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Optimal Fuzzy Controller Design: Local Concept
Approach

Shing-Jen Wu and Chin-Teng Lisenior Member, IEEE

Abstract—in this paper, we present a global optimal and reduced the stability analysis and control design problems to
stable fuzzy controller design method for both continuous- and |inear matrix inequality (LMI) problems [2], [4]. Furthermore,
discrete-time fuzzy systems under both finite and infinite horizons. they relaxed the stability condition, and then, derived a fuzzy
First, a sufficient condition is proposed which indicates that the ' o .
global optimal effect can be achieved by the fuzzily combined controller based on the reIaxed_LMI stabll!ty cpndltlon [13]_,
local optimal controllers. Based on this sufficient condition, we [14]. Moreover, they also dealt with uncertainty issue [3]. This
derive a local concept approach to designing the optimal fuzzy approach had been applied to several control problems such as
controller by applying traditional linear optimal control theory.  control of chaos [4], of an articulated vehicle [5], of a mobile
The stability of the entire closed-loop continuous fuzzy system can robot with multiple trailers [7], and of a modal car [15]. A fre-
be ensured by the designed optimal fuzzy controller. The optimal . - . S
feedback continuous fuzzy system can not only be guaranteed quency shaping method to achieve systematic design of fuzzy
to be exponentially stable, but also be stabilized to any desired controllers was also performed by them [16]. Sun and coworkers
degree. Also, the total energy of system output is absolutely developed a separation scheme to design a fuzzy observer and a
finite. Moreover, the resultant feedback continuous fuzzy system fuzzy controller independently [9]. Methods based on grid-point
possesses an infinite gain margin; that is, its stability is guaranteed approach [17] and circle criteria [18], [19] were introduced to
no matter how large the feedback gain becomes. Two examples I - ’

do stability analysis of fuzzy control as well. Wang adopted a

are given to illustrate the proposed optimal fuzzy controller design : - -
approach and to demonstrate the proved Stab|||ty propertiesl SuperVISOI‘y controller and introduced Stablllty and robustness

. measures [20]. Cao proposed a decomposition principle to de-
Index Terms—Converse theorem, degree of stability, exponen- . . . . .
tially stable, finite energy, gain margin, global optimal, Riccati SI9n &fuzzy discrete-time control system and an equivalent prin-
equation, T-S type fuzzy model. ciple to do stability analysis [11]. Even with the aforementioned
research results on the theoretic aspect of fuzzy control, Tanaka
and others' work mentioned in the above always treat the sta-
bility of general linear feedback fuzzy controllers.
ONLINEARITY and uncertainty are always bothersome On the issue of optimal fuzzy control, Wang developed an
in controlling a real system, since a physical system @ptimalcontroller to stabilize a linear time-invariant system via
usually partly known and difficult to describe, has few meaRontryagin maximum principle [12]. However, although fuzzy
surements available, or is highly nonlinear. Fuzzy modeling caantrol of linear systems could be a gatdrting pointfor better
mimic a real system well, fuzzy control can support more robugnderstanding of some issues in fuzzy control synthesis, it does
control than linear control does, and, moreover, optimal contr@dt have much practical implications since using the fuzzy con-
can provide the best possible system. Hence, an analytic dedigtier designed for a linear system directly as the controller
scheme of the optimal fuzzy controller for a fuzzy system (i.gnay not be a good choice [12]. Moreover, the cited stability cri-
the system described by a fuzzy model) is of theoretical atgfia may be simple, but rough to do systematic analysis and
practical interest. Although the research in fuzzy modeling amdso may result in a controller with less flexibility. Tanaka and
fuzzy control has been quite matured [1]-[11], it seems that theworkers [21], [22] tried to obtain a fuzzy controller to min-
field of optimal fuzzy control is nearly open [12]. The goal ofmize the upper bound of the quadratic performance function
this work is to propose a scheme for designing a global optindayf linear-matrix-inequality (LMI) approach based on the
fuzzy controller to control and stabilize a continuous- or disumption of local-linear-feedback-gain control structukeyv-
crete-time fuzzy system in finite or infiniteorizon(time) con-  ertheless, no theoretical analysis on this design scheme of op-
sideration. A simple stability criterion is proposed and the gatimal-fuzzy-control structure was proposed.
margin of the resultant closed-loop fuzzy system is discussed. In this work, aglobal optimalfuzzy controller design method
Stability andoptimality are the most important requirementgor a fuzzy systeris achieved from a local viewpoint and the
for any control system. Most of the existed works are based properties of the constructed optimal fuzzy controller are ex-
Takagi—Sugeno (T-S) type fuzzy model combined with parallgbsed based on the linear optimal control theory. The derived
distribution compensation (PDC) concept [1] and apply Ly&ontrol law is demonstrated to be the best for the entire system
punov's method to do stability analysis. Tanaka and coworkéesreach the optimal performance index. Moreover, the optimal
feedback continuous fuzzy system can not only be guaranteed
to be exponentially stable, but also be stabilized to any desired
Manuscript received January 11, 1999; revised December 10, 1999.  degree. Furthermore, we elicit that this kind of fuzzy controller
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fuzzy system possesses an infinite gain margin. Moreover, twbere X7 (+)L(#) X (¢), X T (+,)QX (¢;) and XT(N)QX(N)
total energy of the system output of the feedback continuoaee state-trajectory penalties with bdtty) and@ belonging to
fuzzy system is absolutely finite. symmetric positive semidefinite x n matrices, and (¢)u(t)

This paper is organized as follows. The sufficient conditiois fuel consumption.
of global optimum is proposed in Section Il, which indicates The grounding on distributed fuzzy subsystems and
that fuzzily “blending” the local optimal fuzzy controllers carrule-based fuzzy controller forces the researchers to find the
achieve global optimal effect. The global optimal fuzzy concontroller +*(-), which can achieve global minimum effect
trol laws for both continuous- and discrete-time fuzzy systenumder quadratic performance consideration defined on the
during both finite and infinite horizons are derived theoreticallgntire fuzzy system and fuzzy controller. Thus this issue has
in Section Ill. Several properties such as stability criteria ambt been attacked directly even though the T-S type fuzzy
gain margin of the resultant closed-loop fuzzy system are dimodel has been available for many years. Wang [12] tried to
cussed in Section IV. The design methodology is illustrated lyeak the deadlock by considering a linear system (instead of
two examples in Section V. Section VI gives the concluding re-fuzzy system) combined with a fuzzy controller. Tanaka and
marks. The related linear optimal theory applied in this paperdsworkers [21], [22] developed the LMI-based fuzzy control

summarized in the Appendix by assuminga local-linear-feedback-gain control structure.
: However, the quadratic optimal fuzzy control issue, in fact,
[I. SYSTEM REPRESENTATION ANDPROBLEM STATEMENT remains fully open.
We consider a given nonlinear p|ant described by the In the remainder of this section, the discrete-time case will
so-called T-S type fuzzy model be adopted for developing the local-concept-based optimization
‘ technology. From the essence of the dynamic programming for-
Rz isThy, - -+, %y 18 T, malism, the operation of minimizing(u(-)) in (4) can be de-
thenSX(t) = A;(t)X(¢) + B;(t)u(t) ¢=1,---,»  composed as follows:
Y(t) = CHX (), @ i sy
whereR' denotes théth rule of the fuzzy models,, - - -, z, are " Nt
system statesly;, - - -, 7,,; are the input fuzzy terms in thigh . T v T ST
rule; SX (t) denotesX (¢) for continuous case anti (¢ + 1) for oot { zt: (N0 LaXt ) + Xy QX
discrete case; the state vecfo(t) = [z1, -, z,]7 € R", the "
system output vectdr () € ®*', andu(t) € ®™ is the system + min Z (XFLiXo + UITW)} (5)
input (i.e., control output); and, (-), B;(-) andC(-) are, respec- ot G

