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Abstract

We establish the polynomial-time solvability of a class of vector partition problems with linear objectives subject to
restrictions on the number of elements in each part. c© 2000 Published by Elsevier Science B.V. All rights reserved.

1. Shaped partition problems

The shaped partition problem concerns the parti-
tioning of n vectors A1; : : : ; An in d-space into p parts
so as to maximize an objective function which is con-
vex on the sum of vectors in each part subject to ar-
bitrary constraints on the number of elements in each
part. This class of problems has applications in di-
verse �elds that include circuit layout, clustering, in-
ventory, scheduling and reliability (see [2,3,5,9] and
references therein) as well as important recent appli-
cations to symbolic computation [11]. In its outmost
generality, the shaped partition problem instantly cap-
tures NP-hard problems hence is intractable [8]. The
purpose of this article is to exhibit polynomial-time
solvability for a broad class of shaped partition prob-
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lems with linear objectives. To de�ne the problem for-
mally, describe our results and raise some remaining
questions, we next introduce some notations.
Let Q and N denote, respectively, the rational

numbers and nonnegative integers. All vectors are
columns by default. The vectors of all-ones and
all-zeros, of dimension that is clear from the context,
are denoted by 1 and 0, respectively. A p-partition
of the set [n]:={1; : : : ; n} is an ordered collection
�=(�1; : : : ; �p) of pairwise disjoint (possibly empty)
sets whose union is [n]. The shape of � is the tuple
|�|:=(|�1|; : : : ; |�p|) of nonnegative integers which
describes the number of elements in each part of �.
Let Npn :={�∈Np: 1T� = n} denote the set of all
p-shapes of n. The �rst ingredient of the problem data
is a subset �⊆Npn of admissible shapes. The feasible
solutions to the problem are then all partitions � of [n]
of admissible shape |�| ∈�. The second ingredient of
the problem data is a d × n matrix A whose jth col-
umn Aj represents d numerical attributes associated
with the jth element of the partitioned set [n]. With
each p-partition � of [n] we associate the following
d × p matrix whose kth column represents the total
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attribute vector of the kth part,

A�:=


∑
j∈ �1

Aj; : : : ;
∑
j∈ �p

Aj


 ∈Qd×p

with
∑

j∈ �k A
j:=0 when �k = ∅. The third ingredient

of the problem data is a convex functionalC :Qd×p →
Q. The objective value of a partition � is then de-
�ned by C(A�). We consider the following algorith-
mic problem.

Shaped partition problem Given positive integers
d; p; n, matrix A∈Qd×n, shape set �⊆Npn , and con-
vex functional C :Qd×p → Q, either assert that �
is empty or �nd a partition �∗ of admissible shape
|�∗| ∈� attaining maximum objective value, that is,
C(A�

∗
) = max{C(A�): |�| ∈� }:

A natural example is clustering, where n ob-
servation points A1; : : : ; An ∈Qd are to be grouped
into p clusters in such a way that the sum of suit-
ably de�ned cluster variances is minimized. The
restriction of shapes to a shape set � may allow
to re
ect a priori information about the anticipated
number of data points in di�erent clusters. For in-
stance, when minimizing the sum of the l2 clus-
ter variances

∑p
i=1(1=|�i|)

∑
j∈ �i ‖Aj − �A

�i‖2, with
�A
�i :=(1=|�i|)

∑
j∈ �i A

j the cluster barycenter, and the
a priori indication that all clusters have the same num-
ber of elements, the clustering problem becomes a
shaped partition problem with�={n=p·1} and C on a
matrixM ∈Qd×p given byC(M)=�·〈M;M 〉−�, with
the constants � = (p=n)2 and � = (p=n)

∑n
j=1 ‖Aj‖2,

and with 〈M;M 〉:=∑d
i=1

∑p
j=1M

2
i; j.

