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The self-induced transparency in the Kerr host medium has been studied beyond the slowly-varying-
envelope approximation. An analytic solution is obtained. There exists a hyperbolic-secant soliton
whose power, pulse width, group velocity, and propagation constant are uniquely determined for given
parameters of the medium. The reductions of the group velocities of the solitons by the self-induced-

transparency eFect in the resonant medium with homogeneous and inhomogeneous broadening are also
studied. It is found that there is negative dispersion induced by the self-induced transparency, which is
not predicted by the theory with the slowly-varying-envelope approximation. The amount of the in-

duced dispersion is determined by the total dispersion of the system required to be compensated by the
Kerr e8'ect. Numerical examples of the self-induced transparency in an erbium-doped fiber are shown.
In a typical erbium-doped fiber, the soliton solution has not been found because the inhomogeneous-
broadening linewidth of the medium is too large.

PACS number(s): 42.50.Rh, 42.65.—k

I. INTRODUCTION

The self-induced transparency (SIT) discovered by
McCall and Hahn is a phenomenon of a coherent optical
pulse propagating in a resonant medium without loss and
distortion when the pulse energy exceeds a critical value
[1,2]. It has been found that certain solutions of the
coherent pulse are solitons. Such a pulse is called a SIT
soliton. For the optical fiber, Hasegawa and Tappert
have proposed that the dispersion of the pulse can be
compensated by utilizing the Kerr effect if the dispersion
of the pulse is in the negative regime [3].Because the dis-
tortionless pulse satisfies the nonlinear Schrodinger (NLS)
equation and behaves as a soliton, it is called the NLS
soliton. Since the recent development of the erbium-
doped fiber amplifiers [4,5), it is interesting to consider
the SIT in the silica-based erbium-doped fiber (EDF).
Therefore, the coexistence of a SIT soliton and a NLS
soliton has been a subject of intense interest [6—8].
Reference [8] claims that an impractically large disper-
sion is required for the SIT-NLS soliton to exist in an
EDF. Therefore, it concludes that it is not possible for
the SIT soliton and the NLS soliton to coexist in EDF.
In Ref. [8], the slowly-varying-envelope approximation
(SVEA) is used. In this paper, we extend our previous
work [7] on the theory of the SIT-NLS soliton without
making the SVEA and show that the large dispersion re-
quired for the coexistence of a SIT soliton and a NLS sol-
iton is automatically induced by the SIT. However, be-
cause of the large inhomogeneous broadening linewidth
of the medium, the soliton solution has not been found in
a typical EDF.

In Sec. II, the Maxwell-Bloch equations governing the

SIT-NLS soliton are derived without using SVEA. The
resonant medium is assumed to be inhomogeneous
broadening. In Sec. III, the equations are solved to ob-
tain the SIT-NLS soliton solution. In Sec. IV, we study
the characteristics of the SIT-NLS solitons for three spe-
cial cases. The results are compared to the previous
works. Some numerical examples with the typical pa-
rameters of EDF are shown. At last, the conclusions are
given in Sec. V.

II. MAXWELL-BLOCH EQUATIONS
WITHOUT USING SVEA

SIT is the coherent effect of the interaction between the
optical pulse and the resonant atoms. This gives the
upper limit on the pulse width. The pulse width T must
be much shorter than the relaxation times of the popula-
tion difference T& and polarization T2. The resonant
atoms are modeled as an ensemble of two-level atoms
which has the dipole moment p and resonant frequency
co„. The atoms are embedded in a nonresonant host
medium. In this paper, the host medium is the optical
fiber with Kerr effect and dispersion.

The electric field of the optical pulse propagating along
the z direction in such a medium is assumed to be linearly
polarized and can be expressed as

6'(z, t) =E (z, t) exp[i (koz coot) ], —

where E (z, t) is the complex envelope of the pulse, coo is
the carrier frequency, and ko —=k (coo) is the wave number
at coo k ( )=con (co)cole and n (co ) is the linear refractive
index of the fiber. The macroscopic polarization due to
the resonant atoms is written as
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P„(z,r) =P„(z,t) exp[i (koz —coot) ] .