tively, n x n,n x m andn’ x n matrices whose elements are ) ]

known to be piecewise-continuous (PC) and real-valued furthere we use the lower index to denote time dependence for no-
tions defined on positive real spad®, ; in other words, they are tation simplification, i.e.X; for X (7). Hence, The quadratic op-
matrix-valued functions ot of class PC. We then assume thdiMmization problem is, in fact, a successively ongoing dynamic

desired controller is a rule-based fuzzy controller in the form &foblem with regard to the state resulting from the previous de-
cision, i.e., the initial state (at time stepX,, = X;. More-

R : Wy isSy, -, Yns 1S Sy, over, according to the signal flow of a fuzzy inference system
thenu(t) = r(t), i=1,---,6 (2) [23], we know, at any time step the overall behavior of the
fuzzy system can be captured by fuzzily blending all the fuzzy
where y1,---,y,, are the elements of output vectdf(t), subsystems; in other words, the entire T-S type fuzzy system in
Stis -+, Sy are the input fuzzy terms in thigh control rule, (1) can be represented as

and the plantinput (i.e., control output) vectdt) orr;(¢) is in
R™ space. Then, the quadratic optimal fuzzy control proble%

is described as follows: = D h(X0) (As Ko+ Biyu)

PROBLEM 1. Given the rule-based fuzzy system in (1) with =t
X(to) = Xo € ®* and a rule-based fuzzy controller in (2), Lelt, N —1], teto, N—1] (6)
find the individual optimal control law;} (-),¢ = 1,---, 6, such  iih
that the composed optimal controllet(-) can minimize the
quadratic cost functional («(-)) over all possible inputs-) i
of class PC w=Y wi(Y)r,
t i=1
T T
Ju() = /to [XTEOLEOXE) + w (Bu(t)] dt and Xo, = X; € R*, whereh;(X;) andw;(Y;) denote, re-
+ XT(+)QX(t) (continuous) 3) spectively, the normali;ed firing strength of tt'ﬂa rule of the
fuzzy model and of théth fuzzy control rule; i.e.p;(X;) =
N—1 CMZ‘/ E:‘izl aiWith

J(u() = D IXFOLOX () +u” (Bu(t)]

i P = / (X
+XT(N)QX(N) (discrete) (4) @ ENTJ (X1)
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wherepz;, (X;) is the membership function of fuzzy teri);, global decisions{u}*]{\o‘r_1 in Problem 1 can be regarded as a

andw;(Y7) = 3/ > 1, B with series of optimal global decision] based on the following
. successively ongoing local quadratic optimal issue with the
B = H s, (Y2) initial state resulting from the previous decision.
iy PROBLEM 3. Given the fuzzy subsystem
whereyis;, (Y7) is the membership function of fuzzy terf);. Xip1=A, X+ By, let,N—1], t=1,--,7r
Therefore, the optimization dynamic issue is on successively (20)
finding theoptimal global decision (optimal controller); for  with the initial state resulting from the previous decision, i.e.,
minimizing the cost functional Xo, = X{
N-1 1) find the optimal local decision at time-step;, , for min-
Je(u(-) = Z (XPLiXy +ufw) + XZQXw, imizing the cost functional
t N—1
tefto N—1] (1) J(ri() = Y (XFLiXo+rfry) + XRQXy; (1)
and estimatingXy, ; with regard to the initial state{;; and t
then, with the new initial stat& ", ;, resolvingu; , ; to minimize 2) obtain the optimal global decision at time-step;, for
Je+1(u(-)). In other words, the quadratic optimal fuzzy control minimizing the cost functional;(w(-)) in (7) by fuzzily

problem in Problem 1 can be restated as the following dynamic  blending each local decision, i.e.,
problem:

PROBLEM 2. Given the fuzzy system in (6) with ul = Z ha (X7
& i=1
w = wi(Yo)ri, Notice that the next-decision initial state is
i=1 "
successively find the optimal global decisio;, for mini- Xi= Zhi(Xt*)(AitXt* + By,r%)
mizing the quadratic cost functiond}(«(-)) in (7), where the i=1

initial state is the optimal state resulting from the previougsiead ofX7,, in (6), since there exists the one-to-one rela-

decision, i.e.Xo,, = XoandXo, = X7t € [flo+1,N = 1].  tionship between each fuzzy subsystem and the corresponding
As we know, the energy of the entire fuzzy system is the SURzzy controller.

matin of the energy of each fuzzy subsystem. Hence, based on
the additive property of energwe know thatat any time step
t, if we can find theoptimal local decision (optimal control law) ) _ )
for minimizing J,(u(-)) in (7) with regard to théuzzy subsystem We shall design the optimal controllers for the contin-
uous-time systems in Section IlI-A and for discrete-time
Xip1 = A, Xo+ B w, left, N=1, i=1,---,r (8) systems in Section IlI-B.

I1l. OPTIMAL Fuzzy CONTROLLER DESIGN

then their composed global decision can gabal minimizer ] ) ]

of the total cost,J; (u(-)), with regard to thduzzy systerim (6). A. Optimal Fuzzy Controller for Continuous-Time

For clarity, since:? is only a variable to be solved irrespective of Uzzy System

the aforementioned local optimization problem or of the global Since the local fuzzy system (i.e., fuzzy subsystem) is linear,
optimization issue in Problem 2, we can ugeto denote the op- its quadratic optimization problem is the same as the general
timal local decision of théth fuzzy subsystem. Hence, based olinear quadratic (LQ) issue [24]. Therefore, solving the optimal
the local viewpoint of the global optimal fuzzy control, we knoveontrol problem for fuzzgubsysteran be achieved by simply
that solving the quadratic optimal control problem in Problem@eneralizing the classical theorem in Proposition 4 in the Ap-
is to find only one corresponding optimablution of the fuzzy pendix from the deterministic case to fuzzy case. We summarize
controller foreachrule of the fuzzy model. Thereupon, both thehis generalization result here.

fuzzy model andadmissiblefuzzy controller have, more pre- Theorem 1 (Solution of the Standard Fuzzy LQ Prob-
cisely, the same input variables and same input space partiti®m): For the fuzzy system in (1) and fuzzy controller in (2),
and there exists only one optimal fuzzy control rule for eadbt A;(t), B;(t),C(t), L(t) = L¥(t) > 0,Q = QT > 0, be
fuzzy subsystem described by a fuzzy rule in the fuzzy modejiven matrices. If there exists dey, ¢1] ann x n symmetric

that is positive semidefinite solution’(, @, ;) to the matrix Riccati
(plant) RP: If 21 is Ths, - - - o 1S T, differential equation
thenS X (t) = Ay (£) X (t) + Bi(t)u(t), K(t) = —AT (K (1) — K(£) Ai(t)
Y(t)=C(t)X(¢) + K(t)B;(t)BF (1)K (t) — L(¢) (12)
(controller) R™: If w1 is Th;, - - -,y i T where the final value of the dependent variahlé), K (t,), is
thenu(t) = r;(t), i=1--,7 (9) equal to the final state penalty indé€x andt € [to, ], then

there exists a local optimal fuzzy control law
and a fuzzy subsystem and fuzzy control rule have a one-to-onée

correspondenceith-rule-to<th-rule). Therefore, the optimal r¥(t) = —BIri(t, Q, 1) X*(t), t=1,---,7  (13)

