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Optimal Fuzzy Controller Design: Local Concept
Approach
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Abstract—In this paper, we present a global optimal and
stable fuzzy controller design method for both continuous- and
discrete-time fuzzy systems under both finite and infinite horizons.
First, a sufficient condition is proposed which indicates that the
global optimal effect can be achieved by the fuzzily combined
local optimal controllers. Based on this sufficient condition, we
derive a local concept approach to designing the optimal fuzzy
controller by applying traditional linear optimal control theory.
The stability of the entire closed-loop continuous fuzzy system can
be ensured by the designed optimal fuzzy controller. The optimal
feedback continuous fuzzy system can not only be guaranteed
to be exponentially stable, but also be stabilized to any desired
degree. Also, the total energy of system output is absolutely
finite. Moreover, the resultant feedback continuous fuzzy system
possesses an infinite gain margin; that is, its stability is guaranteed
no matter how large the feedback gain becomes. Two examples
are given to illustrate the proposed optimal fuzzy controller design
approach and to demonstrate the proved stability properties.

Index Terms—Converse theorem, degree of stability, exponen-
tially stable, finite energy, gain margin, global optimal, Riccati
equation, T-S type fuzzy model.

I. INTRODUCTION

NONLINEARITY and uncertainty are always bothersome
in controlling a real system, since a physical system is

usually partly known and difficult to describe, has few mea-
surements available, or is highly nonlinear. Fuzzy modeling can
mimic a real system well, fuzzy control can support more robust
control than linear control does, and, moreover, optimal control
can provide the best possible system. Hence, an analytic design
scheme of the optimal fuzzy controller for a fuzzy system (i.e.,
the system described by a fuzzy model) is of theoretical and
practical interest. Although the research in fuzzy modeling and
fuzzy control has been quite matured [1]–[11], it seems that the
field of optimal fuzzy control is nearly open [12]. The goal of
this work is to propose a scheme for designing a global optimal
fuzzy controller to control and stabilize a continuous- or dis-
crete-time fuzzy system in finite or infinitehorizon(time) con-
sideration. A simple stability criterion is proposed and the gain
margin of the resultant closed-loop fuzzy system is discussed.

Stabilityandoptimalityare the most important requirements
for any control system. Most of the existed works are based on
Takagi–Sugeno (T-S) type fuzzy model combined with parallel
distribution compensation (PDC) concept [1] and apply Lya-
punov's method to do stability analysis. Tanaka and coworkers
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reduced the stability analysis and control design problems to
linear matrix inequality (LMI) problems [2], [4]. Furthermore,
they relaxed the stability condition, and then, derived a fuzzy
controller based on the relaxed LMI stability condition [13],
[14]. Moreover, they also dealt with uncertainty issue [3]. This
approach had been applied to several control problems such as
control of chaos [4], of an articulated vehicle [5], of a mobile
robot with multiple trailers [7], and of a modal car [15]. A fre-
quency shaping method to achieve systematic design of fuzzy
controllers was also performed by them [16]. Sun and coworkers
developed a separation scheme to design a fuzzy observer and a
fuzzy controller independently [9]. Methods based on grid-point
approach [17] and circle criteria [18], [19] were introduced to
do stability analysis of fuzzy control as well. Wang adopted a
supervisory controller and introduced stability and robustness
measures [20]. Cao proposed a decomposition principle to de-
sign a fuzzy discrete-time control system and an equivalent prin-
ciple to do stability analysis [11]. Even with the aforementioned
research results on the theoretic aspect of fuzzy control, Tanaka
and others' work mentioned in the above always treat the sta-
bility of general linear feedback fuzzy controllers.

On the issue of optimal fuzzy control, Wang developed an
optimalcontroller to stabilize a linear time-invariant system via
Pontryagin maximum principle [12]. However, although fuzzy
control of linear systems could be a goodstarting pointfor better
understanding of some issues in fuzzy control synthesis, it does
not have much practical implications since using the fuzzy con-
troller designed for a linear system directly as the controller
may not be a good choice [12]. Moreover, the cited stability cri-
teria may be simple, but rough to do systematic analysis and
also may result in a controller with less flexibility. Tanaka and
coworkers [21], [22] tried to obtain a fuzzy controller to min-
imize the upper bound of the quadratic performance function
by linear-matrix-inequality (LMI) approach based on theas-
sumption of local-linear-feedback-gain control structure. Nev-
ertheless, no theoretical analysis on this design scheme of op-
timal-fuzzy-control structure was proposed.

