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A direct theory for the perturbed unstable nonlinear
Schro dinger equation
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A direct perturbation theory for the unstable nonlinear Sdimger equation with
perturbations is developed. The linearized operator is derived and the squared Jost
functions are shown to be its eigenfunctions. Then the equation of linearized op-
erator is transformed into an equivalent 4 matrix form with first order derivative

in t and the eigenfunctions into a four-component row. Adjoint functions and the
inner product are defined. Orthogonality relations of these functions are derived and
the expansion of the unity in terms of the four-component eigenfunctions is im-
plied. The effect of damping is discussed as an example2080 American In-
stitute of Physicg.S0022-248800)00405-9

[. INTRODUCTION

The unstable nonlinear Scldioger (UNLS, for shor} equation was introduced in plasma
physicé? to describe the nonlinear modulation of a high frequency mode in electron beam plasma
such as a system where an electron beam is injected under high frequency electric field. This
equation may be considered as a prototype amplitude equation for the soliton phenomena in an
unstable system. It also describes the nonlinear modulation of waves in Rayleigh-Taylor ptoblem.
The UNLS equation can be expressed as

iU+ uy+2|ul?u=0, (1)

wheret andx are time and space coordinate.

Interchange ofk andt in (1) leads to the conventional stable nonlinear Sdhmger (SNLS,
for shor) equation. Since the SNLS equation has been proved to be a completely integrable
system*® it has been solved by using the inverse scattering transft8. Soliton solutions for
the UNLS equation can be obtained by simply interchangiagdt from the soliton solutions for
the SNLS equation. The UNLS equation has also been generally solved, by a similar IST, includ-
ing the contribution of continuous spectrum of the spectral pararfiftehich is necessary in
developing a perturbation theory for the UNLS equation with perturbations. To have some insight
into the physical significance of the UNLS equation and to have an effective method to study
practical problems, it is necessary to consider the UNLS equation with perturbations,

ivgtugt+2v|Zv=er[v], 2
wheree is a small positive parameter anflv | is a functional ofv. Since(2) has a second order

derivative int, the initial conditions must include one abay{x,0) in addition to the one about
v(x,0). We choose
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v(X,00=u(x,0), v(X,0)=u(x,0). (3

However,(1) and(2) are second order partial differential equations in time. The initial value
problem under the conditiofB), which is very different from that for the SNLS equatibhas
never appeared in the literature. The purpose of this work is to find the perturbed solu(®n of
under the initial condition(3). This work is arranged as follows:

(1) The linearized equation fof2) is derived, and the squared Jost functions are shown to be
solutions of this linearized equation by means of the Lax equations.

(2) A 4X4-matrix form of the linearized equation which has only a first order derivativeisn
introduced to replace its original>X2-matrix form with a second derivative in

(3) The two-component squared Jost functions are transformed into four-component ones. The
four-component adjoint functions and the inner product are introduced. The orthogonality
relations are then derived.

(4) The expansion of the unity in terms of the four-component squared Jost functions is implied.

(5) The secularity conditions are found and the adiabatic solution can be determined with them.

(6) Finally, the effect of damping is discussed as an example.

A brief review of the inverse scattering transform fdj is given in the Appendi:®
Il. THE LINEARIZED EQUATION
Suppos&1?
v=Uu?+€q, (4)

whereu? is the so-called adiabatic solution which has the same functional form as that of the exact
soliton solution but the parameters involved may depend ofithe order ofe, which will be
discussed in detall later. Heeg is the remaining term up to the order ©fSubstitution of4) into

(2) yields

g+ A+ 4|ul?g+ 2u?g=Rlu], (5)
1.
Rlu]=r[u]—s[u], S[U]=;{qu+un+ZIUI2u}- (6)
Equation(5) is an equation up to the order ef u in the left hand side and inu] is the exact

solution, andu in s[u] is the adiabatic solution. Here the bars denote complex conjugates.
Equation(5) and its complex conjugate can be combined as

i 9+ 02+ 4|u|? —2u? ( q ) ( R )
—=| = 7
—2u? —ioy+o2+4ul?/\—a] |-R )
The initial condition(3) turns to
q(x,t=0)=0, q(x,t=0)=0. (8)

To find the perturbed solution dR) under the initial condition(3) is equivalent to solvind7)
under the initial condition(8).