T
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whereX*(¢) is the corresponding optimal state trajectory. Andye given matrices. If there exists a symmetric positive semidef-

the corresponding global minimizer is inite solution7?(¢) to the following matrix Riccati difference
" equation:
0= L MO D V) =—aTOVE+DB() [+ BE OV + DBi()]

which minimizes J(u(-)) in (3). The resulting optimal

x BEHV(t+1)Ai(t)
closed-loop system dynamics is described by () )

+ AT OV (E+ DA () + L(t), t=to,--,N—1

r (20)

X*(1)=> hi(X" () [Ai(8) = Bi() BY ()7 (t,Q, £1)) X" (£),  with V(N') = 0 andI,, the identity matrix of dimension, then
i=1 there exists a local optimal fuzzy control law

te [to,tl] (15) 1

() =~ [L+ Bl (7' (t + 1) Bi(#)]

with X(to) = Xo. x BIOm (t+ D) A(OX (),  i=1,--,r (21)

Proof: This theorem obviously holds with Proposition 4

in the Appendix. O and the resultant global controller is

The above theorem considers that the horizois fixed and »
to € [0,t1) is arbitrary. Does the controller exist when the u*(t) = Zhi(X*(t))r;* (t) (22)
horizon goes to infinity? For the general LQ problem, the an- im1

swer is positive if the system is time-invariant amell-behaved which minimizesJ(u(-)) in (4). Moreover, the optimal trajec-
i.e., completely controllable and completely observalNew, ton is

we assume our fuzzy subsystem is linear time-invariant an
well-behaved. In this case, the results below for daehky sub- X*(t + 1)

systemare similar to those for deterministicsystem described r ‘ _

by Propositions 5 and 6 in the Appendix. = " hi(X*()) [Ln+Bi(t) BY ()m' (t+1)] A ()X (B).
Theorem 2: For the fuzzy system in (1) and fuzzy controller i=1

in (2), let A;, B;,C, L be given constant matrices add = (23)

CTC.If (A;, B;) is completely controllable (c.c.) arfdi;, C) Notice that, using standard matrix manipulations, the matrix

is completely observable (c.0.) fo= 1, - - -, , then Riccati difference equation in (20) can be rewritten as

1) there exists a unique x n symmetric positive semidef-

X _ T
inite solution,«n?_, of the steady-state Riccati equation Vt)= L)+ A4 OV(E+D)

(S.S.RE) x [I, + B{O)BI@V(t+1)] 7 A1), (24)
ATK 4+ KA; — KB;B'K+C"C =0 (16) Proof: This theorem obviously holds with Proposition 8

] ) . in the Appendix. O
2) the asymptotically local optimal fuzzy control law is Similarly, if the fuzzy subsystem is linear time-invariant and

well-behavedmeaning that it istabilizable and detectahleve
still can obtain infinite-horizon optimal controller as described
and their “blending” global minimizes*(¢) in (14) min- in the following theorem.
imizes Theorem 4: For the fuzzy system in (1) and fuzzy controller
oo in (2), let A;, B;,C, L be given constant matrices add =
J(u(-) = / (XTHLX () +uF (H)u(t)]dt  (18) CTC. If (A;, B;) is stabilizable andA;, C) is detectable for
0 i =1,---,r then
3) and the optimal local feedback fuzzy subsystem 1) there exists a unique symmetric positive semidefinite so-
lution 7¢(oc) of the following S.S.R.E.:

7:((t) = _B;T’]r;oX*(t)? = 17 LT (17)

X*(t) = (4; — BB ni,) X*(t) (19) .
) i i V(oo) = L+ AT V(o0) [In + BiBiTV(oo)] A, (25)

is asymptotically and exponentially stable.
Proof: This theorem obviously holds with Propositions 5 V(00) = L 4+ A V(00)A; — A] V(<) B;

and 6 in the Appendix. O x [I, + BiTV(OO)Bi]71 BIV(00) A (26)

B. Optimal Fuzzy Controller for Discrete-Time Fuzzy System 2) the asymptotically local optimal fuzzy control law is

Inthe discrete-time system, the generalization of optimal con- .»(4) — _ 1, + BiT7r7‘,(OO)Bi:|*1 BT n(00) A X" (8),
trol theory from general “deterministic” system to “fuzzy” sub- f—to, . N—1 (27)
system is also practicable. The following theorem converts the S
result of the general LQ problem in the Appendix into its fuzzy and the resultant global controltet (¢) in (22) minimizes
optimal counterpart. 0o

Theorem 3: For the fuzzy system in (1) and fuzzy controller J(u(-)) = Z [XT(HLX(t) + T (t)u(t)] (28)
in (2), letA;(t), B;(t),Ct), L(t) = LT(#) > 0,Q=QT >0 =t



WU AND LIN: OPTIMAL FUZZY CONTROLLER DESIGN

175

3) moreover, the optimal local feedback fuzzy subsystem Theorem 5: For the time-invariant fuzzy system in (1) and

X*(t+1) = [I, + BB r'(00)] T AX* () (29)

is asymptotically and exponentially stable. D

Proof: This theorem obviously holds with Proposition 9
in the Appendix. O

IV. STABILITY AND GAIN MARGIN

. . . - 2
In this section, we are concerned with the stability of the )

global closed-loop system with the optimal fuzzy controller
designed in the preceding section. We shall show that the
controller resulting from the infinite-horizon optimal control
problem gives not merely an asymptotically stable closed-loop
system, but one with a prescribed degree of stability. Further- 1)
more, we also define the tergain marginto discuss what
range of the feedback gain we can enlarge under the stability
consideration.

A. Global Stability

The entire feedback fuzzy system is nonlinear, even though
the subsystem is linear. We can thus apply the so-cefiaderse
theoremof Lyapunov stability theory in the nonlinear system
[25] to our fuzzy system. This theorem is given in the following
proposition.

Proposition 1: Consider the system

where F is a C? function, i.e., an ordere@-tuple complex-
valued function, and”(X,) = 0. Define

G =(0F/9X)| x,

then X, is an exponentially stable equilibrium of the system if
and only if the linearized system

Z(t) = GZ(t)

is (globally) exponentially stable. Additionally, % is defined
as above and if all the eigenvalueg®have negative real parts,
then X, is an exponentially stable equilibrium.

Via the converse theorem, the stability analysis of a nonlinear
system is coincidental with that of the linearized system. For
the T-S type fuzzy system, a locally linearized system from the
global system in (6), we know that the linearized matixn
the above proposition at some poikiy is >_:_; 7 (X,)A;(t).
Hence, the termy_._, 7;(X(t))A,(¢) fully handles the stability
of the fuzzy system.

