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Note that compared to theH1 square-root formulas, the size of the
pre-array in theH1 fast recursions has been reduced from(p + q +
n) � (p + q + n + m) to (p + q + n) � (p + q + d) wherem; p,
andq are the dimensions of the driving disturbance, output, and states
to be estimated, respectively, and wheren is the number of the states.
Thus the number of operations for each iteration has been reduced from
O(n3) toO(n2d) with d typically much less thann.

As in the square-root case, the fast recursions do not require explic-
itly checking the positivity conditions of Theorem 1—if the recursions
can be carried out then anH1 estimator of the desired level exists, and
if not, such an estimator does not exist.

B. The Central Filters

We finally remark that fast array algorithms can also be developed
for the centralH1 filters (3.8) and (3.9). The resulting statements are
straightforward and will be omitted for brevity.

VI. CONCLUSION

In this paper, we developed square-root and fast array algorithms for
theH1 a priori anda posterioriand filtering problems. These algo-
rithms involve propagating the indefinite square-roots of the quantities
of interest and have the interesting property that the appropriate inertia
of these quantities is preserved. Moreover, the conditions for the ex-
istence of theH1 filters are built into the algorithms, so that filter
solutions will exist if, and only if, the algorithms can be executed.

The conventional square-root and fast array algorithms are preferred
because of their better numerical behavior (in the case of square-root
arrays) and their reduced computational complexity (in the case of the
fast recursions). Since theH1 square-root and fast array algorithms
are the direct analogs of their conventional counterparts, they may be
more attractive for numerical implementations ofH1 filters. However,
sinceJ-unitary rather than unitary operations are involved, further nu-
merical investigation is needed.

Our derivation of theH1 square-root and fast array algorithms
demonstrates a virtue of the Krein space approach toH1 estimation
and control; the results appear to be more difficult to conceive and
prove in the traditionalH1 approaches. We should also mention that
there are many variations of the conventional square-root and fast
array algorithms, e.g. for control problems, and the methods given
here are directly applicable to extending these variations to theH1

setting as well. Finally, the algorithms presented here are equally
applicable to risk-sensitive estimation and control problems and to
quadratic dynamic games.
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Reliable Control of Nonlinear Systems

Yew-Wen Liang, Der-Cherng Liaw, and Ti-Chung Lee

Abstract—In this paper, we extend Veillette’s results (1995) to the study
of reliable linear-quadratic regulator problem for nonlinear systems. This
is achieved by employing the Hamilton–Jacobi inequality in the nonlinear
case instead of algebraic Riccati equation in the linear one. The proposed
state-feedback controllers are shown to be able to tolerate the outage of
actuators within a prespecified subset of actuators. Both the gain margins
of guaranteeing system stability and retaining a performance bound are
estimated.

Index Terms—Algebraic Riccati equation, Hamilton–Jacobi inequality,
linear-quadratic regulator problem.

I. INTRODUCTION

The study of the design of reliable control systems which can
tolerate the failure of the control components and retain the desired
system performance has recently attracted considerable attention
(see e.g., [1] and [6]–[10]). Several approaches for the design of the
reliable controllers have been proposed; however, most of those efforts
are focused on linear control systems [1], [6]–[8] rather than nonlinear
ones. For instance, Veillette employed the algebraic Riccati equation
approach to develop a procedure for the design of a state-feedback
controllers, which could tolerate the outage within a selected subset
of actuators while retaining the stability and the known quadratic
performance bound [7]. Both the gain margins for guaranteeing
system’s stability and preserving system performance were also
estimated in [7]. Two recent papers employed the Hamilton–Jacobi
inequality approach to investigate the nonlinear reliable control
problem. One studied the design of controllers that could guarantee
locally asymptotic stability andH1 performance even when some
components failed within a prespecified subset of control components
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[9] and the other investigated the single contingency reliable controller
design problem with strictly redundant control and sensing elements
[10].