The complex envelopes E and P, can be written as

E(z, t)=q(z, t) exp[i/(z, t)],
P„(z,t) = [U(z, t)+i V(z, t)] exp[i/(z, t)],

(2)

(3)

where q(z, t) and P(z, t) are the amplitude and phase of
the pulse, respectively, and U(z, t) and V(z, t) correspond
to the dispersion (in phase) and absorption (in quadra-
ture) due to the resonant atoms, respectively, and these
four quantities are real.

The wave equatio'i for this problem is

8 6 ~+i ~&n& c) Pr
Po + +

z Bt Bt Bt

reciprocal group velocity and the dispersion of the pulse
in the host medium without Kerr efT'ect and resonant
atoms. In Eq. (7), the high-order term of the polarization
B P„/Bg is neglected.

It is known that the velocity of the pulse can be greatly
reduced by the SIT. To solve Eq. (7) in the frame with the
velocity of the pulse, we take the transformation
~=g —Ak oz, z =z, where Ak o is the change of the re-
ciprocal group velocity due to the resonant atoms, and
Eq. (7) becomes

BE BE
BZ2

BE—[koko' —(bko +2kobko )]
a

(6b)

where g(b, co) is the inhomogeneous-broadening normal-
ized line-shape function with f g(bco)d(bco)=1; u

and U are the polarization components of the atoms with
frequency b, co detuned from coo. By substituting Eqs. (1)
and (2) into Eq. (5) and following the same procedure in
Ref. [9] to derive the linear term d 2), /dt and averaging
the transverse mode function of the electric field over the
cross section of the fiber, the wave equation which
governs the optical pulse in the moving frame g= t —kpz,
z =z becomes

B'E, B'E . BE „B'E
Bz' 'B~BZ

' ' Bz ' ' B~'

+ ' k', IEI'&+p,~,' P„+
no cop B7j

=0, (7)

where ko=c)k/c)co~ „and ko' =c) k/c)co
~

„are the
0 0

where 2)i is the linear displacement and Z),(z, t )
= f e&(t t')6'(—z, t')dt', where e,(t) is the linear dielec-
tric constant of the fiber and its Fourier components
Z, (co)=eon (co); eo and po denote the permittivity and
permeability in vacuum, respectively; 2)„, is the nonlinear
displacement for the nonreson ant host medium and
2)„i(z,t)=2nznoeoi@~ 8 with no=n (coo); n2 is the Kerr
coefticient. By defining Aco=cu, —

cuo, the macroscopic
polarization components contributed from the atoms of
the whole range of Ace are

U(z, t)= J u (5 ,cotz)g(h )cdo(b )co, (6a)

V(z, t) = J u (bco, z, t)g (Aco)d (bco),

+ ko'IEI'E+icocoo P„+
np cop Bv

=0. (8)

Hence the group velocity of the pulse is
ug

= I/(ko+Ako). It is noticed that bko introduces the
dispersion —(bko +2kohko )/ko in the fifth term in Eq.
(8). This additional dispersion can be interpreted as the
dispersion caused by the SIT. In the literature, the SVEA
is often applied to Eq. (7) and the first two terms in Eq.
(7) are neglected; then the additional dispersion shown in
Eq. (8) will not appear.

If the pulse width is much less than the relaxation
times T, and T2, P„satisfies the Bloch equations [10]

BP,
i hcoP„+i ~—WE,

B~
(9a)

i (E—P„* E*P„), —
2A

(9b)

where W=(N, —N2)p is the macroscopic population
difference multiplied by p between the ground state (N& )

and upper state (N2) of the resonant atoms. We take No
as the density of the resonant atoms and Np =X, +%2.

III. SIT-NLS SOLITON SOLUTION

In this section, we solve the Maxwell-bloch equations
to find the SIT-NLS soliton solution. We assume the am-
plitude q is independent of z, i.e., Bq/BZ=O, but the
phase P may depend on both r and z. Under these as-
sumptions and by substituting Eqs. (3), (4), and (6) into
Eqs. (8) and (9), the wave equation becomes

Bq
Bt

2

+2k, ~+2 k, k,' —'
z BZ Ug

L

1 ay ay ay
Ug Bz Bw Bv

+y

+poco() u

2-

.q +~q

T

2 c)P c)uu+-. B-
+

B-
L

g (b.co)d (b co) =0, (10a)