In this work, aglobal optimalfuzzy controller design method
for a fuzzy systemis achieved from a local viewpoint and the
properties of the constructed optimal fuzzy controller are ex-
posed based on the linear optimal control theory. The derived
control law is demonstrated to be the best for the entire system
to reach the optimal performance index. Moreover, the optimal
feedback continuous fuzzy system can not only be guaranteed
to be exponentially stable, but also be stabilized to any desired
degree. Furthermore, we elicit that this kind of fuzzy controller
can stabilize a continuous fuzzy system to any prescribed de-
gree of stability, and the corresponding closed-loop continuous
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fuzzy system possesses an infinite gain margin. Moreover, the
total energy of the system output of the feedback continuous
fuzzy system is absolutely finite.

This paper is organized as follows. The sufficient condition
of global optimum is proposed in Section II, which indicates
that fuzzily “blending” the local optimal fuzzy controllers can
achieve global optimal effect. The global optimal fuzzy con-
trol laws for both continuous- and discrete-time fuzzy systems
during both finite and infinite horizons are derived theoretically
in Section III. Several properties such as stability criteria and
gain margin of the resultant closed-loop fuzzy system are dis-
cussed in Section IV. The design methodology is illustrated by
two examples in Section V. Section VI gives the concluding re-
marks. The related linear optimal theory applied in this paper is
summarized in the Appendix
.

II. SYSTEM REPRESENTATION ANDPROBLEM STATEMENT

We consider a given nonlinear plant described by the
so-called T-S type fuzzy model

If is is

then

(1)

where denotes theth rule of the fuzzy model; are
system states; are the input fuzzy terms in theth
rule; denotes for continuous case and for
discrete case; the state vector , the
system output vector , and is the system
input (i.e., control output); and ) and are, respec-
tively, and matrices whose elements are
known to be piecewise-continuous (PC) and real-valued func-
tions defined on positive real space, ; in other words, they are
matrix-valued functions on of class PC. We then assume the
desired controller is a rule-based fuzzy controller in the form of

If is is

then (2)

where are the elements of output vector
are the input fuzzy terms in theth control rule,

and the plant input (i.e., control output) vector or is in
space. Then, the quadratic optimal fuzzy control problem

is described as follows:
PROBLEM 1. Given the rule-based fuzzy system in (1) with

and a rule-based fuzzy controller in (2),
find the individual optimal control law, such
that the composed optimal controller can minimize the
quadratic cost functional over all possible inputs
of class PC

(continuous) (3)

(discrete) (4)

where and
are state-trajectory penalties with both and belonging to
symmetric positive semidefinite matrices, and
is fuel consumption.

The grounding on distributed fuzzy subsystems and
rule-based fuzzy controller forces the researchers to find the
controller , which can achieve global minimum effect
under quadratic performance consideration defined on the
entire fuzzy system and fuzzy controller. Thus this issue has
not been attacked directly even though the T-S type fuzzy
model has been available for many years. Wang [12] tried to
break the deadlock by considering a linear system (instead of
a fuzzy system) combined with a fuzzy controller. Tanaka and
coworkers [21], [22] developed the LMI-based fuzzy control
by assuminga local-linear-feedback-gain control structure.
However, the quadratic optimal fuzzy control issue, in fact,
remains fully open.

In the remainder of this section, the discrete-time case will
be adopted for developing the local-concept-based optimization
technology. From the essence of the dynamic programming for-
malism, the operation of minimizing in (4) can be de-
composed as follows:

(5)

where we use the lower index to denote time dependence for no-
tation simplification, i.e., for . Hence, The quadratic op-
timization problem is, in fact, a successively ongoing dynamic
problem with regard to the state resulting from the previous de-
cision, i.e., the initial state (at time step) . More-
over, according to the signal flow of a fuzzy inference system
[23], we know, at any time step, the overall behavior of the
fuzzy system can be captured by fuzzily blending all the fuzzy
subsystems; in other words, the entire T-S type fuzzy system in
(1) can be represented as

(6)

with

and , where and denote, re-
spectively, the normalized firing strength of theth rule of the
fuzzy model and of theth fuzzy control rule; i.e.,

with
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where is the membership function of fuzzy term ,
and with

where is the membership function of fuzzy term .
Therefore, the optimization dynamic issue is on successively

finding theoptimal global decision (optimal controller) for
minimizing the cost functional

(7)

and estimating with regard to the initial state ; and
then, with the new initial state , resolving to minimize

. In other words, the quadratic optimal fuzzy control
problem in Problem 1 can be restated as the following dynamic
problem:

PROBLEM 2. Given the fuzzy system in (6) with

successively find the optimal global decision,, for mini-
mizing the quadratic cost functional in (7), where the
initial state is the optimal state resulting from the previous
decision, i.e., and .

