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A direct theory for the perturbed unstable nonlinear
Schrö dinger equation
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Hsinchu, Taiwan 30049, Republic of China

Xiang-Jun Chenb)
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A direct perturbation theory for the unstable nonlinear Schro¨dinger equation with
perturbations is developed. The linearized operator is derived and the squared Jost
functions are shown to be its eigenfunctions. Then the equation of linearized op-
erator is transformed into an equivalent 434 matrix form with first order derivative
in t and the eigenfunctions into a four-component row. Adjoint functions and the
inner product are defined. Orthogonality relations of these functions are derived and
the expansion of the unity in terms of the four-component eigenfunctions is im-
plied. The effect of damping is discussed as an example. ©2000 American In-
stitute of Physics.@S0022-2488~00!00405-9#

I. INTRODUCTION

The unstable nonlinear Schro¨dinger ~UNLS, for short! equation was introduced in plasm
physics1,2 to describe the nonlinear modulation of a high frequency mode in electron beam p
such as a system where an electron beam is injected under high frequency electric field
equation may be considered as a prototype amplitude equation for the soliton phenomen
unstable system. It also describes the nonlinear modulation of waves in Rayleigh-Taylor pro3

The UNLS equation can be expressed as

iux1utt12uuu2u50, ~1!

wheret andx are time and space coordinate.
Interchange ofx and t in ~1! leads to the conventional stable nonlinear Schro¨dinger ~SNLS,

for short! equation. Since the SNLS equation has been proved to be a completely inte
system,4,5 it has been solved by using the inverse scattering transform~IST!. Soliton solutions for
the UNLS equation can be obtained by simply interchangingx andt from the soliton solutions for
the SNLS equation. The UNLS equation has also been generally solved, by a similar IST, i
ing the contribution of continuous spectrum of the spectral parameter,2,6 which is necessary in
developing a perturbation theory for the UNLS equation with perturbations. To have some i
into the physical significance of the UNLS equation and to have an effective method to
practical problems, it is necessary to consider the UNLS equation with perturbations,7

ivx1v tt12uvu2v5er @v#, ~2!

wheree is a small positive parameter andr @v# is a functional ofv. Since~2! has a second orde
derivative int, the initial conditions must include one aboutv t(x,0) in addition to the one abou
v(x,0). We choose

a!Permanent address: Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China.
b!Electronic mail: xiangjun-chen@21cn.com
29310022-2488/2000/41(5)/2931/12/$17.00 © 2000 American Institute of Physics
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v~x,0!5u~x,0!, v t~x,0!5ut~x,0!. ~3!

However,~1! and~2! are second order partial differential equations in time. The initial va
problem under the condition~3!, which is very different from that for the SNLS equation,7 has
never appeared in the literature. The purpose of this work is to find the perturbed solution~2!
under the initial condition~3!. This work is arranged as follows:

~1! The linearized equation for~2! is derived, and the squared Jost functions are shown to
solutions of this linearized equation by means of the Lax equations.

~2! A 434-matrix form of the linearized equation which has only a first order derivative int is
introduced to replace its original 232-matrix form with a second derivative int;

~3! The two-component squared Jost functions are transformed into four-component one
four-component adjoint functions and the inner product are introduced. The orthogo
relations are then derived.

~4! The expansion of the unity in terms of the four-component squared Jost functions is im
~5! The secularity conditions are found and the adiabatic solution can be determined with
~6! Finally, the effect of damping is discussed as an example.

A brief review of the inverse scattering transform for~1! is given in the Appendix.2,6

II. THE LINEARIZED EQUATION

Suppose8–11

v5ua1eq, ~4!

whereua is the so-called adiabatic solution which has the same functional form as that of the
soliton solution but the parameters involved may depend ont of the order ofe, which will be
discussed in detail later. Hereeq is the remaining term up to the order ofe. Substitution of~4! into
~2! yields

iqx1qtt14uuu2q12u2q̄5R@u#, ~5!

R@u#5r @u#2s@u#, s@u#5
1

e
$ iux1utt12uuu2u%. ~6!

Equation~5! is an equation up to the order ofe, u in the left hand side and inr @u# is the exact
solution, andu in s@u# is the adiabatic solution. Here the bars denote complex conjugates.