From Theorems 2 and 4, we know that in the infinite-horizon
optimal control problem, if the local fuzzy system is time-in-
variant and well-behaved, the local feedback fuzzy system is
asymptotically and exponentially stable no matter whether the
system is continuous or discrete. Now our strategy is to ground
on this nice local feature and step for the global system by the
spectral mapping theorem in [26], which says that the spectrum
of a analytic function of an operator is the analytic function of 2)
the spectrum of the operator. This will be exposed on the fol-
lowing theorem.

fuzzy controller in (2), if(4;, B;) is c.c. and 4;, C) is c.o. for
i =1,---,r then

the optimal feedback fuzzgystem

X*(t) = Z hi(X*()) [Ai — B:Bf i) X*(t)  (30)
=1

is exponentially stable;
the total energy of system output is finite

/ 1Y (£ dt < .
0

Proof:

Via the converse theorem, we know the stability of the
resultant feedback fuzzy system in (30) concurs with that
of the linearized fuzzy system (with respectXQ)
X*() = hi(X,) [A = BiBf 7l ] X*(#). (31)
i=1

For clarity, we introduce the notatiod.; to denote
the local feedback system matrix. Then, we know,
via Theorem 2, that each feedback fuzzy subsystem
is exponentially stable, which means thpectrumof
Ag, © = 1,---,r, denoted bye[A4], is located in
the open left-half plane of the complex spats, i.e.,
o[An] cC2,i=1,---,r. Accordingly, we have
t=1,---,r

U[h7 (XO)A(‘7] - Cia

via the spectral mapping theorem ahd X,) € [0,1]
for all X, € ®*. Hence, the zero solution ot (t) =
hi(X,)ALX(t)ont > tgis exponentially stable; in other
words, there exists constarts> 0 andm; > 0 such that
forall ty € R4

Hehi (Xo)Agi (t—to) —ai(t—tg)
?

<m;e

VE>te, d=1,---,m

Then, the state transition matXt, to) of the linearized
fuzzy systemin (31) is

(2, o) | = || 2o XAt
<1l
=1

r
S Hmie—ag(t—tg) S me—a(t—to)

i=1

ehg (XO)AM' (t*to)

wherem 2 I[;—ym:>0anda 2 >i_ia;>0. Therefore,

the linearized fuzzy system in (31) and also the feedback
fuzzy system in (30) are exponentially stable. Hence, we
can conclude thathe entire continuous fuzzy system is
exponentially stable if each continuous fuzzy subsystem
is exponentially stable

From the above proof, we know the entire feedback fuzzy
system in (30) is exponential stable and, hence, also en-
sure to bauniformly asymptotically stabld herefore, for
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all X(tg) = Xo € R™ andt, € R, the stateX (¢) satis-
fies a) and b) in the following.

a) The range of mapping frotrto X (¢) is bounded on
t > 0 uniformly, i.e.,

dk < oo st | X ()| < k, vt > 0.

b) The range of mapping fromto X (¢) tends to zero
ast — oo uniformly, i.e.,

Ve>0, 3T(e) > 0s.t.|| X)) < e

Therefore, withy"._, k(X (t)) = 1,

| wenza= [ Zm X(1)
-/ °°||0X<t>||2dt
< [P
-/ Sl )2 d
+ [ e ix e i

Ve > T(e).

2
dt

finite, and accordingly we have

/|W@Wﬁ<m. 0
0
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Proof:
1) (A, B)isc.c.ifand only ifrank [B AB --- A"~1B] = n.
Let B £ ¢='B, then

rank [B AB..- A" 1B]
=rank {e”*[B AB --- A" 'B]}
=rank[B AB --- A" 1B]
which meang A, B) is c.c. if and only if(4, B) is c.c.
2) Now, consider two systems
X = AX + Bu (32)
X = (al, + A)X + Bu. (33)
If we let X = ¢~ X, via basic differential operation, it is
evident that (32) and (33) are algebraically equivalent for
any« € C; i.e., they are related by a nonsingular linear

transformationz*t. Therefore, (32) c.c. is equivalent to
(33)c.c.,i.e.,
(A,B)c.c.e (al, + A, B) c.c, Vo € C.

From 1) and 2), we conclude that Lemma 1 holds.
Lemma 2: For a systenik = [A, B, C], (4, C) c.o. is equiv-

alent to(«f,, + A, C) c.o. for any complex value, i.e.,
From a) and b), we know that these two integrates are both

(A,C)c.o.e (al, +A,C)c.0 Yo € C.

Proof: The proof is similar to the proof of Lemma 1
Now, we deduce Theorem 6 using the above two lemmas.

Theorem 6: For the fuzzy system in (1) and fuzzy controller

However, we cannot yet demonstrate that there exists suiglf2), letA;, B;, C, L be given constant matrices ahd= C*'C
close stability relationship between the entire closed-lodp (18). If (A4;, B;) is c.c. and(4;,C) is c.0. fori = 1,---,7,
system and the local feedback system for the discrete-tiifen the fuzzy system can be stabilized to any deSIred degree
case. Therefore, we can only use Lyapunov's direct methodadstability; in other words, the state of the modified feedback
linear matrix inequality method [8] to analyze the stability ofuzzy system

the overall feedback discrete-time fuzzy system.

B. Stabilization to Any Desired Degree

So far, we have examined the stability of the closed-lo
system. We now attempt to show that the constructed opti
fuzzy controller can stabilize the entire fuzzy system to a

desired degree. That is, for some prescribed constant 0,
the stateX (¢) approaches zero at least by the rate of*. Of

course, the larger the desired degree of stability, the more stamé"
the closed-loop system. However, a high degree of closed-loop

) (4 — B;Bf 7l (a))  (34)

X*(t Zh (X (¢t

Oa%)proache@ at least by the rate ef %!, wherex is any positive
B numberhZ X*( )) is the normalized firing strength (i.e.,

B hi(X*(t

solution of the modified S.S.R.E.

= 1), and#’_(«) is the positive-semidefinite

+A4) K (o) +K(a)(al,+A;)—K(a)B; Bl K(a)+L
=0 (35)

stability may only be achieved at excessive control energyherek (« ) is the dependent variable of the algebraic equation.

consumption. Before showing this, we need the following two

lemmas.
Lemma 1: For a systen? described by

X(t) = AX(t) + Bu(t)
Y(t) = CX(¥)
whereA, B, andC aren x n, n X m, andn’ x n matrices (i.e.,

R =[A4, B,()). (A, B) c.c. is equivalent t§ul,, + A, B) c.C.
for any complex valuey, i.e.,

(A,B)cc.e (ad, +A,B)cc Vo €C.

Proof:
1) Via the converse theorem, we know the stability of the

modified feedback fuzzy system in (34) concurs with that of the
linearized fuzzy system (with respectd,)

(A; — B;B! #! _(a)) X*(t).  (36)

Z hi(X

Hence, we shall show that all the eigenvalues of the linearized
fuzzy system in the above have real part smaller thani.e.,

R {)\ lz hi(X,)(A; — BiBffrio(a))] } < —a.

=1
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We now consider the local quadratic optimal problem In order to measure the gain margin, we think of the following
oo control law:
min XY OLX(t) +ri(t)ri(t r ‘
[, roLxe +riono) 140=={ﬁ[—§:hAX@DB?W&
X(t) = AZX(t) + B;7; (t) i=1
W‘”'{Y(t) _oxX(t), (37)

}X(t), B>1.