In order to solvg7), we need to find a complete set of solutions for its homogeneous version,
ie., (r7?) ﬂ/ith a vanishing right hand side. Frof2) and (A3), the Lax equations ofl), we
obtairt™

i 9+ 02+ 4|u|? —2u? ) (o) ©
= 9

w :
—2u? —idy+ 92+ 4|ul? 0
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Here

2
Wl) , (10

W:(wz

in which w; andw, are components of a solution of the Lax equatiamswhich can be chosen
as those Jost functions(t,\) ~ 1y (x,\), h(t,N)%(X,\), h(t,\) (X, \), or h(t,\) "L (x,\) (see
the Appendix. That is, like the case of the SNLS equatfsplutions of the homogeneous version
of (7) can be constructed with those so-called squared Jost fundor&e denotéW=weow.

lll. A TRICK TO TREAT THE SECOND ORDER DERIVATIVE IN T

If one can find a complete set of the squared Jost functions, solutigi@$ cdn be expanded
in the complete set. However, owing to the fact tfigtand(9) have second derivatives tn like
the case of sine-Gordon equatithit is more convenient to transform them into an equation
having only a first derivative in. Thus, equivalently, we rewrit€7) as

—id, 0 1 0 q 0

0 —id, o 1 -q 0
. . . = . 11
i 9+ 4|u|? —2u? —ig, 0 10y R 11

—2u%  —ig+4u? 0 —ig) ' G —R

Similarly, (9) is transformed to

0 —id; 0 1 W, 0 15
ig+4lu?  —20® =g 0 [| Wy | O 2

202 —ig+alulz 0 —ig) \'Wa 0

Introducing W (x,\)= (X, N)or(X,\),  T(X,N) = N)o (X, N),  P(X,N)=b(X,\)
op(x,\) and® (x,\) = B(x,\)°p(x,\), takingW=h(t,\) “2¥(x,\), for example(12) becomes

‘(i)at 0 ; 0\ /w(x\), W(X,\);
—io 1
i9,+4[ul? —2ut2 —ig, O imi -2 g&i;i - 13
—ow?  —ia+4uz 0 —ig) V(XM Y(XN)4
where
V(XN = (PN (XN 2 W) 3 WX ) )T (14

is a four-component squared Jost function with the additional third and fourth components:

\I,(Xi)\)?::iz(i)\lr/l(xi)\)l_udl(x!)\)Z) l;b(xs)\)la
(15)
W(XN) =1 2(=ING(XN) 2 U(X,N) 1) (X, N) .

Set
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0 0 1 0
. 0 0 1 16
L=l faur —202 0 of (18
—2u?  —ig,+4u? 0 0
Equation(15) becomes
{=id;—L(W)}W(X,\)=2NAW(X,\). a7
It is obvious that ak,,, one of the zeros cé(\),
{=id—=L(U)}W(X,Ny) =2NW(X,\p), (18)
and
{=ia— L)W, \p) =20 W (X, N ) +2W(X,\y), (19

whereW(x,\) = (d/d\) W(X,\)\ =y, .

Similarly, we have equations for other four-component squared Jost funcdepsi),
W(x,\) andd(x,\), similar to (17)—(19).

Introducing

9=(g—qiq—ig)’, R=(0 0 R —R)T, (20)
(11) can be rewritten as
{—=id;—L(u)}g=R. (21

IV. ADJOINT FUNCTIONS AND INNER PRODUCTS

We now introduce adjoint functions and inner products. The essential point is that the inner
product of a squared Jost function with its adjoint function is proportional todhe—\")
function in the continuous spectruint! Definition of the inner product is given by

<\I'()\’)|\If()\))=J:dx\P(x,)\’)A\P(x,)\). (22

We choose the adjoint function to be
W(X,\)A=(—D(X,\) 41— P(X,\)3P(X,\) ,P(X,\) 1), (23

where®; and®, are as in(15), replacing components af with those of¢.
From the Lax equatiofA2) we obtain

d
ax WL (XN, (M) ]= =12V 2= A5 (@ (XN )16 N2+ @OGN )2 (X)) +2(N =)
X(U()D(Xi)\,)2¢(X!)\)2+U§D(X!)\/)llﬂ(xl)\)l)' (24)
where W- -] is the Wronskian determinaff. From (14) and (23) we have