Equation~5! and its complex conjugate can be combined as

S i ]x1] t
214uuu2 22u2

22ū2 2 i ]x1] t
214uuu2D S q

2q̄D5S R

2R̄D . ~7!

The initial condition~3! turns to

q~x,t50!50, qt~x,t50!50. ~8!

To find the perturbed solution of~2! under the initial condition~3! is equivalent to solving~7!
under the initial condition~8!.

In order to solve~7!, we need to find a complete set of solutions for its homogeneous ver
i.e., ~7! with a vanishing right hand side. From~A2! and ~A3!, the Lax equations of~1!, we
obtain8–11

S i ]x1] t
214uuu2 22u2

22ū2 2 i ]x1] t
214uuu2D W5S 0

0D . ~9!
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Here

W5S w1
2

w2
2D , ~10!

in which w1 andw2 are components of a solution of the Lax equations,w, which can be chosen
as those Jost functions,h(t,l)21c(x,l), h(t,l)c̃(x,l), h(t,l)f(x,l), or h(t,l)21f̃(x,l) ~see
the Appendix!. That is, like the case of the SNLS equation,8 solutions of the homogeneous versio
of ~7! can be constructed with those so-called squared Jost functionsW. We denoteW5w+w.

III. A TRICK TO TREAT THE SECOND ORDER DERIVATIVE IN T

If one can find a complete set of the squared Jost functions, solutions of~7! can be expanded
in the complete set. However, owing to the fact that~7! and~9! have second derivatives int, like
the case of sine-Gordon equation,10 it is more convenient to transform them into an equat
having only a first derivative int. Thus, equivalently, we rewrite~7! as

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S q
2q̄
iqt

2 i q̄ t

D 5S 0
0
R

2R̄

D . ~11!

Similarly, ~9! is transformed to

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S W1

W2

iW1t

iW2t

D 5S 0
0
0
0
D . ~12!

Introducing C(x,l)5c(x,l)+c(x,l), C̃(x,l)5c̃(x,l)+c̃(x,l), F(x,l)5f(x,l)
+f(x,l) andF̃(x,l)5f̃(x,l)+f̃(x,l), takingW5h(t,l)22C(x,l), for example,~12! becomes

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S C~x,l!1

C~x,l!2

C~x,l!3

C~x,l!4

D 52lS C~x,l!1

C~x,l!2

C~x,l!3

C~x,l!4

D , ~13!

where

C~x,l!5~C~x,l!1 C~x,l!2 C~x,l!3 C~x,l!4!T ~14!

is a four-component squared Jost function with the additional third and fourth components

C~x,l!35 i2~ ilc~x,l!12uc~x,l!2!c~x,l!1 ,
~15!

C~x,l!45 i2~2 ilc~x,l!21ūc~x,l!1!c~x,l!2 .

Set
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2L ~u!5S 0 0 1 0

0 0 0 1

i ]x14uuu2 22u2 0 0

22ū2 2 i ]x14uuu2 0 0

D . ~16!

Equation~15! becomes

$2 i ] t2L ~u!%C~x,l!52lC~x,l!. ~17!

It is obvious that atln , one of the zeros ofa(l),

$2 i ] t2L ~u!%C~x,ln!52lnC~x,ln!, ~18!

and

$2 i ] t2L ~u!%Ċ~x,ln!52lnĊ~x,ln!12C~x,ln!, ~19!

whereĊ(x,ln)5 (d/dl) C(x,l)ul5ln
.

Similarly, we have equations for other four-component squared Jost functions,F(x,l),
C̃(x,l) andF̃(x,l), similar to ~17!–~19!.

Introducing

q5~q2q̄iqt2 i q̄ t!
T, R5~0 0 R 2R̄!T, ~20!

~11! can be rewritten as

$2 i ] t2L ~u!%q5R. ~21!

IV. ADJOINT FUNCTIONS AND INNER PRODUCTS

We now introduce adjoint functions and inner products. The essential point is that the
product of a squared Jost function with its adjoint function is proportional to thed(l2l8)
function in the continuous spectrum.8–11 Definition of the inner product is given by

^C~l8!uC~l!&5E
2`

`

dx C~x,l8!AC~x,l!. ~22!

