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Note that compared to thE > square-root formulas, the size of the [7] A. H. Sayed and T. Kailath, “Extended Chandrasekhar recursions,”

pre-array in theH > fast recursions has been reduced frgmt ¢ + IEEE Trans. Automat. Confwol. 39, pp. 619-623, Mar. 1994.

] ] ; [8] T. Basar, “Optimum performance levels for minimax filters, predictors
n)x(ptat n * n?) o +q + n) x .(p +q+ d) wherem, p, and smoothers,Syst. Contr. Letfvol. 16, pp. 309-317, 1991.
andq are the dimensions of the driving disturbance, output, and states{Q] P. P. Khargonekar and K. M. Nagpal, “Filtering and smoothing in an

to be estimated, respectively, and wheris the number of the states. H* setting,”|EEE Trans. Automat. Coniwol. 36, pp. 151-166, 1991.
Thus the number of operations for each iteration has been reduced froi#f)] U. Shaked and Y. Theodor,H >-optimal estimation: A tutorial,”
()(n“‘) '[OO(nZd) with d typically much less than. in Proc. IEEE Conf. Decision and Controlfucson, AZ, 1992, pp.

/ . . . 2278-2286.
. Asin th_e square'r(_)_Ot_ case, th? fast recursions do _nOt require ?Xp“?il] B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in Krein
itly checking the positivity conditions of Theorem 1—if the recursions spaces—Parts | and II: Theory and applicatiofSEE Trans. Automat.
can be carried out then d&h> estimator of the desired level exists, and Contr, vol. 41, pp. 18-49, Jan. 1996.
if not, such an estimator does not exist. [12] B. Hassibi, “Indefinite metric spaces in estimation, control and adaptive
filtering,” Ph.D. dissertation, Stanford Univ., CA, 1996.
. [13] s. Bittante, A. J. Laub, and J. C. Willems, Ed$he Riccati Equa-
B. The Central Filters tion. Berlin, Germany: Springer-Verlag, 1991.
We finally remark that fast array algorithms can also be developed
for the centralH = filters (3.8) and (3.9). The resulting statements are

straightforward and will be omitted for brevity.

VI. CoNcLUsIO , :
NCLUSION Reliable Control of Nonlinear Systems

In this paper, we developed square-root and fast array algorithms for
the H*° a priori anda posterioriand filtering problems. These algo- Yew-Wen Liang, Der-Cherng Liaw, and Ti-Chung Lee
rithms involve propagating the indefinite square-roots of the quantities
of interest and have the interesting property that the appropriate inertia ) ) ’
of these quantities is preserved. Moreover, the conditions for the %¥}éﬁ;ggcﬁ;£:h's paper, we extend Veillette's results (1995) to the study
. o £ o . ) -quadratic regulator problem for nonlinear systems. This
istence of thel ™ filters are built into the algorithms, so that filter is achieved by employing the Hamilton—-Jacobi inequality in the nonlinear
solutions will exist if, and only if, the algorithms can be executed. case instead of algebraic Riccati equation in the linear one. The proposed
The conventional square-root and fast array algorithms are prefersgate-feedback controllers are shown to be able to tolerate the outage of
because of their better numerical behavior (in the case of square-rdgtiators within a prespecified subset of actuators. Both the gain margins
- . S f guaranteeing system stability and retaining a performance bound are
arrays) and their reduced computational complexity (in the case of tz]sef?mated.
fast recursions). Since thE°° square-root and fast array algorithms
are the direct analogs of their conventional counterparts, they may
more attractive for numerical implementationgbi* filters. However,
sinceJ-unitary rather than unitary operations are involved, further nu-
merical investigation is needed. |. INTRODUCTION
Our derivation of theH ™ square-root and fast array algorithms
demonstrates a virtue of the Krein space approacH to estimation
and control; the results appear to be more difficult to conceive a
prove in the traditionaH “° approaches. We should also mention tha

b@dex Terms—Algebraic Riccati equation, Hamilton—Jacobi inequality,
linear-quadratic regulator problem.