The main goal of this paper is to extend Veillette’s results [7] to the
study of reliable linear-quadratic regulator problem for nonlinear sys-
tems. Rather than solving the algebraic Riccati equation in the linear
case [7], we will apply the Hamilton–Jacobi inequality to the study of
the nonlinear one. Although our approach of using Hamilton–Jacobi in-
equality approach is similar to those of [9] and [10], there are four main
differences between this paper and other two. Firstly, this study adopts
quadratic performance index while those of [9] and [10] are concerned
with H1 performance. Secondly, we consider static state feedback
while those of [9] and [10] employed output feedback control struc-
ture. Thirdly, we will estimate both the gain margins of guaranteeing
system stability and retaining a performance bound, which were not
discussed in [9] and [10]. Finally, we seek possible positive semidef-
inite solutions of the Hamilton–Jacobi inequality instead of positive
definite ones as in [9] and [10].

The organization of this paper is as follows. Problem formulation
and required assumptions for the study are given in Section II. It is fol-
lowed by the derivation of the reliable state-feedback control laws and
the corresponding properties of the closed-loop system. Finally, an il-
lustrative example is given in Section IV to demonstrate the application
of the proposed design.

II. PROBLEM FORMULATION

Consider the control systems as given by

_x = f(x) + g(x)u (1)

whereg(x) = (g1(x); � � � ; gm(x)) andu = (u1; � � � ; um)
T . Here,

x 2 n; ui 2 for i = 1; � � � ;m andf(x) as well asgi(x) for
i = 1; � � � ;m are all assumed to be smooth vector fields. For the in-
terest of study, we assumef(0) = 0. The objective of this paper is to
design a state-feedback controller that can tolerate the outage of certain
actuators and simultaneously minimizes the cost function as given by

J =
1

0

(xTQx+ u
T
Ru)dt (2)

whereQ � 0, andR > 0 are constant matrices.
In the following, we adopt the notation
 from [6], [7] as the selected

subset of actuators, within which the outages must be tolerated. The
notation
0 is defined as the complementary subset of
. Then we can
decompose the corresponding matrix functiong(x), the controlu, and
the weighting matrixR as follows:

g(x) = (g
 (x); g
(x)) (3)

u =
u


u

(4)

and

R =
R
 0

0 R


: (5)

In addition, denote
 an arbitrary subset of
 and
0 the complemen-
tary subset of
, respectively. The corresponding decompositions of
g; u, andR with respective to
 and
0 can hence be defined in the
same way as those in (3)–(5).

For the case of which system (1) is linear, that is, system (1) is re-
placed by_x = Ax + Bu, Veillette [7] proposed a reliable state-feed-
back controller to tolerate the outage of specified actuators while re-

taining stability and quadratic performance. In the study of [7], three
assumptions are required for the reliable design. They are: i) the linear
control system is stabilizable for the worst case; ii)(A;Q) is a de-
tectable pair; and iii)R is a diagonal matrix. For the nonlinear case to
be studied in this paper, besides the three assumptions above need to be
modified, two more assumptions are required to provide the existence
of controllers. Details are discussed as follows.

Assumption 1:(f; g
 ) is a stabilizable pair. That is, there exists a
function�(x), which is defined around a neighborhood of the origin,
such that the origin of the system_x = f(x) + g
 (x)�(x) is locally
asymptotically stable.

In order to introduce the detectable condition, we define the virtual
output of (1) as

y = h(x) = Q
1=2

x: (6)

The detectability condition for (1) is then given in the next assumption.
Assumption 2:(f; h) is locally detectable. To employ the definition

of detectability as in [2], it implies that there exists a neighborhoodU

of the origin such that for any state trajectoryx(t) of _x = f(x) with
initial x(0) 2 U , we havelimt!1 x(t) = 0 if h(x(t)) = 0 for all
t � 0.

Assumption 3:R > 0 is a diagonal matrix.
Assumption 4:There exists a smooth positive semidefinite function

V (x), which is locally defined in a neighborhood of the origin inn,
which satisfies the Hamilton–Jocobi inequality

rxV (x)f(x) + h(x)Th(x)

� 1

4
� rxV (x)g
 (x)R�1



g
T

 (x)rT

x V (x) � 0: (7)

Here,rxV (x) denotes the gradient ofV (x).
Assumption 5:The origin of the uncontrolled version of (1) is lo-

cally Lyapunov stable in the setS1 = fx jV (x) = 0g. For the defini-
tion of Lyapunov stability in a set, please refer to [4].