As we know, the energy of the entire fuzzy system is the sum-
matin of the energy of each fuzzy subsystem. Hence, based on
theadditive property of energy, we know that,at any time step
, if we can find theoptimal local decision (optimal control law)

for minimizing in (7) with regard to thefuzzy subsystem

(8)

then their composed global decision can be aglobal minimizer
of the total cost, , with regard to thefuzzy systemin (6).
For clarity, since is only a variable to be solved irrespective of
the aforementioned local optimization problem or of the global
optimization issue in Problem 2, we can useto denote the op-
timal local decision of theth fuzzy subsystem. Hence, based on
the local viewpoint of the global optimal fuzzy control, we know
that solving the quadratic optimal control problem in Problem 2
is to find only one corresponding optimalsolution of the fuzzy
controller foreachrule of the fuzzy model. Thereupon, both the
fuzzy model andadmissiblefuzzy controller have, more pre-
cisely, the same input variables and same input space partition,
and there exists only one optimal fuzzy control rule for each
fuzzy subsystem described by a fuzzy rule in the fuzzy model;
that is

(plant) If is is

then

(controller) If is is

then (9)

and a fuzzy subsystem and fuzzy control rule have a one-to-one
correspondence (th-rule-to- th-rule). Therefore, the optimal

global decisions in Problem 1 can be regarded as a
series of optimal global decision based on the following
successively ongoing local quadratic optimal issue with the
initial state resulting from the previous decision.

PROBLEM 3. Given the fuzzy subsystem

(10)
with the initial state resulting from the previous decision, i.e.,

1) find the optimal local decision at time-step , for min-
imizing the cost functional

(11)

2) obtain the optimal global decision at time-step , for
minimizing the cost functional in (7) by fuzzily
blending each local decision, i.e.,

Notice that the next-decision initial state is

instead of in (6), since there exists the one-to-one rela-
tionship between each fuzzy subsystem and the corresponding
fuzzy controller.

III. OPTIMAL FUZZY CONTROLLER DESIGN

We shall design the optimal controllers for the contin-
uous-time systems in Section III-A and for discrete-time
systems in Section III-B.

A. Optimal Fuzzy Controller for Continuous-Time
Fuzzy System

Since the local fuzzy system (i.e., fuzzy subsystem) is linear,
its quadratic optimization problem is the same as the general
linear quadratic (LQ) issue [24]. Therefore, solving the optimal
control problem for fuzzysubsystemcan be achieved by simply
generalizing the classical theorem in Proposition 4 in the Ap-
pendix from the deterministic case to fuzzy case. We summarize
this generalization result here.

Theorem 1 (Solution of the Standard Fuzzy LQ Prob-
lem): For the fuzzy system in (1) and fuzzy controller in (2),
let , be
given matrices. If there exists on an symmetric
positive semidefinite solution to the matrix Riccati
differential equation

(12)

where the final value of the dependent variable , is
equal to the final state penalty index, and , then
there exists a local optimal fuzzy control law

(13)
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where is the corresponding optimal state trajectory. And,
the corresponding global minimizer is

(14)

which minimizes in (3). The resulting optimal
closed-loop system dynamics is described by

(15)

with .
Proof: This theorem obviously holds with Proposition 4

in the Appendix.
The above theorem considers that the horizonis fixed and

is arbitrary. Does the controller exist when the
horizon goes to infinity? For the general LQ problem, the an-
swer is positive if the system is time-invariant andwell-behaved,
i.e., completely controllable and completely observable. Now,
we assume our fuzzy subsystem is linear time-invariant and
well-behaved. In this case, the results below for eachfuzzy sub-
systemare similar to those for adeterministicsystem described
by Propositions 5 and 6 in the Appendix.

Theorem 2: For the fuzzy system in (1) and fuzzy controller
in (2), let be given constant matrices and

. If is completely controllable (c.c.) and
is completely observable (c.o.) for , then

1) there exists a unique symmetric positive semidef-
inite solution, , of the steady-state Riccati equation
(S.S.R.E.)

(16)

2) the asymptotically local optimal fuzzy control law is

(17)

and their “blending” global minimizer in (14) min-
imizes

(18)

3) and the optimal local feedback fuzzy subsystem

(19)

is asymptotically and exponentially stable.
Proof: This theorem obviously holds with Propositions 5

and 6 in the Appendix.

B. Optimal Fuzzy Controller for Discrete-Time Fuzzy System

In the discrete-time system, the generalization of optimal con-
trol theory from general “deterministic” system to “fuzzy” sub-
system is also practicable. The following theorem converts the
result of the general LQ problem in the Appendix into its fuzzy
optimal counterpart.