The shaped partition problem in its full generality,
with d; p; n variable, with� arbitrary and possibly pre-
sented by amembership oracle, andC arbitrary convex
and possibly presented by an evaluation oracle, has a
very broad expressive power. In fact, as explained in
[8], even with �xed d= 1 or p= 2, the problem im-
mediately captures NP-hard problems. A major result
of Hwang et al. [8] was that, with both d; p �xed, the
problem can be solved in polynomial-time with � and
C arbitrary and presented by oracles.
In the present article, we restrict the class of convex

functionals and assume C to be linear, but allow d
and p to vary as part of the input. The functional C

is then identi�ed with a matrix C ∈Qd×p, and the
objective value of a partition � becomes 〈C; A�〉. We
prove in Theorem 1 the polynomial-time solvability
of the problem for a broad class of shape sets, which
in particular implies:

Corollary 1. Given d; p; n; matrix A∈Qd×n; and
C ∈Qd×p; the shaped partition problem can be
solved in polynomial-time for every shape set � of
one of the following two types:

1. Any set �=Npn ∩ {�: l6�6u} of shapes de�ned
by given lower and upper bounds.

2. Any explicitly given set �= {�1; : : : ; �m}⊆Npn of
shapes.

Note that, while the shaped partition problem is
obviously intractable if � is presented by a mere
membership oracle, Corollary 1 part 2 implies that if
p is �xed then it is solvable in polynomial oracle time
since an explicit presentation of � can be obtained by
querying the oracle on each element of {0; 1; : : : ; n}p.
It would be interesting to �nd more general shape sets
under weak presentations for which the shaped par-
tition problem is polynomial-time solvable. In partic-
ular, for which of the following presentations (of in-
creasing generality), of shape sets which are convex in
the sense �=Npn ∩conv(�), is the problem tractable?
• Convex shape sets presented by an inequality sys-
tem conv(�) = {�: U�6u}?

• Convex shape sets presented by a separation oracle
(cf. [6]) over conv(�)?

2. Optimization over shaped partition polytopes

The linear-shaped partition problem can be embed-
ded into the problem of maximizing C ∈Qd×p over
the convex hull of matrices of feasible partitions, de-
�ned as follows.

Shaped partition polytope The shaped partition poly-
tope of matrix A∈Qd×n and shape set �⊆Npn is
de�ned to be the convex hull of all matrices of ad-
missible partitions,

P�A :=conv {A�: |�| ∈�}⊂Qd×p:
Shaped partition polytopes form a broad class which

captures and generalizes many classical polytopes (see
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[2,4,7,8,10] and references therein for more details).
Since a shaped partition polytope is de�ned as the
convex hull of an implicitly presented set whose size
is typically exponential in the input size even when
both p and d are �xed, an e�cient representation as
the convex hull of vertices or as the intersection of
half-spaces is not readily expected. It was shown in
[8], however, that if both p and d are �xed then the
number of vertices is polynomial in n, which was the
key to the polynomial-time solution in [8] of shaped
partition problems with �xed d; p. Related bounds
were given in [1].
In the present article we allow d and p to be a vari-

able part of the input. In this situation, the enumera-
tive methods of Hwang et al. [8] fail: indeed, even if
one of d and p remains �xed, the number of vertices
of the shaped partition polytope may be exponential
in n. For instance, if d = 1; p = n; A = [1; : : : ; n],
and � = {1} then partitions correspond to permuta-
tions and P�A is the permutohedron having n! vertices.
If p = 2; d = n; A = I is the n × n identity matrix,
and �=N2n then P�A is a�nely equivalent to the cube
having 2n vertices.
We now take a closer look at the shaped partition

polytope of the identity I ,

P�:=P�I = conv{I�: |�| ∈�}⊂Qn×p:
We aim to derive an inequality description of P�.
Consider the polytope T� de�ned by

T�:={X ∈Qn×p: X¿0; X 1= 1; 1TX ∈ conv(�)}:
Since each matrix I� is {0; 1}-valued with a unique
1 per row, it follows that P�⊆T� for any shape set
�⊆Npn . The converse is usually false. For instance,
let n=p=2 and let �={(2; 0); (0; 2)} be a nonconvex
set of two shapes. Then the 2× 2 identity I lies in T�
since 1TI = (1; 1)∈ conv(�), but

I 6∈P� =
{[
� 1− �
� 1− �

]
: 06�61

}
:

Next assume that � is convex, that is, � = Npn ∩
conv(�). If conv(�) has the inequality description
conv(�)= {�∈Qp: �¿0; 1T�= n; U�6u} then T�
has the description

T� = {X ∈Qn×p: X¿0; X 1= 1; UX T16u}: (1)

As demonstrated below in Example 1, convexity is not
su�cient for equality P� = T�. We need a more re-
strictive assumption on� that we describe next. Recall

from [12] that a matrix is totally unimodular if all its
subdeterminants, in particular all entries, are −1; 0; 1.