Then, thegain marginof the closed-loop fuzzy system is defined
R R asthe amount by whick# can be increased until the system
Let X(t) = e* X (1), Y(t) = Y (t), and7i(t) = e**ri(t). becomes unstahlén this case, the corresponding local control

Equation (37) can be rewritten as law 7;(t) is
min / g2t [Xt(t)LX(t) + ) (t)] rit) = —BBfnl X (8).
to
Sy NT " Notice that in the case ¢f > 1, this control law is no longer an
w.r {)Y(((tt)) ;gg?t—)i_ A)X(E) + Biri(t) - (3g) optimal control law, i.e.r;() # 7 (t). Now, let

- _ _pT. i
From Lemmas 1 and 2, we know thad;, B) c.c. and(4;, C) i) = ri(t)/B = —B; m X(t)
co.,Vi = 1,---,r if and only if (al, + 4;, B;) c.c. and and then we have
(ad,, + Ai,O) co.,Vi=1,---,r. Hence,.based on the linear J(ri() :/ [XT()LX () + rF (t)ri(t)] dt
quadratic theory, we know the local optimal feedback system 0
for the modified fuzzy system in (38),

= [T T OLX® + T 0] b (@)
X*(t) = (el + A — B;BI 7 _(a)) X*(t) 0

(39) We further consider
is exponentially stable for ail = 1,---,r. Accordingly, from ; () = /OO XTHLX(E) +~T () (1)) dt
part 1) of the proof in Theorem 5, we know that the fuzzily (i) 0 [#X T OLX®) + 7 ()] ot
blended global feedback fuzzy system L=C%C, ¢>0. (42)
) r ‘ Notice thatJ (r;(-)) = 82 - J(v:(+)) andq = 1/3%. Comparing
X*(t) = hi(X*(1)) (aln + Ai — BBl #,(a)) X*(t)  (42) to (41), we find that the larger thé, the smaller they,
i=1 (40) which means that whe# goes to zero, the gain margin of the
. . . closed-loop fuzzy system becomes infinite.
and also the corresponding linearized global fuzzy systemWe can includey into the state penalty matrik. From The-

(Zvjvith hr??*e(i;) to )fozoraar\ﬁ ;fg;’nzng;llyThS;?:lljzonwwereorem 2, for anyy > 0, the optimal control law with respect to
i=1"% = . )

(42) is

have

& 4 % () = =Bt (@)X (1)

Re S A hi(X,) (ol + Ai — BiBE 7L (o)) | ¢ <0 4
pa—t where7’_(q) satisfies the modified S.S.R.E.
[ : < ATK(q) + K(9)Ai +qL — K(9)BiB{ K(9) =0 (43)

: I, (X,) (A — B;BF 7! ' . . : : :

Re {)\ @l ; hi(Xo) ( ’ T WC’O(Q))] } <0 whereK (q) is the dependent variable of the algebraic equation.
- B We now first cite two important results in control theory [28]

R4 Z hi(X,) (Ai — BiBinréo(Oé)) < —a and apply them to the fuzzy feedback subsystem. We shall then
limt find the gain margin of the entire closed-loop fuzzy system. The

with the aid of the spectral mapping theorem. This completfeosIIOWIng .p.ropo.smons are C'te(.j f_ro.m [28].' .

the proof Proposition 2: Consider the infinite-horizon optimal control
' problem as follows.

C. Gain Margin Given a linear time-invariant system

Furthermore, we shall examine another interesting property, X(t) = AX(t) + Bu(?)
gain margin of the resultant closed-loop fuzzy system. Recdiind an optimal controller:*(¢) to minimize
that the gain margin of a closed-loop system is the amount by [Ter . T
which the loop gain can be changed until the system becomes J(u() = /0 [T (LX) +u” (u(t)] dt

unstable. If the loop gain can be increased without bound; thigth v (¢) denoting the system output, wherdét) = CX(#)
is, instability is not encountered no matter how large the logghd L = CTC. Now, if (4, B) is c.c. and A, C) is c.o., then

gain becomes, then the closed-loop system is said to pOSSGSf) the positive-semidefinite solution, denotedzhy(q), of

an infinite gain margin [24]. Thus far, for time-invariant well- the modified S.S.R.E.

behaved continuous fuzzy subsystem, we know the designed T T

global optimal controller, by (17) and (14), is ATK(g) + K()A+qL - K(¢)BB" K(g) =0 (44)

- uniquely exists;

wr(t) = — Z hi(X* ()BT rl X*(t). 2) wheng goes to zero, i.e., when the closed-loop system
P} possesses an infinite gain margin, the limit valug 9f q)
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exists. Let7..(0) denote this limit value. Furthermore,
To0(0) is the unigue positive-semidefinite solution of the
modified S.S.R.E.

ATK + KA— KBBTK =0.

Proposition 3: Consider the same infinite-horizon optimal
control problem as in Proposition 2. Assuif, B) is c.c. and
(4,C)is c.0., then

1) we can find an optimal control law

u*(t) = =BT, X*(t)

where 7., is the positive-semidefinite solution of the
S.S.R.E.

ATK + KA—-KBBTK+L=0

Aci (Oé
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can still stabilize the modified system to any desired de-
gree of stability; in other words, the state of the modified

feedback fuzzy system
=> hi(X — BB;Bf 7 (a, q)] X(2)
= (46)

approache$ at least by the rate of !, wherea could
be any positive real number arif] («, ¢) is the positive-
semidefinite solution of the modified S.S.R.E.

(a-[n + AZ)TK(Oc, Q) + K(av Q)(a-[n + AZ)
+qL — K(«a, q)B;Bf K(a, q) = 0.

Proof: For clarity, we introduce the notations.; () and

and the closed-loop fuzzy system possesses an infinitiees in (45) and (46), i.e.,

gain margin; i.e., the modified feedback systém —
BBBT#..(q)] is always stable for anyg > 1, where

q = 1/B% and#..(q) is the positive-semidefinite solu-and

tion of the modified S.S.R.E., (44).
2) Moreover, for any fixed, the enlarged controller

(t) = —BBT fao (@) X* (1)

can still stabilize the modified system to any de-
sired degree of stability; i.e., all the eigenvalues of
A — BBBT#,(a,q) have real parts smaller thanc,
whereq could be any positive real number afid,(c, )

is the positive-semidefinite solution of the modified
S.S.R.E.

(o + AT K (0, q) + K (o, )l + 4)
+qL — K(o, ) BBT K (o, q) =0

ot

whereK(«, q) is the dependent variable of the algebraic
equation.

Grounding on these propositions, we elicit the fol-
lowing fascinating fact.

Theorem 7: For the time-invariant fuzzy system in (1) and
fuzzy controller in (2) withL = C* C'in (18), if (A;, B;) is c.c.
and(4;,C)isc.o.fori = 1,---,r, then

1) we can find a fuzzy control law

—Zhi(X*(t))

where 7i_ is the positive-semidefinite solution of the
S.S.R.E. in (16), and the resultant closed-loop fuzzy
system possesses an infinite gain margin; i.e., the modi-
fied closed-loop fuzzy system

H =3 hi(X ()[4

is always stable for ang > 1, whereq = 1/3% and
#! _(q) is the positive semidefinite solution of the modi-
fied S.S.R.E. in (43).