Note that, ifV (x) in Assumption 4 is taken to be a positive definite
function as considered in [9] and [10] instead of a positive semidefinite
one, then the setS1 in Assumption 5 contains the origin only. Assump-
tion 5 can then be removed.

III. M AIN RESULTS

In the following, we will study the reliable control laws for (1) under
Assumptions 1–5. Both the stability gain margin and the performance
gain margin of the closed-loop system will also be discussed. Details
are given as follows.

SupposeV (x) is a smooth positive semidefinite function that
satisfies the Hamilton–Jacobi inequality (7), which is associated with
the worst fault condition for the reliable design. From optimal control
theory and (7), the state-feedback controls for actuators in
0 are
obtained as

u
�


 = � 1

2
� R�1



g
T

 (x)rT

x V (x): (8)

Let the remaining controls associated with the actuators in
 be

u
�


 = � 1

2
� R�1
 g

T

(x)r

T
x V (x): (9)

Thus, the overall state-feedback control becomes

u
� =

u�



u�

= � 1

2
� R�1gT (x)rT

x V (x): (10)

The closed-loop system can then be rewritten as

_x = f(x)� 1

2
g
 (x)R�1



g
T

 (x)rT

x V (x)

� 1

2
g
(x)R

�1


 g
T

(x)r

T
x V (x): (11)
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From (7) and the time derivative ofV (x) along the state trajectory of
(11), we have

_V � �h(x)Th(x)� 1

4
rxV (x)g
 (x)R�1



g
T


 (x)rT

x V (x)

� 1

2
rxV (x)g
(x)R

�1


 g
T


(x)r
T

xV (x): (12)

First, we check the stability of (11) without any actuator outage. It
is observed from (12) that we have_V � 0 for all x in a neighborhood
of the origin. Denotex(t) the timing trajectory of (11) with initial state
x(0). We then have

V (x(t))� V (x(0)) =
t

0

d

d�
V (x(�))d� � 0 (13)

for any t > 0. Let S1 := fx jV (x) = 0g. It is not difficult to check
from (13) thatS1 is an invariant set of (11) and a subset of the set
S := fx j _V (x) = 0g. From (12), for anyx 2 S, we haveh(x) =
0; gT



(x)rT

xV (x) = 0 andgT
(x)r
T

x V (x) = 0: These imply that
u�



= 0 andu�
 = 0 for all x 2 S. System (11) then becomes
_x = f(x) andlimt!1 x(t) = 0 for all x 2 S if Assumption 2 holds.
This leads to the conclusion that the origin is locally asymptotically
stable in the setS1 if both Assumptions 2 and 5 hold. By employing
LaSalle’s Invariant Set Theorem (e.g., [3]) and [4, Lemma 2], we then
have the next stabilization result.

Theorem 1: Suppose Assumptions 1–5 hold. Then the origin of (1)
without any actuator outage is locally asymptotically stabilizable by
the controlu� as in (10).

Proof: Suppose Assumptions 1–5 hold. By [4, Lemma 2] and the
discussions above, we deduce the origin is locally Lyapunov stable.
This results in every trajectory being locally bounded. Since each tra-
jectory with _V = 0 has the propertylimt!1 x(t) = 0, we thus have
the invariant set in_V = 0 being the origin only. The conclusion of
theorem is then implied by LaSalle’s Invariant Set Theorem [3].