Theorem 3: For the fuzzy system in (1) and fuzzy controller
in (2), let

be given matrices. If there exists a symmetric positive semidef-
inite solution to the following matrix Riccati difference
equation:

(20)

with and the identity matrix of dimension, then
there exists a local optimal fuzzy control law

(21)

and the resultant global controller is

(22)

which minimizes in (4). Moreover, the optimal trajec-
tory is

(23)

Notice that, using standard matrix manipulations, the matrix
Riccati difference equation in (20) can be rewritten as

(24)

Proof: This theorem obviously holds with Proposition 8
in the Appendix.

Similarly, if the fuzzy subsystem is linear time-invariant and
well-behaved, meaning that it isstabilizable and detectable, we
still can obtain infinite-horizon optimal controller as described
in the following theorem.

Theorem 4: For the fuzzy system in (1) and fuzzy controller
in (2), let be given constant matrices and

. If is stabilizable and is detectable for
then

1) there exists a unique symmetric positive semidefinite so-
lution of the following S.S.R.E.:

(25)

(26)

2) the asymptotically local optimal fuzzy control law is

(27)

and the resultant global controller in (22) minimizes

(28)
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3) moreover, the optimal local feedback fuzzy subsystem

(29)

is asymptotically and exponentially stable.
Proof: This theorem obviously holds with Proposition 9

in the Appendix.

IV. STABILITY AND GAIN MARGIN

In this section, we are concerned with the stability of the
global closed-loop system with the optimal fuzzy controller
designed in the preceding section. We shall show that the
controller resulting from the infinite-horizon optimal control
problem gives not merely an asymptotically stable closed-loop
system, but one with a prescribed degree of stability. Further-
more, we also define the termgain margin to discuss what
range of the feedback gain we can enlarge under the stability
consideration.

A. Global Stability

The entire feedback fuzzy system is nonlinear, even though
the subsystem is linear. We can thus apply the so-calledconverse
theoremof Lyapunov stability theory in the nonlinear system
[25] to our fuzzy system. This theorem is given in the following
proposition.

Proposition 1: Consider the system

where is a function, i.e., an ordered-tuple complex-
valued function, and . Define

then is an exponentially stable equilibrium of the system if
and only if the linearized system

is (globally) exponentially stable. Additionally, if is defined
as above and if all the eigenvalues ofhave negative real parts,
then is an exponentially stable equilibrium.

Via the converse theorem, the stability analysis of a nonlinear
system is coincidental with that of the linearized system. For
the T-S type fuzzy system, a locally linearized system from the
global system in (6), we know that the linearized matrixin
the above proposition at some point is
Hence, the term fully handles the stability
of the fuzzy system.

From Theorems 2 and 4, we know that in the infinite-horizon
optimal control problem, if the local fuzzy system is time-in-
variant and well-behaved, the local feedback fuzzy system is
asymptotically and exponentially stable no matter whether the
system is continuous or discrete. Now our strategy is to ground
on this nice local feature and step for the global system by the
spectral mapping theorem in [26], which says that the spectrum
of a analytic function of an operator is the analytic function of
the spectrum of the operator. This will be exposed on the fol-
lowing theorem.

Theorem 5: For the time-invariant fuzzy system in (1) and
fuzzy controller in (2), if is c.c. and is c.o. for

then

1) the optimal feedback fuzzysystem

(30)

is exponentially stable;
2) the total energy of system output is finite

Proof:

1) Via the converse theorem, we know the stability of the
resultant feedback fuzzy system in (30) concurs with that
of the linearized fuzzy system (with respect to)

(31)

For clarity, we introduce the notation to denote
the local feedback system matrix. Then, we know,
via Theorem 2, that each feedback fuzzy subsystem
is exponentially stable, which means thespectrumof

denoted by , is located in
the open left-half plane of the complex space, i.e.,

. Accordingly, we have

via the spectral mapping theorem and
for all . Hence, the zero solution of

on is exponentially stable; in other
words, there exists constants and such that
for all

Then, the state transition matrix of the linearized
fuzzy system in (31) is

where and . Therefore,
the linearized fuzzy system in (31) and also the feedback
fuzzy system in (30) are exponentially stable. Hence, we
can conclude thatthe entire continuous fuzzy system is
exponentially stable if each continuous fuzzy subsystem
is exponentially stable.

2) From the above proof, we know the entire feedback fuzzy
system in (30) is exponential stable and, hence, also en-
sure to beuniformly asymptotically stable. Therefore, for
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all and , the state satis-
fies a) and b) in the following.

a) The range of mapping fromto is bounded on
uniformly, i.e.,

s.t.

b) The range of mapping fromto tends to zero
as uniformly, i.e.,

s.t.