2) Moreover, for any fixeds, the enlarged controller

Zh (X*(¢t

Bl X*(t)

— BB;BT# (q)] X(t) (45)

DBBI ()X (2)

1) Since(A;, B;)isc.c.and 4;,C)isc.o.fori=1,---,7

2

~

,3) to denote, respectively, the local feedback system ma-
Ai(f) = A — BBiB 7L,(q)
Aei(e, B) = A; — BB;BF 7! (v, q).

we know, from1) in Proposition 3, that the modified
closed-loop fuzzy subsystem is stable for ahy 1, i.e.,
o(Au(B)) c ¢2 foralli = 1,---,r. Accordingly, by
part 1) of the proof in Theorem 5, we know their fuzzily
blended global system in (45) is exponentially stable.
Then fixing at any gain margifi, we shall show the state
of the modified feedback fuzzy system in (46) and also
that of the corresponding linearized fuzzy system (with
respect taX,) approache$ at least by the rate of =

for all & > 0. In other words, we shall demonstrate

p[frcimnal]

From 2) in Proposition 3, we have
RANAci(a, B)]} < —a,

due to(A;, B;) being c.c. and4;, C) being c.o. Accord-
ingly, via the spectral mapping theorem, we have

RN ol + Aui(a, B)]} <0,

which results in that all local modified feedback fuzzy
system

X(t) =

Vi=1,---,r

fori=1,---,v

i=1. .-

7

(el 4 Aci(a, 3)) X (1),

are exponentially stable. Moreover, we know, via part 1)
of the proof in Theorem 5, that the fuzzily blended feed-
back fuzzy system

Zh

is exponentially stable. Furthermore, via the converse the-
orem, we have
} <o

{ th Y, + Agi(a, 3)

r  (47)

7
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for all X, € ®™. Then, we obtain and the membership functions of the precondition parts of the
fuzzy rules are
hi( a, 3 < —« z2(t
{ [E 2 } FHa(e) = 1- 20
/9]
2
for all a > 0 andX, € R". Therefore, we know that the F(x(t) =1 - Fla(t) = = (tr)
linearized feedback fuzzy system (with respeckig 2(1) 2.25
. T
; Fy(#(t) = 1 - S
=3 hi(Xo) X (t) Aci(cr, B) 20
2 F30) = 1- Fi(e(e) = 20,
{1y
has any degree of stability. Hence, the modified fuzaye further assume our fuzzy controller is
system in (46) has any degree of stability as well. O
Y (46) v aeg Y RY:0f z(t)is FL and @(t) is Fy, thenu(t) = ri(t)
V. NUMERICAL SIMULATIONS R2:0f w(t)is Fy and i(t) is F3, thenu(t) = r2(t)
3. H 2 N H 1 —

We consider a simple nonlinear mass-spring-damper mechan- %% ° If () IS F12 and £(¢) 'S F22’ thenu(t) = r3(¢)
ical system for continuous-time case, and an optimal backingup R*: If z(t)is F{ and i(t) is F3, thenu(t) = ry(t).
contrql of a computer simulated trunk- tra|Ier_ for discrete-tim ccordingly, the firing-strength of each rule is
case in order to illustrate the proposed optimal fuzzy contro
scheme and its theoretic aspect. a1 (X (1)) = Fl(x) - F3 (&)

(X (1) = Fi(z) - F§ (&)
A. Continuous-Time System
A mass-spring-dam yer system can be formulated as 0a(X (1) = Fi{a) - 13 (@)
Pring-eamper sy w(X(1) = i) B (0)
Mz +g(z,2) + f(z) = ¢p(3)u where the normalized firing-strength of tité rule is
wherel is the mass and is the force;f () andg(z, ) are the b _ . ‘
nonlinear or uncertain terms with respect to the spring and the b = ai/ Z i

damper, respectively, aRd) is the nonlinear term with respect

to the input term. We make the same assumptions as TatakBlOW, let the penalty matrices be seths= I and@ = I.
al. did in [3], and reformulate the system as Then, the designed finite-horizon optimal controller according

to (13) and (14) is

4
= Zhi(X )
wherez € [-1.5 1.5] andz € [-1.5 1.5]. T
According to the study in [3], we describe this nonlinear with 75(t) = —BTwi(t, I, 1) X" (%) i=1.....4
system by the following T-S type fuzzy model: ’ CoTTY ’ T

F=—0.12% — 0.022 — 0.672> + u

wheren®(t, I, t,) is the symmetric positive-semidefinite solu-
RY:If (t)is F} and &(t) is Fy, tion of the matrix Riccati differential equation in (12). Since
thenX (t) = A1 X (¢) + Biu(t) 7i(t, I, ;) always exists and the above controller stabilizes the
2, i 1 - (4) is F2 subs_ystem atanye _[to, t1], the entire feedback system is expo-
R0 2(t)is i and &(7) is Fy, nentially stable, which can be observed from the state response

thenX (¢) = A, X () + Bau(?) of the closed-loop fuzzy system at different initial conditions in
R3:\f (t)is F? and &(t) is Iy, Fig. 1.
thenX(t) = A3X(t) + Bsu(t) ) Sir(ljce thehfuzz>l/:’ subsystem is tirge-invs{zijntAand] well-be-
4. . C N 2 aved; i.e., the subsystem is c.c. and cauk [4; A;B;] =2
R f 2(t) is By and &(t) is £, and rank [C7 ATCT]" = 2 for i = 1,---,4), there exists
thenX (¢) = A4 X(#) + Byu(t) a unique symmetric positive semidefinite solutier, , i =

. -,4, of the S.S.R.E.in (1
and the system output ¥8(¢) = C X (¢) with C = I, for every 4, of the 5.5 in (16)

rule, where 1 | 1.7206 0.9802 > [1.5102 0.9802
e 7 10.9802 1.7209 °° 7 10.9802 1.7311
T
X () = @)@, s [1.2635 0.2082 . [1.0584 0.2982
_[0 —0.02} A2_{—0.225 —0.02} Too = 102982 23068 | "7 |0.2982 1.9994
1 0 ’ o 1 0 ’ . . .
and the asymptotically optimal controller is
0 —1.5275 —0.225 —1.5275
1 o |0 M= o |’ . .
= h(X*@)r; (), with »7(t) =—-B; m, . X"(?).
I S (X @) () 0 0
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Fig. 1. The state responses of the continuous-time fuzzy system with the designed optimal controller in the finite-horizon quadratic optirpedizientrof
Section V-A at the four initial conditionsX' (0) = (-1, -1)%,(-1,1)7,(1,-1)7, and(1,1)7.

1.5 1
1
05¢
05¢
S z
=2 9 8 o
[=] [3)
o >
-0.5
-0.5
-1
-15 : ' ~ ' -1 : - : :
0 2 4 6 8 10 0 2 4 6 8 10
horizon (time) horizon (time)

Fig. 2. The state responses of the continuous-time fuzzy system with the designed optimal controller in the infinite-horizon quadratic opiimediciemt of
Section V-A at the four initial conditionsX' (0) = (-1, -1)%,(-1,1)7,(1,-1)7, and(1,1)7.