Next, we consider the case of which actuators fail to operate or have
change in gain magnitude. DenoteN
 andN
 the diagonal gain ma-
trices corresponding to the control inputsu
 andu
, respectively. The
effective control input of (1) then becomes

u =
u


u

(14)

with u
 = N
 u�



andu
 = N
u
�


. Rewriting (1), we have

_x = f(x)� 1

2
g
 (x)N
 R

�1



g
T


 (x)rT

x V (x)

� 1

2
g
(x)N
R

�1


 g
T


(x)r
T

x V (x): (15)

SinceV (x) satisfies (7), the time derivative ofV (x) along the state
trajectory of (15) is hence calculated as

_V � �h(x)Th(x)

� 1

4
rxV (x)g
 (x)(2N
 � I)R�1



g
T


 (x)rT

xV (x)

� 1

2
rxV (x)g
(x)N
R

�1


 g
T


(x)r
T

xV (x): (16)

It is easy to check from (16) that_V � 0 forN
 > 0:5�I andN
 � 0,
whereI denotes an identity matrix. Note that the definition ofI will
be in effect throughout the remaining of this paper. We have the next
result, which provides an estimation of the gain margin ofN
 andN


to provide the reliable stability of (1).
Theorem 2: Suppose Assumptions 1–5 hold and let the control input

be in the form of (14). Then the origin of (1) will be locally asymptoti-
cally stable forN
 > 0:5�I andN
 � 0. That is, the gains associated
with the control inputu
 can be within[0;1) and those gains associ-
ated withu
 can be within(0:5;1).

The proof of Theorem 2 is similar to that of Theorem 1. Details are
omitted.

In general, we haveN
 = I in the practical application. The time
derivative ofV (x) along the trajectory of (1) with the control input
u = u�



+ N
u

�


 is calculated as

_V = rxV (x)f(x)� 1

2
rxV (x)g
 (x)R�1



g
T


 (x)rT

x V (x)

� 1

2
rxV (x)g
(x)N
R

�1



g
T


(x)r
T

xV (x): (17)

By employing (7), we then have

_V � �h(x)Th(x)� 1

4
rxV (x)g
 (x)R�1



g
T


 (x)rT

x V (x)

� 1

2
rxV (x)g
(x)N
R

�1


 g
T


(x)r
T

x V (x)

= �h(x)Th(x)� (u�
 )TR
 u
�




� 1

2
rxV (x)g
(x)N
R

�1


 g
T


(x)r
T

x V (x): (18)

Assume0 � N
 � 2I ; (18) can then become

_V � �h(x)Th(x)� (u�
 )TR
 u
�




� 1

4
rxV (x)g
(x)R

�1


 N
R
N
R
�1


 g
T


(x)r
T

xV (x)

= �h(x)Th(x)� (u�
 )TR
 u
�


 � (N
u
�


)
T
R
N
u

�




= �xTQx� u
T
Ru: (19)

Taking time integration on both sides of (19) from0 to1, we have

V (x(1))� V (x(0)) � �
1

0

(xTQx+ u
T
Ru)dt: (20)

Based on the discussion above, an estimation of the upper bound of the
cost function for (1) is obtained in the next theorem.

Theorem 3: Suppose Assumptions 1–5 hold and let the control input
be in the form of (14). Then the closed-loop system satisfies the fol-
lowing performance bound:

J =
1

0

(xTQx+ u
T
Ru)dt � V (x0) (21)

for N
 = I and0 � N
 � 2I , wherex0 denotes the initial state of
the system.

Proof: For N
 = I and0 � N
 � 2I , by Theorem 2, the
origin of (1) is guaranteed to be locally asymptotically stable. Thus,
we havelimt!1 x(t) = 0. From (20) andV (0) = 0, the conclusion
of theorem is hence implied.

Remark 1: In Assumption 4, assume the Hamilton–Jacobi in-
equality as in (7) is replaced by the Hamilton–Jacobi equality

rxV (x)f(x) + h(x)Th(x)

� 1

4
� rxV (x)g
 (x)R�1



g
T


 (x)rT

x V (x) = 0: (22)

Then it can be shown by a slight modification of the proof of Theorem 3
that the worst fault performance (that is,N
 = 0) for (1) becomes

J =
1

0

x
T
Qx+ u

T


 R
 u
 dt = V (x0): (23)