We choose the adjoint function to be

C~x,l!A5~2F~x,l!42F~x,l!3F~x,l!2F~x,l!1!, ~23!

whereF3 andF4 are as in~15!, replacing components ofc with those off.
From the Lax equation~A2! we obtain

d

dx
W@w~x,l8!,c~x,l!#52 i2~l822l2!~w~x,l8!1c~x,l!21w~x,l8!2c~x,l!1!12~l82l!

3~uw~x,l8!2c~x,l!21ūw~x,l8!1c~x,l!1!. ~24!

where W@¯# is the Wronskian determinant.2,5 From ~14! and ~23! we have

C~x,l8!AC~x,l!5@2~l81l!~w1~x,l8!c2~x,l!1w2~x,l8!c1~x,l!!1 i2uw2~x,l8!c2~x,l!

1 i2ūw1~x,l8!c1~x,l!#@w1~x,l8!c2~x,l!2w2~x,l8!c1~x,l!#. ~25!
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Hence we find

d

dx
$W@w~x,l8!,c~x,l!#%252 i2~l82l!C~x,l8!AC~x,l!. ~26!

Therefore, the inner product is

^C~l8!uC~l!&5 lim
L→`

1

2 i2~l82l!
$W@w~x,l8!,c~x,l!#%2ux52L

x5L , ~27!

wherel andl8 should be considered as those approaching the real or the imaginary axis fro
first or the third quadrant. The limit is considered as the Cauchy principal value

lim
L→`

P
1

2 i2~l82l!
e2 i4(l822l2)L5pld~l22l82!. ~28!

Hence the values of~27! at the upper and at the lower limits can be found. We thus find

^C~l8!uC~l!&5pa~l!22ld~l22l82!. ~29!

It is obvious that

^C~lm!uC~ln!&50. ~30!

Applying the operatord2/dl2 to ~26!, and settingl5l85ln , we obtain

d2

dl2

d

dx
$W@w~x,l8!,c~x,l!#%2

l5l85ln
u5 i4C~x,ln!AĊ~x,ln!. ~31!

Integration leads to

^C~lm!uĊ~ln!&5 i 1
2ȧ~ln!2dmn . ~32!

Applying the operator$ d3/dl3 13d/dl8d2/dl2 % to ~27!, settingl5l85ln , upon integra-
tion we have

H d3

dl3 13
d

dl8

d2

dl2J $W@w~x,l8!,c~x,l!#%2ul5l85ln
u2L
L 5 i12̂ Ċ~ln!uĊ~ln!&. ~33!

Finally we obtain

^Ċ~lm!uĊ~ln!&5 i 1
2ȧ~ln!ä~ln!dmn . ~34!

Having definedC̃(x,l)’s adjoint function in a similar way, we also have

^C̃~l8!uC̃~l!&52pã~l!22ld~l22l82!, ~35!

^Ċ̃~ l̄m!uC̃~ l̄n!&5^C̃~ l̄m!uĊ̃~ l̄n!&5 i 1
2ȧ̃~ l̄n!2dmn , ~36!

and

^Ċ̃~ l̄m!uĊ̃~ l̄n!&5 i 1
2ȧ̃~ l̄n! ä̃~ l̄n!dmn . ~37!

Now we have the desired orthogonality relations.
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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V. THE EXPANSION OF THE UNITY

If the above squared Jost functions form a complete set, like the case of the SNLS equ8

a stateq(x) can be expanded in terms of them:

q~x!5
1

p G
dl$ f ~l!C~x,l!1 f̃ ~l!C̃~x,l!%1(

n
$ f nC~x,ln!1gnĊ~x,ln!%1(

n
$ f̃ nC̃~ l̄n!

1g̃nĊ̃~ l̄n!%. ~38!

By using the orthogonality relations we obtain

f ~l!5
1

a~l!2 ^C~l!uq&, gn52 i
2

ȧ~ln!2 ^C~ln!uq& ~39!

and

f n52 i
2

ȧ~ln!2 ^Ċ~ln!uq&1 i
2ä~ln!