2 k k'— 1 1 c)P c)P c)q+ c) P+
U, Bz B~ B~ g (Aco)d (bco) =0, (lob)
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y= — koko +ko—
Ug

(1 la)

—u, ~ —~qw, .'a~ (19)

no
k

and the Bloch equations become

(1 lb)
The terms in square brackets in Eq. (19) should be in-
dependent of b,co because the other terms in Eq. (19) are
independent of Ace. Therefore, we have

au
C}7.

ay +ACO U
a7.

ah +a~ u+~qw,
a~ fi

(12a)

(12b)

and

f (bco)=(1+c,hco+c2bco )

Pwp
Q) =C) q Q2

87

(20)

(21a)

Bw = —+qU,
aT

(12c) Pwp
Q2 =C2 q (21b)

where w =w(b, co, z, T) is the component of the macro-
scopic population difference contributed from the atoms
with frequency hen detuned from coo and

W(z, T)= f w(bco, z, T)g(boo)d(bc@) . (13)

In order to obtain the analytic solution we assume
U (b,co, z, T) is in a factorized form

where c, and c2 are the constants to be determined.
Then Eq. (19) reduces to

(wp —w, )q —u,
a7

(22)

The population difference can be found by substituting
Eqs. (16b) and (21b) into Eq. (18) and

U(bco, z, T)=U, (z, T)f (bco), (14) C2 2

w =wp —
q f (b,co)wp . (23)

au 1

ai- a7- '=U)

Q2

87
=U)

Similarly, by integrating Eq. (12c), we obtain

w(bco, z, T)=wp —w, (z, T)f (bco),

(16a)

(16b)

(17)

where wo is the initial population difference and is as-
sumed in ground state, i.e., wo=ItIop; w, (z, T) is defined

by

where f (b,co) is known as the dipole spectra-response
function [11] and is normalized as f (0)=1. Integrating
Eq. (12a), we have

u (bco, z, T) =[u, (z, T)+u2(z, T)brojf (bee),

where u, and u 2 are de6ned as

It is noticed that, in Eq. (23), the population difference is
depleted by the square of the pulse amplitude.

Because the steady-state solution is considered, we can
write aq/aT=dq/dT and a q/aT =d q/dT . By substi-
tuting w, (z, T), v, (z, T), and u, (z, T) as functions of q(T)
derived above into Eq. (22), we have

ay ay
C1 ~

= 1 C1 +C1
2 2

C2P

2(fi)
(24)

From Eq. (24), we know that ap/aT is a function of T

only; from Eq. (10a) for distortionless propagation, it is
seen that ap/az is also a function of T only. Since
a'y/aTaz =a(ay/az)/aT=a(ay/aT)/az =0, Wlllcll 1m-
plies aP/az must be a constant, we may write

a~'- =~k. , (25)
az

Bwi =~qu, .
B~

Substituting Eqs. (14)—(18) into Eq. (12b), we have

(18)
where Akp is a constant and represents the change of the
propagation constant due to the resonant atoms and Kerr
eff'ect. For the distortionless amplitude solution, Eq. (10)
reduces to

2r"" -+I "—+r "
de aT aT

3 a
q +aq +s c )I) +c2I2 —c2I, q

2 a4 a(t d'q
(c,I, +c2I2 ) q c2I, q

—— =0,
COp a~ a~ d~'

-=0
7p+2r +rq +s c2I, + (c1I1+czI2 ) c&I1 2 +q-aP dq a'P dq 2 dq aP dq a/

aT dT a dT cop d7. O'T d7 87
(26b)
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where

o2 +2koako (27a)
E (z, r) = sech exp[i (bkoz —Qr) ], (32)2A 7"

pT T

1p=2ko ko-
Ug

ko
1

Ug

(27b)
where T, is the characteristic time scale and

T, =(1/cz —Q ) (33)

PWp
s —Po~o (27c)

I, = f f (b,co)g (bco)d (hco),

Iz= f hcof (hco)g(b, co)d(b.co) .