The study of the design of reliable control systems which can
m}erate the failure of the control components and retain the desired
ystem performance has recently attracted considerable attention

there are many variations of the conventional square-root and f%‘?ebT'g" [1] Zlilnd [E]_[l?)])' Several a%prr:)aches for the ?ehsign o;fthe
array algorithms, e.g. for control problems, and the methods givé‘?‘f'a e controllers have been proposed; however, most of those efforts

here are directly applicable to extending these variations tditfte are focuseq on linear C(.)erI systems [1], [6]-[8] rat_hert_han _nonlingar
setting as well. Finally, the algorithms presented here are equa‘ﬂ es. For instance, Veillette employed the alg:_ebra|c Riccati equation
applicable to risk-sensitive estimation and control problems and i proach to dt_evelop a procedure for the des'.gn of a state-feedback
. . controllers, which could tolerate the outage within a selected subset
quadratic dynamic games. . - - .
of actuators while retaining the stability and the known quadratic
performance bound [7]. Both the gain margins for guaranteeing
system’s stability and preserving system performance were also
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[9] and the other investigated the single contingency reliable controli@ining stability and quadratic performance. In the study of [7], three
design problem with strictly redundant control and sensing elememissumptions are required for the reliable design. They are: i) the linear
[10]. control system is stabilizable for the worst case;(ii), @) is a de-

The main goal of this paper is to extend Veillette’s results [7] to thectable pair; and iii)? is a diagonal matrix. For the nonlinear case to
study of reliable linear-quadratic regulator problem for nonlinear sybe studied in this paper, besides the three assumptions above need to be
tems. Rather than solving the algebraic Riccati equation in the lingapdified, two more assumptions are required to provide the existence
case [7], we will apply the Hamilton—Jacobi inequality to the study aff controllers. Details are discussed as follows.
the nonlinear one. Although our approach of using Hamilton—Jacobi in-Assumption 1:( f, go-) is a stabilizable pair. That is, there exists a
equality approach is similar to those of [9] and [10], there are four mafanction a(z), which is defined around a neighborhood of the origin,
differences between this paper and other two. Firstly, this study adoptgh that the origin of the systein= f(x) + go/(x)a(x) is locally
quadratic performance index while those of [9] and [10] are concernadymptotically stable.
with H., performance. Secondly, we consider static state feedbackn order to introduce the detectable condition, we define the virtual
while those of [9] and [10] employed output feedback control struoutput of (1) as
ture. Thirdly, we will estimate both the gain margins of guaranteeing )
system stability and retaining a performance bound, which were not y=h(x)=Q" (6)

discussed in [9] and [10]. Finally, we seek possible positive semid he detectabilit dition for (1) is th . inth " i
inite solutions of the Hamilton—Jacobi inequality instead of positiv € detectability condition for (1) is then given in the next assumption.

definite ones as in [9] and [10]. Assumption 2:(f, k) is locally detectable. To employ the definition

The organization of this paper is as follows. Problem 1‘ormulatio?1f detect_aplllty asin [2], itimplies that t_here exists _a nelghborhﬁod
f the origin such that for any state trajectarft) of # = f(z) with

and required assumptions for the study are given in Section Il. Itis Q" , Y . ) S !
lowed by the derivation of the reliable state-feedback control laws aHHEa[I) (0) € U, we havelimi o «(t) = 0 if h(x(t)) = 0 for all
the corresponding properties of the closed-loop system. Finally, an'il=. ™

lustrative example is given in Section IV to demonstrate the applicationﬁssump:!on 2$h> 0 |s_atd|agonaltrr?atrl>ft._ idefinite functi
of the proposed design. ssumption 4: There exists a smooth positive semidefinite function

V' (x), which is locally defined in a neighborhood of the originRfi,
which satisfies the Hamilton—Jocobi inequality
Il. PROBLEM FORMULATION
Consider the control systems as given by V. V(@) f(x)+ h(x)" h(x) B B
— 5 Vo V(@)gor () Ry 9oy (2) Vo V() 0. (7)

i = f(2) +g(x)u )
, o Here, V.,V (x) denotes the gradient &f(x).
whereg(z) = (g1(x),---, gm(x)) andu = (u1,---,un)" . Here,  Assumption 5: The origin of the uncontrolled version of (1) is lo-
v € R"u; € Rfori = 1,---,m andf(z) as well asg;(x) for  cally Lyapunov stable in the st = {« | V(x) = 0}. For the defini-
i = 1.---,m are all assumed to be smooth vector fields. For the ifipon of Lyapunov stability in a set, please refer to [4].

terest of study, we assunfé0) = 0. The objective of this paperisto  Note that, ifi" (=) in Assumption 4 is taken to be a positive definite
design a state-feedback controller that can tolerate the outage of cer@ttion as considered in [9] and [10] instead of a positive semidefinite
actuators and simultaneously minimizes the cost function as given Byie, then the set; in Assumption 5 contains the origin only. Assump-
o0 tion 5 can then be removed.
J= / (2" Qu + u” Ru) dt @
0 . MAIN RESULTS
where@ > 0, andR > 0 are constant matrices.