ȧ~ln!3 ^C~ln!uq&, ~40!

and similarly

f̃ ~l!52
1

ã~l!2
^C̃~l!uq&, g̃n52 i

2

ȧ̃~ l̄n!2
^C̃~ l̄n!uq& ~41!

and

f̃ n52 i
2

ȧ̃~ l̄n!2
^Ċ̃~ l̄n!uq&1 i

2ä̃~ l̄n!

ȧ̃~ l̄n!3
^C̃~ l̄n!uq&. ~42!

Substituting them into~38!, we obtain

d~x2y!5
1

p
E

G
dl

1

a~l!2
C~x,l!C~y,l!A1(

n
i
2ä~ln!

ȧ~ln!3
C~x,ln!C~y,ln!A

2(
n

i
2

ȧ~ln!2
$Ċ~x,ln!C~y,ln!A1C~x,ln!Ċ~y,ln!A%

2
1

p
E

G
dl

1

ã~l!2
C̃~x,l!C̃~y,l!A1(

n
i
2ä̃~ l̄n!

ȧ̃~ l̄n!
C̃~x,l̄n!C̃~y,l̄n!A

2(
n

i
2

ȧ̃~ l̄n!
$Ċ̃~x,l̄n!C̃~y,l̄n!A1C̃~x,l̄n!Ċ̃~y,l̄n!A%. ~43!

This is the expansion of the unity in terms of the squared Jost functions.

VI. SECULARITY CONDITIONS

Supposeq in ~21! can be expanded in the form of~38! ~the coefficients may be dependent o
t). Substituting it into~21! and performing the inner product withC(x,l)A, C(x,lm)A and
Ċ(x,lm)A from the left, respectively, by using the orthogonality relations, we obtain

$2 i f t~l!12l f ~l!%a~l!25^C~l!uR&, ~44!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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$2 ignt12lngn% i
1
2ȧ~ln!25^C~ln!uR&, ~45!

and

$2 i f nt12lnf n12gn% i
1
2ȧ~ln!21$2 ignt12lngn%

1
2ȧ~ln!ä~ln!5^Ċ~ln!uR&. ~46!

Similarly, we also have

2$2 i f̃ t~l!22l f̃ ~x,l!%ã~l!25^C̃~l!uR&, ~47!

$2 i g̃nt22l̄ng̃n% i
1
2ȧ̃~ l̄n!25^C̃~ l̄n!uR&, ~48!

and

$2 i f̃ nt22l̄nf̃ n22g̃n% i
1
2ȧ̃~ l̄n!21$2 i g̃nt22l̄ng̃n% i

1
2ȧ̃~ l̄n! ä̃~ l̄n!5^Ċ̃~ l̄n!uR&. ~49!

We can see thatgn(t), f n(t), g̃n(t) and f̃ n(t), the expansion coefficients of the discre
spectrum, may tend to infinity ast grows, unless the right hand sides of those relevant equa
above vanish. In order to eliminate such leading secularities, modulations of those para
characterizing soliton solutions must be so selected that the full sourceR@u# is orthogonal to the
entire discrete subspace. Explicitly, we demand8–11

^C~ln!uR&50, ^Ċ~ln!uR&50, ~50!

and

^C̃~ l̄n!uR&50, ^Ċ̃~ l̄n!uR&50. ~51!

It is easy to show that~51! are just complex conjugates of~50! and are not independent of them
The so-called secularity conditions~50! become

E
2`

`

dx$F2~x,ln!R@u#2F1~x,ln!R@u#%50, ~52!

and

E
2`

`

dx$Ḟ2~x,ln!R@u#2Ḟ1~x,ln!R@u#%50. ~53!

They give 4N real conditions for theN-soliton case. In theN-soliton case, we have just 4N
parameters. By means of these secularity conditions we can determine the time dependenc
parameters up to the order ofe in the adiabatic solution. After determining the adiabatic soluti
from ~44! we can determinef (l) as a function oft. Finally, we can findq.

VII. A SINGLE SOLITON CASE

The secularity conditions~52! and ~53! can be rewritten as

S15R1 ~54!

and

S25R2 , ~55!

with
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S15E
2`

`

dx$F2~X,l1!ei2ds@u#2F1~X,l1!e2 i2ds@u#%, ~56!