Therefore, with

From a) and b), we know that these two integrates are both
finite, and accordingly we have

However, we cannot yet demonstrate that there exists such
close stability relationship between the entire closed-loop
system and the local feedback system for the discrete-time
case. Therefore, we can only use Lyapunov's direct method or
linear matrix inequality method [8] to analyze the stability of
the overall feedback discrete-time fuzzy system.

B. Stabilization to Any Desired Degree

So far, we have examined the stability of the closed-loop
system. We now attempt to show that the constructed optimal
fuzzy controller can stabilize the entire fuzzy system to any
desired degree. That is, for some prescribed constant ,
the state approaches zero at least by the rate of Of
course, the larger the desired degree of stability, the more stable
the closed-loop system. However, a high degree of closed-loop
stability may only be achieved at excessive control energy
consumption. Before showing this, we need the following two
lemmas.

Lemma 1: For a system described by

where and are and matrices (i.e.,
). c.c. is equivalent to c.c.

for any complex value , i.e.,

c.c. c.c.

Proof:

1) is c.c. if and only if .

Let , then

which means is c.c. if and only if is c.c.
2) Now, consider two systems

(32)

(33)

If we let , via basic differential operation, it is
evident that (32) and (33) are algebraically equivalent for
any ; i.e., they are related by a nonsingular linear
transformation Therefore, (32) c.c. is equivalent to
(33) c.c., i.e.,

c.c. c.c.

From 1) and 2), we conclude that Lemma 1 holds.
Lemma 2: For a system c.o. is equiv-

alent to c.o. for any complex value, i.e.,

c.o. c.o.

Proof: The proof is similar to the proof of Lemma 1.
Now, we deduce Theorem 6 using the above two lemmas.
Theorem 6: For the fuzzy system in (1) and fuzzy controller

in (2), let be given constant matrices and
in (18). If is c.c. and is c.o. for
then the fuzzy system can be stabilized to any desired degree
of stability; in other words, the state of the modified feedback
fuzzy system

(34)

approaches at least by the rate of , where is any positive
real number, is the normalized firing strength (i.e.,

), and is the positive-semidefinite
solution of the modified S.S.R.E.

(35)

where is the dependent variable of the algebraic equation.
Proof:

1) Via the converse theorem, we know the stability of the
modified feedback fuzzy system in (34) concurs with that of the
linearized fuzzy system (with respect to )

(36)

Hence, we shall show that all the eigenvalues of the linearized
fuzzy system in the above have real part smaller than, i.e.,
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We now consider the local quadratic optimal problem

w.r.t. (37)

Let , , and .
Equation (37) can be rewritten as

w.r.t. (38)

From Lemmas 1 and 2, we know that c.c. and
c.o., if and only if c.c. and

c.o., . Hence, based on the linear
quadratic theory, we know the local optimal feedback system
for the modified fuzzy system in (38),

(39)

is exponentially stable for all . Accordingly, from
part 1) of the proof in Theorem 5, we know that the fuzzily
blended global feedback fuzzy system

(40)
and also the corresponding linearized global fuzzy system
(with respect to ) are exponentially stable, where

for all . Thereupon, we
have

with the aid of the spectral mapping theorem. This completes
the proof.

C. Gain Margin

Furthermore, we shall examine another interesting property,
gain margin, of the resultant closed-loop fuzzy system. Recall
that the gain margin of a closed-loop system is the amount by
which the loop gain can be changed until the system becomes
unstable. If the loop gain can be increased without bound; that
is, instability is not encountered no matter how large the loop
gain becomes, then the closed-loop system is said to possess
an infinite gain margin [24]. Thus far, for time-invariant well-
behaved continuous fuzzy subsystem, we know the designed
global optimal controller, by (17) and (14), is

In order to measure the gain margin, we think of the following
control law:

Then, thegain marginof the closed-loop fuzzy system is defined
as the amount by which can be increased until the system
becomes unstable. In this case, the corresponding local control
law is

Notice that in the case of , this control law is no longer an
optimal control law, i.e., . Now, let

and then we have

(41)

We further consider

(42)

Notice that and . Comparing
(42) to (41), we find that the larger the, the smaller the ,
which means that when goes to zero, the gain margin of the
closed-loop fuzzy system becomes infinite.

We can include into the state penalty matrix. From The-
orem 2, for any , the optimal control law with respect to
(42) is

where satisfies the modified S.S.R.E.