‘II"(X,)\’)A\II"(X,)\):[Z()\’ +)\)(§01(X,)\’)l/12(x,)\)+ @2()(,)\’)‘//1()(,)\))"'i2U<P2(Xv)\’)¢2(Xv7\)
Fi2u@a (X N) g1 (X N) JLea (XN ¢ha(X,N) = @a(X, N ") ha (X, M) . (25)
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Hence we find
%({W[QD(X,)\'),J,/I(X,R)]}2= — 2N = N)WON ) AW (XN). (26)

Therefore, the inner product is

v w(N))=I ! W 2

(W) W(N))= mm{ Lo ), (TS (27
where\ and\’ should be considered as those approaching the real or the imaginary axis from the

first or the third quadrant. The limit is considered as the Cauchy principal value

1 S
lim Pme"“(” 2_)\2)L=7T)\5(7\2_)\'2). (28)

L—o
Hence the values dR7) at the upper and at the lower limits can be found. We thus find
(TN W(N))=ma(N)22NS(N2—N"2). (29
It is obvious that

(W) | W(\,))=0. (30)

Applying the operatod?/d\? to (26), and setting.=\'=\,,, we obtain

d2
B2 g PO, (X M) TP ooy [= 1AW ) B (XN, (3
Integration leads to
(W) W (\)) =i 38(N0) 260 (32

Applying the operatof d*/d\3 + 3d/d\’d?/d\?} to (27), settingh=\"=\,, upon integra-
tion we have

d3 d d?
[me 52 ]{W[<p(><>\ ) OGN T ooy |5 =112(W ) [ WON)). (39
Finally we obtain
(W) [W(\) =i 2a(N ) A(Np) S (34)

Having definedd(x,\)’s adjoint function in a similar way, we also have

(W(N)|W(N))=—78(N)22NE(\>—\"?), (35)
(W) [T (0 = (BN ) [ (X)) =i Fa(X )20, (36

and
(W) [T )) =1 FBN AN ) O (37

Now we have the desired orthogonality relations.
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V. THE EXPANSION OF THE UNITY

If the above squared Jost functions form a complete set, like the case of the SNLS efjuation,
a stateq(x) can be expanded in terms of them:

q(x)=%Fdx{fwv(x,x)+?<x>ﬁr<x,x>}+2 {Fa@ A +ga WO} 2 (T ()

+T P (\p)}- (39)

By using the orthogonality relations we obtain

1 2
)=z (¥Mla) - gn=—igrz¢¥nla) (39
and
2 2a(\p)
fn:_ a()\ )2<lII()\ |Q>+| ()\ )3<q’()\n)|Q> (40)
and similarly
~ 2 - —
f(N)=— On=—1— <‘It()\n)|q> (41
A(\,)?

and

23(\,
<‘If(>\ )ay+i -

fn:_ <q’()\n)|q> (42)
AN,)2 A(\p)°
Substituting them int@¢38), we obtain
S(x— y)— +Z i (A”)wx,x YW(y,\p)A
an,)® " )
—2 I An) A WO ) Wy N ) A
——f —\If(xwv(y NA+ D 280 ”)\If( X)W (y,\ )
AN

> TN ) By, N ) A+ TN ) Ty, ) A (43)

n a(xn>

This is the expansion of the unity in terms of the squared Jost functions.

VI. SECULARITY CONDITIONS

Supposg] in (21) can be expanded in the form (88) (the coefficients may be dependent on
t). Substituting it into(21) and performing the inner product witl?(x,\)”, ¥(x,\ )" and
W(x,\ )" from the left, respectively, by using the orthogonality relations, we obtain

{=if.)+2xf(M)ja()?=(P(V)[R), (44)
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{_ignt+2)\ngn}i %a()\n)2:<q’()\n)|R>a (45)

and
{_ifnt+2)\nfn+29n}i %a()\n)2+{_ignt+zxngn}%-a()\n)a()\n)=<\.I’()\n)|R>- (46)

Similarly, we also have

—{=if,(0) =23 F(x,M)}a(\)?=(¥(V)[R), (47)
{= T 2\48n}i () 2=(T(\)[R), (48)

and
[T 20af o 280} B2+ { G 20, 0aH BOWEN) =(F(\IR). (49

We can see thag,(t), f,(t), G,(t) andT,(t), the expansion coefficients of the discrete
spectrum, may tend to infinity dsgrows, unless the right hand sides of those relevant equations
above vanish. In order to eliminate such leading secularities, modulations of those parameters
characterizing soliton solutions must be so selected that the full s&jirceis orthogonal to the
entire discrete subspace. Explicitly, we denfant

