
w x30 is given by:

d3k
2W 1ycos kPr G k G ykŽ . Ž . Ž .H i j i j32pŽ .

Ž .where G k is the elastic Green’s function. Toi j

determine the correlation length in certain direction
Žn within the collective pinning theory size andˆ

. ² 2Ž .:shape of the Larkin domain one writes u Rnnˆˆ
2 w xsj 30 . The correlator in the c-direction does not

change compared to the case of hexagonal lattice,
² 2Ž .: Ž 3r2 .u R s2WR r p c c , while in the abc c 66 44

plane it depends on the angle f that n makes withˆ
w xthe crystallographic direction 100 :

WRf2² :u R s f f . 6Ž . Ž .Ž .f 2 1r2 1r2p c c csq 66 44

The results are significantly different compared to
the case of peak effect associated with the VL

² 2Ž .:melting where c vanishes and u R s66 ab
Ž 2 3r2 1r2 .WR r 2p c c . We see that 1rc replacesab 66 44 sq

1rc . In the present situation, Larkin domain is not66

only asymmetric with respect to a, b vs. c direc-
tions. Due to particular orientation of the soft mode
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destroying the square lattice the correlation length
becomes asymmetric within the ab plane as well:

p 3r2c c j 2 c c1r2c1r2j 2
66 44 sq 66 44

R s , R s . 7Ž .c f2W Wf fŽ .
The dynamical approach calculation of j can bec

supplemented by a simpler and more intuitive deriva-
tion from the correlation volume. The critical current
in certain direction f with respect to the crystal is
determined by equating the Lorentz force to the
pinning force. The pinning energy for the relaxed
lattice is linked to the in plane elastic energy due to
the displacement of order j in the direction uqpr2

w xcaused by the Lorentz force 30 . The elastic energy
Ž . Ž .2is U u ;c jrR r2 V , where V is the cor-c sq uqp c c

relation volume. Therefore, the critical current ob-
tained from the balance of the Lorentz force and the
pinning force is:

2c U u jŽ .c 2j u s ;c j f uqpr2Ž . Ž .c sq 0 ž /B j V Rc a

8Ž .
'Ž .where j scH r 3 6 pl is the depairing current.0 c

This agrees with the dynamical approach result and
shows in addition its range of applicability. Obvi-
ously too close to the transition, the calculation is
invalid.

To summarize the structural phase transition in
the VL of YBCO leads to the anisotropic peak effect
via vanishing of the ‘‘squash’’ elastic modulus. We
calculated the value of the peak in critical current
and its shape.
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