Equation (26b) can be rewritten as

BP dq B Ps) +2$2 +$2q ~ 0
a~ d~ ae

(27(l)

(27e)

(28)

where

2
s, =P+s czI, + (c,I, +czIz)

cop
(29a)

$2
cop

SC2I ( (29b)

a = —Q.
B7

(30a)

This means that the carrier frequency of the pulse is
shifted to co=coo+Q and the pulse is unchirped. (ii)

y — sI, cz (1—Q cz)
cop

=(a —PQ+yQ )cz+s(QI, Iz) 1+ cz . —(30b)
p

Here we have used the relation

Integrating Eq. (28), we obtain BP/Br = —Q+ d
~ q

where 0 and d& are constants. With this result and sub-
stituting Eq. (24) into Eq. (26a), Eq. (26a) then becomes a
polynominal equation including only the terms

q ', q ', q', q'. This polynominal equation is valid only
when the coeKcient of each term is zero. These condi-
tions give the following results: (i) d

&
=0, i.e., 2Npp

U(b coz, r)= f (b,co)—
T, (T, +Q )

7X sech tanh
T. T.

2Npp 2 '7
(o(b,co, z, r)=No@ f(b,co) — sech

T, (T, +Q )

(34a)

(34b)

(34c)

where

1

1 —2Q(T +Q ) 'bco+(T +Q ) 'bco
(b,co) =

The pulse full width at half maximum (FWHM) of the
soliton is T = 1.763T, . It is seen that the constant cz re-
lates to the pulse width and the detuned frequency. The
group velocity U, characteristic time scale T„and the
change of the propagation constant hko in Eq. (32) can
be uniquely determined from the coupled nonlinear alge-
braic equations (30b), (30d), and (31). That is, for a given
medium, only one unique solution exists. It is noticed
that this result is different from McCall and Hahn's
finding that the group velocity varies with the pulse
width. In a recent paper, Brains, Martin, and Birmam
[12,13] have found that the group velocity of SIT without
using SVEA in a linear host medium has a discrete set of
values. In our system, only a single velocity is allowed.
In Sec. IV we will consider three special cases used to
solve the coupled nonlinear algebraic equations and study
the characteristics of the SIT-NLS solitons.

As for the expressions for u, U, and w, we substitute Eq.
(32) into Eqs. (21), (16b), and (23) and obtain

2Nop 7
u (b,co, z, r)=f (b, )c(ob, co —Q) sech

T (T '+Q') —
T,

c) = 2Qcp (30c) (34(l)

which can be obtained by the relations of u, and u z given
by Eqs. (16) and (21). (iii)

K= f $I) cp
p 2

(30(1)
2A)2 to

Corresponding to the steady-state solution given by Eq.
(32), with Eqs. (34), the macroscopic polarization and
population difference can be written as

NpP
P„(z,r)= (Iz 2QI, )E(z, r)—

(T, +Q )fi

By using Eqs. (30a) and (30c), Eq. (26b) has a nontrivial
solution only when BE(z,r)+sI)

a~
(35a)

2
P—2yQ+scz I&+ Iz =0 .

cop
(31)

With Eq. (30a), the solution of the electric field can be
obtained from Eq. (24) and

2NopI
& 7

W(z, r) =No@ zz sech—
T, (T, +Q )

(35b)

where I& and I2 are the integration constants given by
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Eqs. (27d) and (27e), respectively. The constants will be
calculated in the following section.

( 2noko /npko ) T, [15]. The required dispersion
ks,T NLs for the coexistence of the two solitons can be ob-
tained by equalizing these two amplitudes [8], i.e.,

IV. APPROXIMATE SOLUTIONS
FOR CHARACTERISTIC CONSTANTS

2x'n2kp
SIT-NLS

pnp
(36)

In this section we will solve the characteristic time
scale T„group velocity vg, and propagation constant
kp+ hkp from the three coupled nonlinear algebraic
equations, Eqs. (30b), (30d), and (31) for three special
cases. For the parameters of the EDF, we take the fol-
lowing values [8]: A,o=1.53 pm, ko = —25 psec /km,
n2=1 2X10 m /V, p= 1 4X10 Cm, effective
area A,&=80 pm, and T, =10 msec, T2=10 nsec at 4.2
K. In the fiber, because the value of kp is very close to
n (coo)/c, we taken ko =n (coo)/c and n (coo) =1.46.