S25E
2`

`

dx$Ḟ2~X,l1!ei2ds@u#2Ḟ1~X,l1!e2 i2ds@u#%, ~57!

andR1 andR2 are obtained simply by replacings@u# with r @u# from ~56! and~57!, respectively.
For the single soliton solution,

u52n sechXe2 iw, ~58!

where the parameterl15m1 in. We assumel1 lies within the first quadrant without loss o
generality, hencem.0 andn.0:

X52n@2t14m~x2x1!#, w522mt14~m22n2!x1w0 , ~59!

wherex1 andw0 are real constants.
For the adiabatic solution,m,n,x1 ,w0 may be dependent ont of the order ofe. We write

X58mnz, z5x2 x̂,
d

dt
x̂5

1

4m
, ~60!

and

w54~m22n2!z12d,
d

dt
2d52

m21n2

m
. ~61!

Simple algebra yields

s@u1#516nnt sechXthXe2 iw28n2@8~nm!tz28~nm!x̂t#@sechX22 sech3 X#e2 iw

18nm@4~m22n2!tz24~m22n2!x̂t12dt# sechXe2 iw1 i8~nm!tsechXe2 iw

2 i8n2@4~m22n2!tz24~m22n2!x̂t12dt# sechXthXe2 iw

2 i8nm@8~nm!tz28~nm!x̂t# sechXthXe2 iw. ~62!

Except unimportant factors~see Appendix! which can be dropped from both sides of~54! and
~55!, F(x,l1) andḞ(x,l1) can be replaced by

F~X,l1!e2 i2ds3, Ḟ~X,l1!e2 i2ds3, ~63!

respectively, where

F~X,l1!5 1
4 sech2 Xe2 i4l̄1

2zs3, ~64!

and

Ḟ~X,l1!52 i2l1z sech2 Xei4l̄1
2zs32 i

1

2n
sechXei4(m22n2)zS 1

0D . ~65!

We obtain

S15
1

2
mtS 1

n
2

n

3m2D1 i
1

2
ntS 1

n
1

n

m2D ~66!
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S254l1H S 3

2
2

n2

2m2 1 i
m

2n
2 i

5n

6m D x̂t2S 1

4m2 1 i
1

4mn D dtJ 2 i x̂tH 8n

3
24

m2

n
14nJ 2 i

2

n
dt .

~67!

VIII. EFFECT OF DAMPING

The perturbation term for damping is2 iGu1 , andG can be chosen as the small parametee.
That is,

r @u1#52 iu152 i2n sechXe2 iw. ~68!

We have

R152 inE
2`

`

dzsech2 X52 i
1

4m
~69!

and

R250. ~70!

The secularity conditions~54! and ~55! become

mt50,
m21n2

m2n
nt52

1

4m
, ~71!

and

x̂t50, dt50. ~72!

Hence, up to the order ofe, we have

d

dt
m50,

m21n2

m2n

d

dt
n52G

1

4m
, ~73!

and

d

dt
x̂52G

1

4m
,

d

dt
d5

m21n2

2m
. ~74!

Equations~73! and ~74! yield

m5m0 , logS n

n0
D1

1

2m0
2 ~n22n0

2!52G
1

4m
t, ~75!

and

x̂5x12G
1

4m
t, d5d01

1

2
mt1

1

2m E
0

t

dtn2. ~76!

Herem0 , n0 , x1 andd0 are constants.
After determination of the adiabatic solution, the right hand side of~47! is given, and we can

find f (t,l) and thenq(x,t). Finally, we obtainq(x,t).
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IX. DISCUSSION

We have developed a direct perturbation theory for the perturbed UNLS equation. Beca
the second order derivative int, the perturbation theory is essentially different from that for
perturbed SNLS equation involving only the first derivative int.

In a single soliton case, by substituting the explicit expressions of the Jost solutions in
right hand side of~43!, like the case of dark solitons of SNLS,12 we can see that it is indeed equ
to d(x2y). Hence the completeness relation~43! is shown in this case. However, for the mult
soliton case the explicit expressions of the Jost solutions are very complicated so that it is
sible to substitute them into the right hand side of~43! and to show it is equal tod(x2y). This
problem will be discussed separately.
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APPENDIX: A REVIEW OF THE INVERSE SCATTERING TRANSFORM FOR THE UNLS
EQUATION

We review the inverse scattering transform2,6 for the unperturbed equation~1! with the bound-
ary condition

u→0, as uxu→`. ~A1!