The optimal feedback fuzzy system, (30), is exponentiallyR?: If z(t) = xy(t) +v - t'/{2L'} - z1(t) is aboutr or —x,
stable, the total energy of system output is finite, and more-  thenx (¢ + 1) = A, X () + Bau(t)
over, this optimal controller can stabilize the fuzzy system to

any prescribed degree of stability and generates a closed-IggRj the system output i(¢) = CX(t) with C = I5,1 =238,

fuzzy system with an infinite gain margin. Fig. 2 illustrates the/ _ 55 ,, = —1.0,# = 2.0 and
position and velocity responses of the closed-loop fuzzy system
in different initial conditions. From the simulation results, we X(t) = [w1(t) z2(t) 23(®]F

find the designed optimal fuzzy controller can quickly push the
system from various initial states to and stay at the desired stgjigere
in both cases of finite and infinite horizons.

[ 1.3636 0 0
B. Discrete-Time System A= |[-03636 1.0 0
Tanaka and Sano [29] described a computer simulated truck- L 0.0120 =20 1.0
trailer with the mathematical model 1.3636 0 0
Ay, = | —0.3636 1.0 0
r1(t+1) =0 —v-t'/L)x () +v-t' /1 -u(t) | 0 —0.0064 1.0
x2(t+1) = 2o(t) +v -t/ /L - 21 (2) —0.7143
z3(t+ 1) = 23(t) +v -t - sin(za(t) +v - ¢ /2L - 21(t)) Bi=Db= 8

wherel is the length of truck/[’ is the length of trailerf’ is
the sampling time, and is the constant speed of the backwar
movement. Then, they used the following fuzzy model to repre
sent the truck-trailer system:

gVe further assume our fuzzy controller is

RYUf 2(t) = wo(t) +v -t/ /{2L'} - 21(t) is aboutd
thenu(t) = r1(t)

RY:F 2(t) = mo(t) +v - £/ /{210 } - 11(¢) is abouto, R%:f 2(t) = mo(t) +v - ' /{2L} - x1(¢) is aboutr or —7
thenX(t+ 1) = 41 X (¢) + Bru(t) thenu(t) = ro(t).
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Fig. 3. The state responses of the discrete-time fuzzy system with the designed optimal controller in the finite-horizon quadratic optimabbtertrafp
Section V-B at the four initial conditionsx (0) = (—=/2, —37/4,—-10)7, (—=x/2,37/4,—10)7, (7 /2,—37x/4,—10)T, and(x/2,3x /4, —10)7.

With the chosen membership functions, the normalized firind; 2. Hence, all the discrete-time subsystems are still well-be-

strength is

ar(t) = (1 —1/(1 + exp(=3(2(t) — 7/2))))
(1/1 4 exp(=3(2(t) + 7/2))))
Oég(t) =1- Oél(t).

Given the penalty matrices = I; and@ = I3, the designed
finite-horizon optimal controller according to (21) and (22) is

w(t) = h(X ()} (t), with

=1
i) = — [Is + BEn'(t + 1)B,] T BIw (t + 1) A X*(¢)
i=1,2

where~*(t) is the symmetric positive-semidefinite solution ofo the way.

the matrix Riccati difference equation in (20) or (24).
The original subsystem is unstable, since
o(A)={1,1,136}, i=12.
Howeverrank [\l — A; B;] = 3 andrank [A[3—A; C] = 3,
for all X in the intersection of the spectrum df and the com-

plement of open unit disk, i.e¥A € ¢(4;) N D(0,1)¢; ac-
cordingly,(A;, B;) is stabilizable andA4,, C) is detectable; =

haved. The unique symmetric positive-semidefinite solution of
the S.S.R.E. in (25) or (26) is

[ 13.1413 —27.4324  3.8860
ml(o00) = | —27.4324  90.2599 —15.7378
| 3.8%60 157378 4.5296
[ 49768 —2.7158  2.6338
m2(00) = | —2.7158 56080 —5.4833
| 26338 —5.4833 1629712

and the local optimal fuzzy control law is

W) =S h(XF()ri(E),  with

o

Il
—

r(t) = — [Is + BI'wi(00)B;] T BI (00) A; X* (1),

t=tg, -, N—1.

—

the designed optimal controller can stabilize the
local system.

However, there is no straightforward relationship between the
stability of subsystems and that of the entire system for the dis-
crete-time system. We may adopt Lyapunov's direct method [8]
to perform the stability analysis of overall feedback system.
Figs. 3 and 4 show the tracking results in various poor initial
conditions for finite-horizon and infinite-horizon optimal con-
trol problems, respectively. Obviously, a perfect, fast tracking is
achievable even when the variation of the initial states occurs.
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Fig. 4. The state responses of the discrete-time fuzzy system with the designed optimal controller in the infinite-horizon quadratic optinpabbltamtrof
Section V-B at the four initial conditionsX' (0) = (—#/2, —3# /4, —10)7, (=7 /2,37 /4,—10)7, (x/2,—37/4,—10)T, and(x /2,37 /4,—10)7T.

VI. CONCLUSION control problem in continuous-time systems, and then, the infi-
nite-horizon issue. Next, we tackle these two optimal control

A sufficient condition for global optimal fuzzy control was bl i di to-ti : ) it is difficult t A
proposed in this paper. This condition showsthat“blending”oB—ro ems In discrete-time systems, since 1L 1S dificult 1o ge
omplete bibliography on this issue, and even, the mathemat-

timal local fuzzy controllers can achieve global optimal effeck. X i .
Based on this observation, the design scheme of finite-horiz'&ﬁl statements for the discrete-time systems are always diverse.
global optimal fuzzy controllers in continuous-time system
as well as in discrete-time system were derived. In the ceée
of time-invariant and well-behaved fuzzy systems, the designWe consider here a dynamical system represented by the fol-
scheme of infinite-horizon global optimal fuzzy controllers folowing equation:

both the continuous-time and discrete-time systems were also

obtained. Several fascinating characteristics have been shown X(t) = ADX(®) + B(t)u(t), fort € Ry (49)

to exist in the closed-loop continuous-time fuzzy system fQnere the state((t) € R", the inputu(t) € R™,, and A("),
the infinite-horizon optimal control problem. First, we havez(.) are matrix-valued functions oR,. of class PC. The gen-
shown that the stability of the entire closed-loop fuzzy systegya| LQ problem is to find an optimal control law? (-) to min-
can be guaranteed if the simple completely controllable afifize the performance indeX(u(-)) in (3). The results shown
completely observable criteria hold for the fuzzy subsystemg.[24, [27], [28], [30]-[32] are summarized as follows.
Furthermore, under this situation, the closed-loop fuzzy systempgposition 4 [27], [31]: Let A(t), B(t), L(t) = LT () > 0,
has freedom in the choice of the degree of stability and gaip — 7 > ¢ be given matrices. Suppose the matrix Riccati
margin, meaning that the designed optimal fuzzy controller cg,ation

stabilize the fuzzy system to any desired degree of stability an

the resultant closed-loop fuzzy system possesses an infiditét) = —A%(¢t) K(t)— K () A(t)+ K () B(t) BT () K (t) — L(t)
gain margin. Simulation results have manifested that all the (50)
designed optimal fuzzy controllers can effectively drive the

fuzzy system to the target points in a short time. with K(¢1) = @ has a solutionr(¢,Q,%1) on the interval
[to,t1]. Then, there exists a controller(-) which minimizes