In Eq. (32), the amplitude 2R/pT, corresponds to
a 2m SIT soliton, where 2~ is the normalized area of
the SIT soliton [14]. For the fundamental NLS soliton
without the resonant atoms, the amplitude is

l

Ado' 1g(&co)=
( b,co, /2 ) + b,co

(37)

where he@, is the spectral width (FWHM) of g(b, co).
Given Eq. (37), the constants I, and I2 defined in Eqs.
(27d) and (27e) become

With the numerical parameters given above, ks'&TNLs
= —5.6X 10 psec /km, which is six orders of magnitude
larger than the typical value. In the following, we will
show that the SIT can induce such a high negative
dispersion.

For the following discussions, the inhomogeneous
broadening line shape is assumed to be Lorentzian

1I)—
c (c 1 II2)1/2

C2Qbco + (c ' —0 )'

[c2 ' —(b,co, /2) ] +0 Aco,

2
Aco~

2
(38a)

Aco~—0
2

c (c-' —n')'"
2 C2

b,co.(c, ' —n')'" —c, '— Ace,

2

[c2 ' —(b,co, /2) ] +0 Aco,

2

(38b)

From Eq. (32), it is seen that the pulse energy is inversely
proportional to the pulse width. When the pulse width is
large enough, the pulse energy will be too small to induce
large phase change. Therefore, we can assume the
change of the propagation constant Akp «kp to simplify
Eq. (27a) as a =2kob, ko. This assumption will be justified
in the following.

Case (i): hco, ~0 and 0=0

2A n2kp
t

pnp
(39e)

It is noticed that k,"=~ks',r NLs~. Because hko is posi-
tive, the group velocity of the soliton vg is reduced from
1/ko to I/(ko+hko). To simplify the expressions, we
have assumed kp —-—kp/cop in the exPressions of T„hkp,
and b,ko given above. From Eq. (32), the peak power of
the SIT-NLS soliton is

T, = To 1+ 1+ (ko'+kt')
0

(39a)

In this case, the resonant medium is homogeneous
broadening, i.e., all the doped atoms have the same reso-
nant frequency co„and the carrier frequency cop of the
soliton coincides with the resonant frequency, i.e.
co„=coo. From Eqs. (38), I, =1 and I2=0. Solving Eqs.
(30b), (30d), and (31), we have

1/2 1/2

2A
o ~ "o+ o/Po

PTc
(40)

With the numerical parameters given above, we have

Tp =4.06N p psec

k,
"=5.6 X 10 psec /km,

where Np is in units of 10 m, and

(41a)

(41b)

hkp =kp
TQ

Ak =—'k "T
0 2 t c

where

(39b)

(39c)

T =0.785NO ' nsec,

hkp = 120kp

kp 0 141NO m

Pp = 178Np

(42a)

(42b)

(42c)

(42d)

Tp
2iSk 0

3 2
ppcopp Np

(39d) Because kp =6.0X 10 m ', the value of the given Akp is
of the order of a few m ' and the assumption Akp &&kp
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2ikohko gEP„=
POCOO

(43)

Substituting Eq. (43) into Eq. (8), we see that the term
2ikob, k—oBE/Br in Eq. (8) is canceled out by the term

with P, because the pulse is in the moving frame with its
group velocity and the term with dP, /Br in Eq. (8) intro-
duces an additional dispersion 4kohko/ko. Including
the dispersion due to BP, /B~, the total dispersion caused
by the resonant atoms are

is justified in this case. From Eq. (42a), the pulse width is
inversely proportional to the square root of the doping
density because lower doping density corresponds to less
interaction between the field and the resonant atoms and,
therefore, longer pulse width is required to increase the
interaction. It is noticed that, in Eq. (42b), hko is in-
dependent of Xo and the group velocity v =1/121ko.
Because it requires T «T&, T2, we take T =0.5 nsec
(No =2.46 X 10 m ) and the required peak power is
437 W. As mentioned above, in Ref. [8], a soliton of such
a high peak power requires the dispersion ko' of six or-
ders of magnitude larger than that of a typical silica fiber.
Here, we will show such a high dispersion can be induced
by the SIT in the resonant atoms. In this case, from Eqs.
(35a) and (39), the macroscopic polarization P„corre-
sponds to the soliton solution given by Eq. (32) can be
written in terms of the electric field envelope E as

due to the SIT is self-adjusted such that the value of the
total dispersion is given by Eq. (36), where both the SIT
and the NLS solitons are fundamental solitons. It is
known that the bright NLS soliton cannot exist in the
positive dispersion regime where ko )0 [3]. For the
SIT-NLS soliton, it can exist in the positive dispersion re-
gime because the total dispersion is independent of ko'.