(43)

where is the dependent variable of the algebraic equation.
We now first cite two important results in control theory [28]
and apply them to the fuzzy feedback subsystem. We shall then
find the gain margin of the entire closed-loop fuzzy system. The
following propositions are cited from [28].

Proposition 2: Consider the infinite-horizon optimal control
problem as follows.

Given a linear time-invariant system

find an optimal controller to minimize

with denoting the system output, where
and Now, if is c.c. and is c.o., then

1) the positive-semidefinite solution, denoted by , of
the modified S.S.R.E.

(44)

uniquely exists;
2) when goes to zero, i.e., when the closed-loop system

possesses an infinite gain margin, the limit value of
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exists. Let denote this limit value. Furthermore,
is the unique positive-semidefinite solution of the

modified S.S.R.E.

Proposition 3: Consider the same infinite-horizon optimal
control problem as in Proposition 2. Assume is c.c. and

is c.o., then

1) we can find an optimal control law

where is the positive-semidefinite solution of the
S.S.R.E.

and the closed-loop fuzzy system possesses an infinite
gain margin; i.e., the modified feedback system

is always stable for any , where
and is the positive-semidefinite solu-

tion of the modified S.S.R.E., (44).
2) Moreover, for any fixed , the enlarged controller

can still stabilize the modified system to any de-
sired degree of stability; i.e., all the eigenvalues of

have real parts smaller than
where could be any positive real number and
is the positive-semidefinite solution of the modified
S.S.R.E.

where is the dependent variable of the algebraic
equation.

Grounding on these propositions, we elicit the fol-
lowing fascinating fact.

Theorem 7: For the time-invariant fuzzy system in (1) and
fuzzy controller in (2) with in (18), if is c.c.
and is c.o. for then

1) we can find a fuzzy control law

where is the positive-semidefinite solution of the
S.S.R.E. in (16), and the resultant closed-loop fuzzy
system possesses an infinite gain margin; i.e., the modi-
fied closed-loop fuzzy system

(45)

is always stable for any , where and
is the positive semidefinite solution of the modi-

fied S.S.R.E. in (43).
2) Moreover, for any fixed , the enlarged controller

can still stabilize the modified system to any desired de-
gree of stability; in other words, the state of the modified
feedback fuzzy system

(46)
approaches at least by the rate of , where could
be any positive real number and is the positive-
semidefinite solution of the modified S.S.R.E.

Proof: For clarity, we introduce the notations and
to denote, respectively, the local feedback system ma-

trices in (45) and (46), i.e.,

and

1) Since is c.c. and is c.o. for ,
we know, from1) in Proposition 3, that the modified
closed-loop fuzzy subsystem is stable for any , i.e.,

for all . Accordingly, by
part 1) of the proof in Theorem 5, we know their fuzzily
blended global system in (45) is exponentially stable.

2) Then fixing at any gain margin, we shall show the state
of the modified feedback fuzzy system in (46) and also
that of the corresponding linearized fuzzy system (with
respect to ) approaches at least by the rate of
for all . In other words, we shall demonstrate

From2) in Proposition 3, we have

due to being c.c. and being c.o. Accord-
ingly, via the spectral mapping theorem, we have

for

which results in that all local modified feedback fuzzy
system

(47)

are exponentially stable. Moreover, we know, via part 1)
of the proof in Theorem 5, that the fuzzily blended feed-
back fuzzy system

(48)

is exponentially stable. Furthermore, via the converse the-
orem, we have
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for all . Then, we obtain

for all and . Therefore, we know that the
linearized feedback fuzzy system (with respect to)

has any degree of stability. Hence, the modified fuzzy
system in (46) has any degree of stability as well.

V. NUMERICAL SIMULATIONS

We consider a simple nonlinear mass-spring-damper mechan-
ical system for continuous-time case, and an optimal backing up
control of a computer simulated trunk-trailer for discrete-time
case in order to illustrate the proposed optimal fuzzy control
scheme and its theoretic aspect.

A. Continuous-Time System

A mass-spring-damper system can be formulated as

where is the mass and is the force; and are the
nonlinear or uncertain terms with respect to the spring and the
damper, respectively, and is the nonlinear term with respect
to the input term. We make the same assumptions as Tanakaet
al. did in [3], and reformulate the system as

where and .
According to the study in [3], we describe this nonlinear

system by the following T-S type fuzzy model:

If is and is

then

If is and is

then

If is and is

then

If is and is

then

and the system output is with for every
rule, where

and the membership functions of the precondition parts of the
fuzzy rules are

We further assume our fuzzy controller is

If is and is then

If is and is then

If is and is then

If is and is then

Accordingly, the firing-strength of each rule is

where the normalized firing-strength of theth rule is

Now, let the penalty matrices be set as and .
Then, the designed finite-horizon optimal controller according
to (13) and (14) is

with

where is the symmetric positive-semidefinite solu-
tion of the matrix Riccati differential equation in (12). Since

always exists and the above controller stabilizes the
subsystem at any , the entire feedback system is expo-
nentially stable, which can be observed from the state response
of the closed-loop fuzzy system at different initial conditions in
Fig. 1.