Here,x0 denotes the given initial state.
For the case of which actuators in a subset
 of 
 fail to operate, the

next result follows readily from Theorem 3.
Corollary 1: Suppose Assumptions 1–5 hold and let the control

input be in the form of (14). Then the closed-loop system satisfies the
following performance bound:

J =
1

0

x
T
Qx+ u

T


 R
 u
 dt � V (x0) (24)

for N
 = I andN
 = 0, where
 � 
 andx0 denotes the given
initial state of the system.
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Note that, for the case of which (1) is a linear control system, As-
sumptions 1–3 as given in Section II are the same as those of Veil-
lette’s [7]. Moreover, Assumptions 4 and 5 automatically hold for linear
systems since the algebraic Riccati equation is a special case of the
Hamilton–Jacobi inequality as (7). The results for linear system ob-
tained in [7] can be abstracted from this paper.

IV. I LLUSTRATIVE EXAMPLE

This section presents an example to illustrate the use of the main
results.

Example 1: Consider system (1) with

f(x) =

�x31
�x2 + x3x4
�x3 + x24
x4 + x3x4

and g(x) =

1 0

0 x1
x3 0

0 1

: (25)

Denoteg1(x) andg2(x) the first and second columns ofg(x), respec-
tively. It is not difficult to check that(f; g1) is not a stabilizable pair
since it preserves the unstable eigenvalue� = 1 no matter what con-
trol is applied. However,(f; g2) is a stabilizable pair. For instance, the
system can be stabilizable by choosingu1 = 0 andu2 = ��x4 with
� > 1. This results in the second actuator cannot be taken as the sus-
ceptible input. Thus, in this example, we consider
0 = fu2g and

 = fu1g. It follows that the condition of Assumption 1 is satisfied.

As noted in Remark 1, the performance index can be calculated if
the Hamilton–Jacobi equation (22) is able to be solved. Otherwise,
an upper bound of the performance index can be obtained from the
solution of the associated Hamilton–Jacobi inequality. Thus, without
solving the Hamilton–Jacobi equation, it is in general hard to judge
which of the control input has better performance when all the actua-
tors are taken to be the susceptible input. However, unlike the algebraic
Riccati equation which can be explicitly solved in the linear case, there
does not have to be a systematic way to solve the Hamilton–Jacobi
equation so far because of its nonlinear nature (see e.g., [5] and [12]).
A parallel study of linear systems obtained in [7] for the selection of
susceptible inputs is generally hard to derive for the nonlinear system.
In this example, we will only calculate an upper bound of the perfor-
mance index from the solution of the Hamilton–Jacobi inequality by
takingu1 to be susceptible input.

Let the weighting matricesQ andR for the performance index as in
(2) be chosen as

Q =

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

and R =
1 0

0 1
: (26)

The virtual output is hence obtained from (6) asy = h(x) =
(x3; x4)

T . In the following, we will verify the satisfaction of Assump-
tions 2, 4, and 5 to guarantee the reliable stability and estimate the
basin of attraction of the reliable closed-loop system.

To verify Assumption 2, it is noted that ifx(t) is any state trajectory
of the uncontrolled version of (1) satisfying the conditionh(x(t)) = 0
for all t � 0, then we havex3(t) = x4(t) = 0 for all t � 0. It follows
thatx(t) satisfies the constrained dynamics

_x1 = �x31 and _x2 = �x2 (27)

of (25) withx3(t) = x4(t) = 0 for all t � 0. It is not difficult to check
that the origin of the reduced system (27) will be asymptotically stable.
This results inlimt!1 x(t) = 0. Assumption 2 is hence satisfied.