Two Lax equations for the UNLS equation are obtained from those for the SNLS equatio2 by
interchanging their roles. Starting from the first Lax equation

]xw~x,t,l!5S 2 i2l21uuu2 2lu2 iut

22lū2 i ū t i2l22uuu2Dw~x,t,l!, ~A2!

and by using the boundary conditions~A1!, the analyticity of the Jost functions can be found a
the equation of IST can be derived. Then, by using the second Lax equation,

] tw~x,t,l!5S il 2u

ū 2 il Dw~x,t,l!, ~A3!

the t dependence of the scattering data can be determined.
From the Lax equation~A2! and the boundary condition~A1!, the asymptotic solution in the

limit of uxu→` of ~A2! is

E~x,l!5e2 i2l2xs3. ~A4!

In comparison with the asymptotic solution for the SNLS equation,e2 ilxs3, one can see that th
parameter in the exponential,l, is replaced by 2l2 in the UNLS case. This leads to the followo
ing.

~1! The domain of definition of the asymptotic solution for the SNLS equation is for real,
namely, on the real axis in the complexl-plane. The domain of definition of the asymptot
solution for the UNLS equation is for reall2, namely, on the real axis in the complexl-plane
wherel2.0, as well as on the imaginary axis wherel2,0.

~2! Jost functions are defined by

~ c̃ c!~x,l!→E~x,l! as x→`, ~A5!
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~w w̃!~x,l!→E~x,l! as x→2`; ~A6!

the monodromy matrix is introduced as well:

~ww̃!~x,l!5~ c̃c!~x,l!S a~l! 2b̃~l!

b~l! ã~l!
D , ~A7!

similarly in both cases. In the SNLS casec(x,l), w(x,l) anda(l) are analytic in the upper hal
plane of complexl-plane, andc̃(x,l), w̃(x,l) and ã(l) are analytic in the lower plane. More
over,b(l) and b̃(l) cannot be analytically continued out of the real axis. The zeros ofa(l) lie
in the upper plane. On the other hand, in the UNLS case,c(x,l), w(x,l) anda(l) are analytic
in the first and third quadrants, andc̃(x,l), w̃(x,l) andã(l) are analytic in the second and four
quadrants. Moreover,b(l) and b̃(l) cannot be analytically continued out of the real and
imaginary axes. The zeros ofa(l) lie in the first or the third quadrants.

~3! By using the usual procedure, we can obtain the equation of inverse scattering tran
of Zakharov-Shabat type,

c̃~x,l!5$E
•2~x,l!1R~x,l!1J~x,l!%e2 i2l2x, ~A8!

whereE
•25(0 ei2l2x)T,

R~x,l!5 i(
n

1

l2ln
cnc~x,ln!ei2ln

2x, ~A9!

J~x,l!5
1

2p E
G
dl8

1

l2l8
r ~l8!c~x,l8!ei2l82x. ~A10!

Herecn and r (l8) are the usual symbols.2 The path of integration is

G5~0,1`!ø~0,2`!ø~ i`,i0!ø~2 i`,i0!. ~A11!

~4! By using the Lax equation~6!, we can obtain thet dependence of scattering data in~12!,
Simply, the Jost functionsc(x,l), etc., which are determined by only one of the Lax equatio
can be extended to those to satisfy simultaneously the two Lax equations. For example,

h~ t,l!c̃~x,l!, h~ t,l!21c~x,l!, h~ t,l!5eilt. ~A12!

The scattering data are replaced by

r ~l!→r ~l!h~ t,l!22, cn→cnh~ t,ln!22, ~A13!

etc.
The soliton solutions correspond to a reflectionless potential and in this case the cont

spectrum disappears. The poles of the transmission coefficienta(l)21 lie within the first or the
third quadrants. However, it has been shown13 that the forms of the soliton solutions depend on t
absolute values of the imaginary part of these poles and the values of the real parts. Th
soliton solutions of the UNLS equation can be obtained from those of the SNLS equatio
simply interchangingx and t.
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