(W(Ny)IR)=0, (W¥()\,)|R)=0, (50)
and
(W(\)IR)=0, (F(X,)[R)=0, (51)

It is easy to show that51) are just complex conjugates B0) and are not independent of them.
The so-called secularity conditioiS0) become

[ axt@, e Ry x 1 RETT =0 52
and
| ddabsxnmRIuI- by xn R =00 59

They give N real conditions for theN-soliton case. In thé\-soliton case, we have just\4
parameters. By means of these secularity conditions we can determine the time dependence of the
parameters up to the order efn the adiabatic solution. After determining the adiabatic solution,
from (44) we can determiné(\) as a function ot. Finally, we can findg.

VII. A SINGLE SOLITON CASE
The secularity conditiongs2) and (53) can be rewritten as
S1=Ry (54)
and
S=R,, (55)

with
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slzf dx{®,(X,\1)€'2%s[u]— @, (X,\;)e 2% u]}, (56)

So= f :dx{d>2<x,xl>ei25s[u]—@(&M)e*iwﬁ}, (57

andR, andR, are obtained simply by replacirgju] with r[u] from (56) and(57), respectively.
For the single soliton solution,

u=2vsechxe ¢, (58

where the parameter;=u+iv. We assume\, lies within the first quadrant without loss of
generality, hence.>0 andv>0:

X=2p[—t+4u(x—x1)], @=—2ut+4(u*—v*)x+ ¢, (59)

wherex,; and ¢q are real constants.
For the adiabatic solutiory,v,X;,¢q may be dependent anof the order ofe. We write

d 1
X=-—, (60)

X=8uvz, z=x—X, gt au

and

d ,u,2+ v?
_ 2_ 2 -
e=4(u—v°)z+296, dt25 ,U«

(61)

Simple algebra yields
s[u;]=16vv, sechXthXe '¢— 81 8(vu),z— 8(vu)X,][sechX—2 secR X]e ¢
+8vu[4(u?—1v?),z2— 4(u?— V)X, +25.] sechXe ¢+i8(vu),sechXxe ¢
—i8v[4(u?—1v?),z— A(u?—v?)X,+25,] sechXthXe '¢
—i8vu[8(vu),z—8(vu)X,] sechXthXe '¢. (62)

Except unimportant factorsee Appendixwhich can be dropped from both sides(b6#) and
(55), ®(x,\;) and®(x,\,) can be replaced by

D(X,\q)e 2273 D(X,\,)e 12073, (63)
respectively, where
_ 1 —i4;220
®(X,\;)=1sech Xe #1273 (64)
and
_ , ! o, a1
D(X,Nq)=—i2\,zsech X #1275 | 2—VsechXe'4(" v )Z(O)' (65)
We obtain

8—1 1 v 1 1 v
155 Hr 3.2 tisvd T2

- p (66)
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and

P B PO B ) By L Yo
27702 2u? "2, I6,u X 4p? I4,uv o[ T v v

VIIl. EFFECT OF DAMPING

The perturbation term for damping isil'u;, andI’ can be chosen as the small parameter
That is,

rfu]=—iu;=—i2vsechxe '¢. (68)
We have
(" 1
Rlz—wf dzsech X=—i— (69
—w 4u
and

The secularity condition§s4) and (55) become

o, MV ! 71
M=, _}LTVT_ @: ( )

and
X,=0, &.=0. (72

Hence, up to the order af we have

d —o w+v? d B Fl 73
dath™ w’v dt’ ™ A’ (73

and
d F1 d(s_,u,2+1/2 24
ax— m, FTaeE 2u (74

Equations(73) and (74) yield

—por log L]+ 2y (12— = —T 2t 75
M=o, Ogv_o ﬂg(”_”o)—_ E ) (75

and
x= Flt 5—5+1 t+1ftdt2 76
X=x, =Tt 0= o0t Zuttor | dus. (76)

Here ug, vo, X; and é, are constants.
After determination of the adiabatic solution, the right hand sidet@f is given, and we can
find f(t,\) and thenq(x,t). Finally, we obtaing(x,t).
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IX. DISCUSSION

We have developed a direct perturbation theory for the perturbed UNLS equation. Because of
the second order derivative in the perturbation theory is essentially different from that for the
perturbed SNLS equation involving only the first derivativet.in