Proposition 1. Let�=Npn ∩{�: U�6u} be a convex
shape set with U being an integer matrix and u an
integer vector. If the matrix a(U ):=[1 UT]T is totally
unimodular then

conv(�) = {�∈Qp: �¿0; 1T�= n; U�6u}: (2)

Proof. Clearly conv(�) is contained on the right-hand
side of (2). Now, since a(U ) is totally unimodular,
it follows (cf. [12]) that all vertices of the right-hand
side of (2) are integers. But � is precisely the set of
integer points on the right hand side of (2) since �=
Npn ∩{�: U�6u}. Hence, all vertices of the right-hand
side of (2) lie in � and the proposition follows.

However, as the following example shows, P� may
be strictly contained in T� even if � is convex and
a(U ) (and hence U ) is totally unimodular.

Example 1. Let n = p = 4 and let � = {(2; 0; 0; 2),
(1; 1; 1; 1); (0; 2; 2; 0)} be a convex shape set with �=
N44∩{�: U�62·1}, where a(U ) is totally unimodular
with

U =



1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


 :

Then both T� and P� are 10-dimensional polytopes
in the space Q4×4 of 4×4 matrices. However, P� has
24 facets and 36 vertices which are the {0; 1}-matrices
I�, whereas T� has 16 facets and 84 vertices. The
only integer vertices of T� are the 36 matrices I�. To
verify directly that P� is indeed strictly contained in
T�, de�ne two identical matrices

V :=C:=



0 0 0 1
0 0:5 0:5 0
0:5 0 0 0:5
1 0 0 0


 :

Then V satis�es the inequalities de�ning T� but at-
tains the value 〈C; V 〉 =∑

i; j Ci; jVi; j = 3 under the
functional C, which is strictly larger than the value
〈C; I�〉 for any � with |�| ∈�.
Let U = [U 1; : : : ; Up] be an m × p matrix, let

[U 11T; : : : ; Up1T] be the m × pn matrix obtained
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from U by replicating each column n times, and let
I be the n × n identity matrix. De�ne the following
(n+ m)× pn matrix:

n(U ):=

[
I I · · · I

U 11T U 21T · · · Up1T

]
:

We then have the following su�cient condition for
equality P� = T� to hold.

Lemma 1. Let � = Npn ∩ {�: U�6u} be a convex
shape set with U an integer matrix and u an integer
vector. If the matrix n(U ) is totally unimodular then
P� = T�.

Proof. We use the total unimodularity of n(U )
twice. First, if n(U ) is totally unimodular then so is
a(U ) = [1 UT]T; indeed, a(U ) is the submatrix of
n(U ) corresponding to rows (n+ i: i = 0; : : : ; m) and
columns (j · n: j = 1; : : : ; p). Thus, by Proposition 1,
conv(�) has the description in (2), hence T� has the
description in (1). Now, identifying Qn×p ∼= Qpn via
X 7→ [X1;1; : : : ; Xn;1; : : : ; X1;p; : : : ; Xn;p], this inequality
description of T� becomes

T� = {X ∈Qpn: X¿0;


−I · · · −I
I · · · I

U 11T · · · Up1T


·X6



−1
1

u




 : (3)

Second, since n(U ) is totally unimodular, so is the co-
e�cient matrix of (3); hence, it follows (cf. [12]) that
all vertices of T� are integers. But the integer points in
T� are precisely all {0; 1}-matrices which equal I� for
some � with |�| ∈�. Thus T� = conv{I�: |�| ∈�}=
P� as claimed.