To verify Assumption 4, we choose the positive semidefinite func-
tion V (x) as

V (x) = x23 + kx24: (28)

For (25), we then have

rxV (x)f(x) + hT (x)h(x)

� 1

4
rT

x V (x)g
 (x)gT
 (x)rxV (x)

= �x23 + (2k + 1� k2)x24 + (2 + 2k)x3x
2

4: (29)

The Hamilton–Jacobi inequality is found from (7) to hold if2k+ 1�
k2 < 0. That means Assumption 4 holds ifk >

p
2 + 1: Moreover,

it is not difficult to verify that Assumption 5 holds for (25) by the sim-
ilar approach as those for the verification of Assumption 2. Details are
omitted. Thus, as implied by Theorems 2 and 3, we can choose the con-
trol inputs as

u1 = �x23 and u2 = �kx4 with k >
p
2 + 1 (30)

to provide the reliable stability of (25).
It is noted that the closed-loop system with control in the form of (30)

is a triangular system (for a definition, see e.g., [11]). In the following,
we will employ the results of [11] to estimate the basin of attraction
of the reliable closed-loop system. To this end, we first estimate the
domain of attraction of the subsystem associated with the statesx3 and
x4. By defining the function

W1(x3; x4) = x23 + hx24 with h > 0 (31)

from (25) and (30) we have

_W1 = 2f�x23 � �x43 + [(1 + h)x3 + h� hk]x24g: (32)

Here,� = 0 if u1 fails while � = 1 if u1 is in normal operating
condition. This implies that_W1 < 0 if x3 < (h(k� 1))=(h+ 1).
Thus, the region

A = (x3; x4)
T jW1(x3; x4) <

h(k � 1)

h+ 1

2

(33)

is an estimation of the domain of attraction of the subsystem associated
with the statesx3 andx4 regardless of whether the first actuator fails
or gives normal operation. Next, it is not difficult to check that the
closed-loop subsystem associated with the statesx1 andx2 by setting
x3 = x4 = 0 is globally asympaitically stable. Finally, to conclude
that 2 � A is an estimation of the domain of attraction for the whole
closed-loop system, it remains to show that each orbit of the example
system with initial point in 2 � A is bounded fort > 0. To see this,
let us define the function

W2(x) = x21 + x22 + x23 + x24: (34)

Then the time-derivative ofW2 along the trajectories of (25) is calcu-
lated as

_W2 = 2 �x41 � x22 � �x1x
2

3 + x2x3x4 � kx1x2x4

� x23 + 2x3x
2

4 � �x43 + (1� k)x24

� 2 �x41 � x22 � x23 � �x43 + (1� k)x24 + �k � jx1x2j
+ �2(� � jx1j + jx2j) + 2�3 (35)

for k(x3; x4)T k < � < 1. Here,k � k denotes the Euclidean norm
of a vector. It follows that _W2 < 0 on the setfx : k(x3; x4)T k <
�; k(x1; x2)T k > �g with � sufficient small and� sufficient large.
According to [11, Th. 4.5], every orbit with initial point in 2 � A
is hence bounded fort > 0. The set 2 �A is then concluded by [11,
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Fig. 1. Norm of states.

Fig. 2. Norm of control inputs.

Corollary 4.6] to be an estimation of the domain of attraction for the
whole closed-loop system.

Numerical simulations for Example 1 are given in Figs. 1 and 2. In
these simulations, the initial state and the positive semidefinite function
V (x) are chosen to bex0 = (0:1; 1:2; 0:7; 0:9)T andV (x) = x23 +
3x24, respectively. Fig. 1 shows the time evolution of the norm of system
state and Fig. 2 gives the norm of the applied control force. In these
two figures, solid-line associates with the case of(N
 ; N
) = (1; 1),
while the dashed line and dotted line correspond to those cases of which
(N
 ; N
) = (1; 0) and(N
 ; N
) = (1; 2), respectively. That is, the
dashed line shows the case in which the first actuator fails to operate,
while the dotted line shows the case in which the first feedback-loop
gain is amplified. In these three cases, all the states are observed to
converge to the origin, which agrees with the conclusion of Theorem 2.
Moreover, by Theorem 3, an upper boundV (x0) for the cost function
J for all three cases is calculated to be 2.92.

V. CONCLUSION

In this paper, we have employed the Hamilton–Jacobi inequality ap-
proach to study the reliable linear-quadratic regulator problem for non-
linear systems. The proposed state-feedback controllers are shown to
be able to tolerate the outage of actuators within a prespecified subset

of actuators. Moreover, both the gain margins of guaranteeing system
stability and retaining a performance are also estimated.
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