Since the fuzzy subsystem is time-invariant and well-be-
haved; i.e., the subsystem is c.c. and c.o. (
and for ), there exists
a unique symmetric positive semidefinite solution,

, of the S.S.R.E. in (16)

and the asymptotically optimal controller is

with
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Fig. 1. The state responses of the continuous-time fuzzy system with the designed optimal controller in the finite-horizon quadratic optimal control problem of
Section V-A at the four initial conditions:X(0) = (�1;�1) ; (�1;1) ; (1;�1) ; and(1;1) .

Fig. 2. The state responses of the continuous-time fuzzy system with the designed optimal controller in the infinite-horizon quadratic optimal control problem of
Section V-A at the four initial conditions:X(0) = (�1;�1) ; (�1;1) ; (1;�1) ; and(1;1) .

The optimal feedback fuzzy system, (30), is exponentially
stable, the total energy of system output is finite, and more-
over, this optimal controller can stabilize the fuzzy system to
any prescribed degree of stability and generates a closed-loop
fuzzy system with an infinite gain margin. Fig. 2 illustrates the
position and velocity responses of the closed-loop fuzzy system
in different initial conditions. From the simulation results, we
find the designed optimal fuzzy controller can quickly push the
system from various initial states to and stay at the desired state
in both cases of finite and infinite horizons.

B. Discrete-Time System

Tanaka and Sano [29] described a computer simulated truck-
trailer with the mathematical model

where is the length of truck, is the length of trailer, is
the sampling time, and is the constant speed of the backward
movement. Then, they used the following fuzzy model to repre-
sent the truck-trailer system:

If is about

then

If is about or

then

and the system output is with
and

where

We further assume our fuzzy controller is

If is about

then

If is about or

then
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Fig. 3. The state responses of the discrete-time fuzzy system with the designed optimal controller in the finite-horizon quadratic optimal control problem of
Section V-B at the four initial conditions:X(0) = (��=2;�3�=4;�10) ; (��=2;3�=4;�10) ; (�=2;�3�=4;�10) ; and(�=2;3�=4;�10) .

With the chosen membership functions, the normalized firing-
strength is

Given the penalty matrices and , the designed
finite-horizon optimal controller according to (21) and (22) is

with

where is the symmetric positive-semidefinite solution of
the matrix Riccati difference equation in (20) or (24).

The original subsystem is unstable, since

However, and
for all in the intersection of the spectrum of and the com-
plement of open unit disk, i.e., ; ac-
cordingly, is stabilizable and is detectable,

. Hence, all the discrete-time subsystems are still well-be-
haved. The unique symmetric positive-semidefinite solution of
the S.S.R.E. in (25) or (26) is

and the local optimal fuzzy control law is

with

By the way, the designed optimal controller can stabilize the
local system.

However, there is no straightforward relationship between the
stability of subsystems and that of the entire system for the dis-
crete-time system. We may adopt Lyapunov's direct method [8]
to perform the stability analysis of overall feedback system.
Figs. 3 and 4 show the tracking results in various poor initial
conditions for finite-horizon and infinite-horizon optimal con-
trol problems, respectively. Obviously, a perfect, fast tracking is
achievable even when the variation of the initial states occurs.
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Fig. 4. The state responses of the discrete-time fuzzy system with the designed optimal controller in the infinite-horizon quadratic optimal control problem of
Section V-B at the four initial conditions:X(0) = (��=2;�3�=4;�10) ; (��=2;3�=4;�10) ; (�=2;�3�=4;�10) ; and(�=2;3�=4;�10) .

VI. CONCLUSION

A sufficient condition for global optimal fuzzy control was
proposed in this paper. This condition shows that “blending” op-
timal local fuzzy controllers can achieve global optimal effect.
Based on this observation, the design scheme of finite-horizon
global optimal fuzzy controllers in continuous-time system
as well as in discrete-time system were derived. In the case
of time-invariant and well-behaved fuzzy systems, the design
scheme of infinite-horizon global optimal fuzzy controllers for
both the continuous-time and discrete-time systems were also
obtained. Several fascinating characteristics have been shown
to exist in the closed-loop continuous-time fuzzy system for
the infinite-horizon optimal control problem. First, we have
shown that the stability of the entire closed-loop fuzzy system
can be guaranteed if the simple completely controllable and
completely observable criteria hold for the fuzzy subsystems.
Furthermore, under this situation, the closed-loop fuzzy system
has freedom in the choice of the degree of stability and gain
margin, meaning that the designed optimal fuzzy controller can
stabilize the fuzzy system to any desired degree of stability and
the resultant closed-loop fuzzy system possesses an infinite
gain margin. Simulation results have manifested that all the
designed optimal fuzzy controllers can effectively drive the
fuzzy system to the target points in a short time.