From Eq. (35b) with I, =1 and Q=O, the macroscopic
population difference 8' corresponds to the soliton solu-
tion given by Eq. (32) can be written as

W(z, r) =NO@ —2Nopsech
C

(45)

At the peak intensity of the pulse at ~=0, O'= —Nap,
i.e., the resonant atoms are all pumped to the upper state.

It is noticed that, from Eq. (44), if there is no Kerr
effect and dispersion in the host medium, i.e., n2 =0 and
k o

=0 the soliton solution exists when k„"=0 or
Ako=2ko. In such a case, v =1/3ko, which is called
the "preferred velocity in SIT" [16]. Therefore, the
change of the velocity is the result of the combined effect
of the host dispersion, Kerr efFect and the resonant medi-
um. In Refs. [11]and [17], it is found that a SIT pulse is
possible in a nonlinear Kerr host, but the pulse is neces-
sarily chirped. From Eqs. (32) and (39), we know the
solution is unchirped. The difference arises because the
dispersion terms are neglected in Refs. [11]and [17].

k"=—(bk' —2kobko)ko ' (44) Case (ii): hco, ~0 and ~Q~ &&co,

Because Ak o is positive, k„" is negative for Ak o )2k o.
Substituting the solution of b,ko given by Eq. (39b) into
Eq. (44), we have the total dispersion ko'+k„"= —k,",
which is exactly the required dispersion ks', ~ NLs given by
Eq. (36) and is independent of ko'. It is clear that, for the
coexistence of the SIT soliton and the NLS soliton, the
value of the change of the reciprocal group velocity Ako

In this case, the resonant medium is again homogene-
ous broadening, but the carrier frequency of the soliton is
coo+A and differs from the resonant frequency co„where
coo=co„. To simplify the problem, we assume the absolute
value of the detuned frequency ~Q~ &&co„. Also, from
Eqs. (38a) and (38b), I& =1 and I2=0. The approximate
solution is

I+(AT, )

(1+r) 'To
Tc 1+ I 1+(1+r) [(coo/ko)(ko'+k, ")—r +2r]I '~

,
T'

Ako =ko
0

k,
"

Tc 0
b, ko= [I+(QT, ) ]

—2kt
2 Tc 1+(QT, )

—1/2

(46a)

(46b)

(46c)

where r =k,"0/ko.
With the numerical parameters of the EDF given

above, Fig. 1 shows the pulse width T (=1.763T, )

versus the detuned frequency for various doping density
Xo. For a given detuned frequency, as the doping density
No increases, the pulse width T decreases as in case (i).
For the same pulse width, the doping density increases
with the detuned frequency because the frequency detun-
ing reduces the interaction between the field and the reso-
nant atoms and higher doping density is required to in-

T ( T—2 II2)
—1/2 (47a)

where T„ is the T, defined by Eq. (39a), which is

I

crease the interaction. From the figure, it is seen that
there exist cutoff detuned frequencies because the value
of the square root in Eq. (46a) must be positive to make
the pulse width real. Because the order of the detuned
frequency shown is less than 1 G Hz and
k,"/ko =1.15 X 10 " sec, the ratio ~r~ &&1 and Eq. (46a)
reduces to
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FIG. 1. The pulse width T =1.763T, vs the detuned fre-
quency 0/2n. for various doping density No (in unit of 10
m ), where T, is the characteristic time scale given by Eq.
(44a).