Note that a necessary condition for n(U ) to be to-
tally unimodular is that U itself is, which implies at
once that the same holds for the replicated matrix
[U 11T; : : : ; Up1T]. However, this condition is not suf-
�cient in general: the matrix U in Example 1 (and
a(U ), moreover) is totally unimodular but n(U ) is not.
Using Lemma 1 and Proposition 1 we obtain the

following statement.

Theorem 1. The shaped partition problem can be
solved in polynomial-time for any d; p; n, matrix
A∈Qd×n; linear functional C ∈Qd×p; and shape set

� = Npn ∩ {�: U�6u} with U and u being integers
and n(U ) totally unimodular.

Proof. De�ne W :=ATC ∈Qn×p. By Lemma 1 we
have P� = T�, which, by Proposition 1, has the in-
equality description (1). Therefore, we can solve the
maximization problem max{ 〈W;X 〉: X ∈P�I } of W
over P�I = P

� in polynomial-time by linear program-
ming over T� using the description in (1), and ob-
tain an optimal vertex which equals I�

∗
for some �∗

with |�∗| ∈�. For any partition �, we have 〈C; A�〉=
〈C; AI�〉 = 〈W; I�〉. Therefore, �∗ is an optimal solu-
tion to the shaped partition problem, and it can be
uniquely recovered from I�

∗
by �∗j :={i: I�

∗
i; j = 1} for

j = 1; : : : ; p.

We can now demonstrate Corollary 1 stated in Sec-
tion 1.

Proof of Corollary 1. Part 1, where � = Npn ∩
{�: l6�6u}, is a direct consequence of Theorem
1. To see part 2, let � = {�1; : : : ; �m}⊆Npn be an
explicitly given shape set. For i = 1; : : : ; m, solve a
shaped partition problem with �i:={�i} using part
1 with the lower and upper bounds li:=ui:=�i and
obtain an optimal partition �i of shape �i. Any best
partition among the �i is an optimal solution to the
shaped partition problem with �.

References

[1] N. Alon, S. Onn, Separable Partitions, Discrete Appl. Math.
91 (1999) 39–51.

[2] E.R. Barnes, A.J. Ho�man, U.G. Rothblum, Optimal
partitions having disjoint convex and conic hulls, Math.
Programming 54 (1992) 69–86.

[3] A.K. Chakravarty, J.B. Orlin, U.G. Rothblum, Consecutive
optimizers for a partitioning problem with applications to
optimal inventory groupings for joint replenishment, Oper.
Res. 33 (1985) 820–834.

[4] B. Gao, F.K. Hwang, W.-C.W. Li, U.G. Rothblum, Partition
polytopes over 1-dimensional points, Math. Programming, in
preparation.

[5] D. Granot, U.G. Rothblum, The Pareto set of the partition
bargaining game, Games Econom. Behavior 3 (1991) 163–
182.

[6] M. Gr�otschel, L. Lov�asz, A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, 2nd Edition, Springer,
Berlin, 1993.



F.K. Hwang et al. / Operations Research Letters 26 (2000) 159–163 163

[7] F.K. Hwang, S. Onn, U.G. Rothblum, Representations and
characterizations of the vertices of bounded-shape partition
polytopes, Linear Algebra Appl. 278 (1998) 263–284.

[8] F.K. Hwang, S. Onn, U.G. Rothblum, A polynomial-time
algorithm for shaped partition problems, SIAM J. Optim. 10
(1999) 70–81.

[9] F.K. Hwang, U.G. Rothblum, Directional-quasi-convexity,
asymmetric Schur-convexity and optimality of consecutive
partitions, Math. Oper. Res. 21 (1996) 540–554.

[10] S. Onn, Geometry, complexity, and combinatorics of
permutation polytopes, J. Combin. Theory Ser. A 64 (1993)
31–49.

[11] S. Onn, B. Sturmfels, Cutting corners, Adv. Appl. Math. 23
(1999) 29–48.

[12] A. Schrijver, Theory of Linear and Integer Programming,
Wiley, New York, 1986.