In a single soliton case, by substituting the explicit expressions of the Jost solutions into the
right hand side of43), like the case of dark solitons of SNI!Syve can see that it is indeed equal
to 5(x—y). Hence the completeness relati@s) is shown in this case. However, for the multi-
soliton case the explicit expressions of the Jost solutions are very complicated so that it is impos-
sible to substitute them into the right hand side(43) and to show it is equal té(x—y). This
problem will be discussed separately.
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APPENDIX: A REVIEW OF THE INVERSE SCATTERING TRANSFORM FOR THE UNLS
EQUATION

We review the inverse scattering transféfhor the unperturbed equatigf) with the bound-
ary condition

u—0, as|x|—o. (A1)

Two Lax equations for the UNLS equation are obtained from those for the SNLS ecfulion
interchanging their roles. Starting from the first Lax equation

—i2\%2+|ul?  2\u-—iu,

XTI i2)\2—|u|2)w(x’t’)\)’ (A2)

AW(X,t,N)= (

and by using the boundary conditiot1), the analyticity of the Jost functions can be found and
the equation of IST can be derived. Then, by using the second Lax equation,

i —u
atw(x,t,)\)=<i _i)\)w(x,t,)\), (A3)

thet dependence of the scattering data can be determined.
From the Lax equatiofA2) and the boundary conditiofA1), the asymptotic solution in the
limit of |x|— of (A2) is

E(x,\)=e 123, (A4)

In comparison with the asymptotic solution for the SNLS equatior}*?3, one can see that the
parameter in the exponential, is replaced by 22 in the UNLS case. This leads to the followo-
ing.

(1) The domain of definition of the asymptotic solution for the SNLS equation is forkeal
namely, on the real axis in the complaxplane. The domain of definition of the asymptotic
solution for the UNLS equation is for real’, namely, on the real axis in the complaxplane
wherex?>0, as well as on the imaginary axis whexé<O0.

(2) Jost functions are defined by

(U ) (X, \)—E(X,\) as x—x, (A5)



J. Math. Phys., Vol. 41, No. 5, May 2000 Perturbed UNLS equations 2941

and
(¢ @)(X,\)—E(X,\) as x— —o; (AB)

the monodromy matrix is introduced as well:

a(n) —5()\)> a7

(@?D)(X,X)=(¢¢)(X,>\)<b()\) A0

similarly in both cases. In the SNLS cagéx,\), ¢(Xx,\) anda(\) are analytic in the upper half
plane of complex-plane, andj(x,\), d(x,\) and@(\) are analytic in the lower plane. More-

over,b(\) andb(\) cannot be analytically continued out of the real axis. The zerag ®f lie
in the upper plane. On the other hand, in the UNLS cag&,\), ¢(x,\) anda(\) are analytic
in the first and third quadrants, agdx,\), $(x,\) and&(\) are analytic in the second and fourth
quadrants. Moreovelh(\) andb(\) cannot be analytically continued out of the real and the
imaginary axes. The zeros af)\) lie in the first or the third quadrants.

(3) By using the usual procedure, we can obtain the equation of inverse scattering transform
of Zakharov-Shabat type,

TN ={E (X, \)+ RGN +I(x,\) e~ 1A% (A8)
whereE_,=(0 2T,
1 _
R(x,)\)zizn: ﬁcnd/(x,)\n)emﬁx, (A9)
1 1 .
J(X,)\)=EJFd)\’)\_)\, FON ) (x, ) el 2N X, (A10)

Herec, andr(\') are the usual symbofsThe path of integration is
I'=(0,+»)U(0,—»)U(i,i0)U(—ix,i0). (A11)

(4) By using the Lax equatiof6), we can obtain thé dependence of scattering data(ir2),
Simply, the Jost functiong(x,\), etc., which are determined by only one of the Lax equations,
can be extended to those to satisfy simultaneously the two Lax equations. For example,

h(t,\)%(x,N), h(t,N)"2(x,\), h(t,\)=e, (A12)
The scattering data are replaced by
r(\)—r(Mh(t,N) "2, cp—cyh(t,\,) 72, (A13)

etc.

The soliton solutions correspond to a reflectionless potential and in this case the continuous
spectrum disappears. The poles of the transmission coeffia{@nt * lie within the first or the
third quadrants. However, it has been sh&tthat the forms of the soliton solutions depend on the
absolute values of the imaginary part of these poles and the values of the real parts. Thus the
soliton solutions of the UNLS equation can be obtained from those of the SNLS equation by
simply interchanging andt.
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