FICy. 2. The corresponding change of the reciprocal group
velocity b, ko for the cases shown in Fig. 1, where Ako is given

by Eq. (44b) and is shown by the ratio Ak o /k 0.

ko =4.868 X 10 sec/m is the reciprocal group velocity
without resonant atoms and Kerr eff'ect. The three lines corre-
sponding to &0=0.5X10, 1 X 10, and 5X 10 m overlap.

the characteristic time scale for the nondetuned case
(0=0). From Eq. (47a), the cutoff frequency
f, —=+( T,,

2 —T, )'~2/2vr The .cutoff frequencies are
0.253, 0.358, and 0.8 GHz for the doping density
No =0.5 X 10, 1 X 10, and 5 X 10 m, respectively.
From Eq. (46a) or (47a), at the cutoff frequency, the pulse
width becomes infinite. However, the pulse width is valid
only under the assumption T «T2, where T2 =10 nsec
at 4.2 K. For T & 1 nsec, the corresponding frequencies
~Q /2~ should be less than 0.23 and 0.75 CrHz for the
doping densities No =1 X 10 and 5 X 10 ~ m, respec-
tively. For No =0.5 X 10 m, the minimum pulse
width shown in Fig. 1 is 1.11 nsec. Figures 2 and 3 show
the corresponding Ako and Ako in Fig. 1, respectively.
In Figs. 2 and 3, the three lines corresponding to
No =0.5 X 10, 1X 10, and 5 X 10 m overlap.
Therefore, Ako and Ako are almost independent of No in
these cases. From Fig. 3, ~b, ko~ increases with ~fl~ and
the assumption ~b, ko ~

&& ko is valid in these cases. From
Fig. 2, b,ko slightly increases with the detuned frequency

It is noticed that the values of Ak o are almost the
same as the nondetuned case. For

~
r~ &(1, Eqs. (46b) and

(46c) can be reduced to

tion and population difFerence can be written as

2koP„= (h,ko+kI"0) —2QE+i
Pocoo 87

2Nop8 =No@ 2
sech

1+(QT, )

(48a)

(48b)

Substituting Eq. (48a) into Eq. (8), we have that, for
IQI «coo and ~r~ (&1, (a) the term —2ikobkoBE/Br in
Eq. (8) is canceled out by pocooP~; (b) the total induced

Ako =Ako, . ,

Ako =Ako, —2QAko, ,

(47b)

(47c)

where hk o,. and hko, are the Ak o and Ako defined by
Eqs. (39b) and (39c), respectively, which are the b, ko and
hko for the nondetuned case (Q=O). The approximate
equations, Eqs. (47a) —(47c), agree very well with the data
shown in Figs. 1 —3. It is noticed that Eq. (47b) shows
Ako is independent of the detuned frequency.

Corresponding to the steady-state solution given by Eq.
(32), from Eqs. (35) and (46), the macroscopic polariza-

-1.0
~ I I I

1
I I I I

l
~ I I I

j
I I I I

-0.5 0.0 0.5 1.0

0/2a' (GHz)

FICx. 3. The change of the propagation constant Ako for the
cases shown in Fig. 1, where bko is given by Eq. (43c). The
three lines corresponding to Xo =0.5 X 10, 1 X 10, and
5X10 m overlap.
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dispersion is the same as Eq. (44) and the required disper-
sion for the coexistence of the SIT and NLS soliton is
also contributed from the host dispersion and the total in-
duced dispersion; (c) the macroscopic polarization addi-
tionally introduces a change of the propagation constant
—2Q(hko+k, "0), which is equal to the second term in
Eq. (46c) as can be seen from Eq. (46b). It is noticed that,
in case (i), from Eqs. (8) and (43), no approximations are
required to arrive at the results (a) the cancellation of the
term 2i—kohkor)E/Br in Eq. (8), (b) the total dispersion
to be —k,", while in this case, the approximations
~A~ &&coo and jr~ &&1 are required. This is because, in
this case, Eqs. (46) and (48a) are all approximate results.
From Eq. (48b), as the frequency is detuned, at the peak
intensity of the pulse at ~=0, the resonant atoms are not
all pumped to the upper state.