APPENDIX

We describe here the related optimal control concepts and re-
sults adopted in this paper. We start with finite-horizon optimal

control problem in continuous-time systems, and then, the infi-
nite-horizon issue. Next, we tackle these two optimal control
problems in discrete-time systems, since it is difficult to get
complete bibliography on this issue, and even, the mathemat-
ical statements for the discrete-time systems are always diverse.

A. Continuous-Time Systems

We consider here a dynamical system represented by the fol-
lowing equation:

for (49)

where the state , the input , and
are matrix-valued functions on of class PC. The gen-

eral LQ problem is to find an optimal control law to min-
imize the performance index in (3). The results shown
in [24], [27], [28], [30]–[32] are summarized as follows.

Proposition 4 [27], [31]: Let
be given matrices. Suppose the matrix Riccati

equation

(50)

with has a solution on the interval
. Then, there exists a controller which minimizes

in (3) for the system in (49) with . And,
the optimal control law is

(51)
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Furthermore, the minimum value of is
.

Next, when the horizon extends to infinity, it belongs to
the infinite-horizon optimal control problem. In this case, we,
moreover, assume or . In
other words, the system output is . Then, the
performance index is finite if the system is completely control-
lable and the stability of the feedback system is guaranteed if the
system is completely observable. For the time-invariant system,
a more attractive characteristic listed below is elicited. Here, we
use to denote the limit value of the solution of the afore-
mentioned matrix Riccati equation, i.e.,

Proposition 5 [30]: If is positive definite and is
c.c., then exists and satisfies the S.S.R.E.

(52)

Moreover, is positive-definite and symmetric.
Proposition 6 [24], [28]: If is c.c., is c.o., and

is the positive-definite solution of the S.S.R.E. in Proposi-
tion 5, then

1) is the optimal control law which
minimizes in (18);

2) all the solutions of the feedback system

tend to as ; that is, it is asymptotically stable.
Proposition 7 [31], [32]: If is c.c. and is c.o.,

then the system can be stabilized to any desired degree; i.e., all
the eigenvalues of the feedback system have real parts smaller
than , for all .

B. Discrete-Time Systems

This section discusses how to obtain the optimal control law
for the discrete-time system. We shall first introduce the issue of
the finite-horizon optimal control problem, and then the infinite-
horizon optimal control problem. Assume our system is

(53)

The finite-horizon optimal control problem is to search an op-
timal control law to minimize in (4).

Proposition 8: Let
be given matrices. Suppose the matrix Riccati

equation

(54)

with , has a solution ,
then there exists an optimal control law which minimizes

in (4) for the system in (53) with The op-
timal control law is

and the corresponding optimal trajectory is

Moreover, the minimum value of is , and,
via some standard matrix manipulations, the matrix Riccati dif-
ference equation in (54) can be rewritten as

(55)

Proof: 1) Define

By the principle of optimality in dynamic programming in [33],
[34], the above equation can be rewritten as

x

We notice that . Therefore,
want to look for a solution of the form

with , where is the introduced time step vari-
able. Hence, we have

(56)

where

Then, we perform the minimization of with respect to

Accordingly, we can obtain

(57)

(58)

Substituting (57) and (58) into (56), we have
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by denoting time dependence as a lower index. Furthermore, via
(58), we have

Hence, (54) holds. Now, we shall show that (54) and (55) are
equivalent via the matrix manipulations as below. By omitting
the time-dependence index at time-stepfor notation simplifi-
cation, we have

which is equivalent to (55) since

Then, substituting (55) into
, we obtain

This completes the proof.
Now, we turn to the infinite-horizon optimal control problem

with time-invariant system and use to denote the limit
value of the matrix Riccati difference equation in (54) or (55),

i.e., .
Proposition 9 [24]: Let be given matrices.

If is stabilizable and is detectable, then

1) there exists a unique symmetric positive semidefinite so-
lution of the S.S.R.E.

(59)

which can be rewritten as

(60)

2) the asymptotically optimal control law is

which minimizes in (28), and the minimum value
of is ;

3) the closed-loop feedback system is asymptotically and
exponentially stable.
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