APPENDIX J(u(+)) in (3) for the system in (49) wittX (to) = Xo. And,

) ) the optimal control law is
We describe here the related optimal control concepts and re-

sults adopted in this paper. We start with finite-horizon optimal u*(t) = =BT (t)n(t, Q, t1) X*(t). (51)

Continuous-Time Systems
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Furthermore, the minimum value of .J(u(-)) is and the corresponding optimal trajectory is

X3 7 (to, Q1) Xo. X*(t+1) = [I, + B&O)BL(t)x(t + 1) LA X" (1)
Next, when the horizom; extends to infinity, it belongs to - )

the infinite-horizon optimal control problem. In this case, wavioreover, the minimum value of (u(-)) is XT7(0) X, and,

moreover, assumé(t) = CT(t)C(t) or C(t) = LY3(t). In  via some standard matrix manipulations, the matrix Riccati dif-

other words, the system outputi§¢) = C(¢) X (¢). Then, the ference equation in (54) can be rewritten as
performance index is finite if the system is completely control-

lable and the stability of the feedback system is guaranteed if thet) = L.(+) +AT(t)V(t+ 1)[In+B(t)BT(t)V(t+ 1)]_1A(t).
system is completely observable. For the time-invariant system, (55)
a more attractive characteristic listed below is elicited. Here, we

user., to denote the limit value of the solution of the afore- Proof: 1) Define

mentioned matrix Riccati equation, i.e.,

A N—1
oo = i 7(to, @, 1). D (X (1) 2 {n(m;} { STIXTELE)XE) + u” (# yu(t)]
t; —oo wl(t!
t'=t
Proposition 5 [30]: If L is positive definite and A, B) is
c.c., thenr, exists and satisfies the S.S.R.E. + XT(N)QX(N)} .
ATK + KA-KBBTK+L=0. (52)

Moreover,r, is positive-definite and symmetric. E;);rthehprint;:iple of opt_imality ir;)dynamic programming in [33],
Proposition 6 [24], [28]: If (A, B)isc.c.,(4,C)isc.o0.,and [34], the above equation can be rewritten as
- IS the positive-definite solution of the S.S.R.E. in Propos )
” P POk (X (#) = min[ X7 (#)L(8) X (&) +u” (H)ult)+d x (X(+1))].

tion 5, then u(t)
1) u*(t) = —BTn.,X(t) is the optimal control law which _
minimizes.J (u(-) in (18); We notice that<I>N(X(]_V)) = XT(N)QX(N). Therefore,
2) all the solutions of the feedback system want to look for a solution of the form
X(t) = [A - BB moo] X () Oy(X (1) = XLV X ()

tend to0 ast — oo; that is, it is asymptotically stable.
Proposition 7 [31], [32]: If (4, B)isc.c.and 4,C)isc.o.,
then the system can be stabilized to any desired degree; i.e., a
the eigenvalues of the feedback system have real parts small T
than o, for all & € 7. TEOVOX () = mind X LOX () + V(u(t)]} (56)

with V(N) = @, whereV(¢) is the introduced time step vari-
"e Hence, we have

B. Discrete-Time Systems where

This section discusses how to obtain the optimal control lawyy ¢, 1)) — 4,7 ($)0,(#) + [A(D) X (£) + BOWOTV(E + 1
for the discrete-time system. We shall first introduce the issue of (u(®) = u ;)U(X) [ SB) ®) OuE]V( )
the finite-horizon optimal control problem, and then the infinite- x [ABX () + B)u(t)].

horizon optimal control problem. Assume our system is Then, we perform the minimization af(u(¢)) with respect to

X(t+1) = A®)X() + B(t)u(t), u(t)
X(0) = Xo €%, t=to, -, N =1 (53) YV U(u(t)) = 2u(t) + 2BT(H)V (¢ + 1)
The finite-horizon optimal control problem is to search an op- x [A()X(t) + B(t)u(t)] = 0.
timal control laww*(-) to minimize J(u(-)) in (4).
Proposition 8: Let A(t), B(t), L(t) = L*(t) > 0, Accordingly, we can obtain
Q = QT > 0 be given matrices. Suppose the matrix Riccati

equation u*(t) = =BT ()V(t + D[A®)X(t) + B(t)u* ()]  (57)
V()= —AT V(i + 1D)B@)[L, + BYO)V(t + 1)B(#®)]™*
x BTV (t+ D)ARL() + AT @)V (t + 1) A1), w () = [l + BT®)V(t+ HB@)]
t=to,--,N—1 (54) x BT($)V (t + 1A X(2). (58)

with V(N) = @, has a solutionr(t),t = to,---,N — 1, Substituting (57) and (58) into (56), we have

then there exists an optimal control la(¢) which minimizes

J(u(-)) in (4) for the system in (53) wittk (0) = X,. The op- X'V, X, = XTL,X, +u) )

timal control law is + (A Xy + B Vi1 (A X, + Bou?)
w*(t) = —[L,+ BT ()7 (t+1)B®)]  BY () n(t+ 1) A1) X (¢) = X! LiXe + XF AV 1 (AXe + Bol)
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by denoting time dependence as a lower index. Furthermore, via

(58), we have
1

XIViXy = XFL X+ XT AV AX,
— XFAV1 Bl + B Vi Bt
X B?W+1AtXt.

(2]

(3]

Hence, (54) holds. Now, we shall show that (54) and (55) are
equivalent via the matrix manipulations as below. By omitting 4,
the time-dependence index at time-stdpr notation simplifi-

cation, we have
[5]

V=L+A"V, 1 A— ATV, B[I,+B*V,;1B|*BTV, .1 A

[6]
= L+A"V, 1 (I,—B[L,+B"V, . B "' BTV, ) A

which is equivalent to (55) since 7

[I,+BB™Vi{1] - (I,—B[I,+B"Vi 1 B ' BTV, 1) =1,
(In=B[L,+B Vi1 Bl B Vi) - Lo+ BB Vi) =1,

(8]
9]

Then, substituting (55) intaX*(¢ + 1) AB)XT(t) +

B(t)u*(t), we obtain [10]
X*(t+1) ={L, = BOU, + BT )Vt + 1)B®)] ™ [11]

x BY(#)V(t+ 1) A1) X(?) .

= [l + B&)BT®)V(t+ )] T ABX (D). i

This completes the proof. O

Now, we turn to the infinite-horizon optimal control problem [14]
with time-invariant system and udé(co) to denote the limit [15]
value of the matrix Riccati difference equation in (54) or (55),

e, V(o0) 2 limy_oo V(). [16]
Proposition 9 [24]: Let A, B, L = CTC be given matrices.
If (A, B) is stabilizable andC, A) is detectable, then [17]

1) there exists a unique symmetric positive semidefinite so-

lution 7(o0) of the S.S.R.E. [18]
V(o) = L+ ATV (00)[I, + BBTV(00)] ' A (59) 9]
which can be rewritten as
(20]
V(oo)=L+ATV(x)A
— ATV (00) BlI, +BYV(x0)B| ' BT V(c)A 1]
(60) 22
2) the asymptotically optimal control law is
(23]
u*(t) = —[I, + BT r(o0)B] 7' BT m(00) AX (t)
(24]
which minimizes’(u(-)) in (28), and the minimum value
of J(u(-)) is XFm(c0)Xo; (25]

3) the closed-loop feedback system is asymptotically an(gze]
exponentially stable.
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