Case (iii): hro, » T, ' and 0=0

In this case, we consider the SIT-NLS soliton solution
in an inhomogeneous broadening resonant medium. Be-
cause the expressions of the I, and I2 defined in Eqs.
(38a) and (38b) is not so simple as the homogeneous
broadening case, we assume the spectral width of the
pulse is much less than the spectral width of the inhomo-
geneous broadening line shape and the central resonant
frequency coincides the carrier frequency. The large in-
homogeneous broadening linewidth assumption is true
for the EDF. With these assumptions, we have the sim-
ple expressions l, =2/(cz b,co, ) and I2=0. The ap-
proximate solution is

EcogT= T2
c 2 cl

Ako=hko, ,

(49a)

(49b)

Ako=hko, , (49c)

2ikohko gEP„=
2

PoQPO

(50a)

28' =Nop —2Nop
Tc ECt?~

7sech~
T

(50b)

Because Eq. (50a) and b, ko is the same as case (i), the re-
quired dispersion for the SIT soliton and NLS soliton to

where T„, Ako, , and Ako; are the T„hko, and Ako
defined by Eqs. (39a), (39b), and (39c), respectively,
which are the corresponding values for the nondetuned
and homogeneous broadening case. It is noticed that
Ako and Ako are the same as the homogeneous broaden-
ing case. To compare with case (i), the pulse width given
by Eq. (49a) increases by a factor of Ace, 'r„/2 because
the inhomogeneous broadening reduces the interaction
between the field and the resonant atoms, and a longer
pulse width is required to increase the interaction.

Corresponding to the steady-state solution given by Eq.
(32), from Eqs. (35) and (49), the macroscopic polariza-
tion and population difference can be written in terms of
the electric field E as

coexist is also contributed from the host dispersion and
the induced dispersion by the SIT. From Eq. (50b), as the
inhomogeneous-broadening linewidth Am, increases, the
population of the pumped resonant atoms decreases. In
fact, because we have assumed 4co, ))T, ', most of the
atoms are in the ground state even at the peak intensity
of the pulse.

With the numerical parameters of the EDF given
above, we have the pulse width

T = 1. 16f,NO
' nsec, (51)

V. CONCLUSIONS

The SIT-NLS soliton in the composite medium of Kerr
host doped with resonant atoms has been studied beyond
the SVEA. The analytic solution is obtained. There ex-
ists a suitable hyperbolic-secant soliton whose power,
pulse width, group velocity, and propagation constant are
uniquely determined for given parameters of the medium.
The required power of the soliton only depends on the di-
pole moment of the resonant atom and the pulse width.
The other characteristic constants pulse width, group ve-
locity, and propagation constant are determined by three
coupled nonlinear algebraic equations. Three special
cases of these equations are considered: (i) homogeneous
broadening without frequency detuning, (ii) homogeneous
broadening with frequency detuning, and (iii) inhomo-
geneous broadening without frequency detuning.
Without frequency detuning, the reduction of the group
velocity is the same for both the homogeneous- and
inhomogeneous-broadening cases. As the carrier fre-
quency is detuned from the resonant frequency, the
reduction of the group velocity is only slightly changed
for the homogeneous-broadening case. Because the
power of the SIT-NLS soliton is very high, extremely
large negative dispersion is required to be compensated
by the Kerr effect. It is found that there is a dispersion
induced by the SIT, which is not predicted by the theory
with SVEA. The amount of the induced dispersion is
self-adjusted such that the total dispersion, which in-
cludes the dispersion of the nonresonant host medium
and the induced dispersion, is equal to the required

where the spectral width of the inhomogeneous-
broadening line shape is expressed as 4f, =hco, /2vr and

Af, is in units of GHz. T in Eq. (51) is proportional
to Af, and inversely proportional to No Fo.r the con-
dition T « Tz = 10 nsec, from Eq. (51), we have
b,f,NO

' «9.1. For the erbium-doped fiber, the inho-
mogeneous broadening linewidth at k = 1.53 pm is
hf, = 1472 GHz (11.5 nm) [18] and we have

No »1.62X10 m . Because 1 ppm (part per million)
corresponds to 8X10 ' m [8], NO=1. 62X10 m
corresponds to about 2X10 ppm, which is impractical.
For the typical value 1000 ppm, NO=SX10 m and,
from Eq. (51), T =2.02 psec. Therefore, in the practical
erbium-doped fiber, the solution of the SIT-NLS soliton
is not found because its pulse width is too long to com-
pare with the relaxation time of the polarization T2 of
the resonant atoms and the pulse energy will be in-
coherently absorbed by the medium.
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dispersion for the coexistence of the SIT and the NLS
soliton. For the typical parameters of the EDF, the
SIT-NLS soliton has not been found because its
inhomogeneous-broadening linewidth is too large.
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