In the following, we adopt the notatidaafrom [6], [7] as the selected
subset of actuators, within which the outages must be tolerated.
notationsY’ is defined as the complementary subsetofhen we can
decompose the corresponding matrix functjom), the controk:, and
the weighting matrix® as follows:

In the following, we will study the reliable control laws for (1) under
.lﬁhsesumptions 1-5. Both the stability gain margin and the performance
gain margin of the closed-loop system will also be discussed. Details
are given as follows.

SupposeV (x) is a smooth positive semidefinite function that
satisfies the Hamilton—Jacobi inequality (7), which is associated with
©) the worst fault condition for the reliable design. From optimal control

g(x) = (gar (), ga(x
() B (=) theory and (7), the state-feedback controls for actuator®’irare

obtained as
v = () @) uiy == Bolghi (o) VIV (). ®)
UQ
and Let the remaining controls associated with the actuatofs fre
R (BQ 0 ) 5) g = =5 By ga (0) ViV (). 9
0 Re Thus, the overall state-feedback control becomes
In addition, denoté€) an arbitrary subset ¢2 and(2’ the complemen- wr . .
. . . * 1924 1 —1 1 -Tyr
tary subset of?, respectively. The corresponding decompositions of uo= <UE3 ) =—5-R g (2)V.V(x). (10)

g, u, and R with respective td2 andQ’ can hence be defined in the
same way as those in (3)—(5). The closed-loop system can then be rewritten as
For the case of which system (1) is linear, that is, system (1) is re- L o ’
S A , i ; &= f(x) = 2go(r)Rg: go (2)V V(x)
placed byi = Az + Bu, Velillette [7] proposed a reliable state-feed- ¥ = f() = 390/ () Bor go @
back controller to tolerate the outage of specified actuators while re- — égg(:r)R;gSTz(m)VZV(m). (11)
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From (7) and the time derivative &f () along the state trajectory of  In general, we havé/o, = I in the practical application. The time
(11), we have derivative ofV(x) along the trajectory of (1) with the control input
. u = ugy, + Noug, is calculated as

V < —h(x) hix) - %VIV(m)gQ/(m)Ré}ggr(m)VlT,V(m) “ ‘ ‘ -

— VLV (@)ga(e) Ba gb () VTV (@), (12  V=VV@he) - VY @ )Ry b (2T V()

— V. V(2)ga(x)NaRy ' g4 (2)VIV (2). 17
First, we check the stability of (11) without any actuator outage. It 2 (@)ga(x)NaRo ga (@ (@) an
is observed from (12) that we have < 0 for all = in a neighborhood By employing (7), we then have
of the origin. Denote:(¢) the timing trajectory of (11) with initial state

z(0). We then have V< —h(x) hix) - J—lvx"’r(:lj)ggf(;L’)R;,lgé/(:L’)VT,IJVV(:L')
o ) g - %Vﬂ/'(;t)ggg(;r)L 'ngRS;lgé(;L’)Vz,"/(;t)
Viz(t)) = V(x(0)) = /0 . V(z(r)dr <0 (13) = () h(e) = (uh)’ Reoruiy
1w 17/ T —1’1’1/,1'/-7
for anyt > 0. LetS; := {«|V(x) = 0}. Itis not difficult to check = 3 VeVi@)ga(x)NaRg g0 (2) V2 V(2). (18)

from (13) thatS; is an invariant set of (11) and a subset of the s
S := {x|V(x) = 0}. From (12), for any: € S, we haveh(x) =
0,95 (2)VIV(x) = 0 andgd (2)VIV(x) = 0. These imply that ¥V < —h(e)"hie) = (i) Reyuiy
ug = 0 anduy = 0 forall z € S. System (11) then becomes -
& = f(x) andlim;—. «(t) = 0 forall z € S if Assumption 2 holds.

%ssumeo < Nq < 21, (18) can then become

- %Vzv(l’)gsz(iL’)BglestzstRglyg (2)VEV (x)

This leads to the conclusion that the origin is locally asymptotically = —h(z)" h(z) = (uy)’ Rorugy — (Noug)' RoNaug
stable in the sef if both Assumptions 2 and 5 hold. By employing = —2"Qz —u" Ru. (19)
LaSalle’s Invariant Set Theorem (e.g., [3]) and [4, Lemma 2], we then

have the next stabilization result. Taking time integration on both sides of (19) frdhto ~c, we have

Theorem 1: Suppose Assumptions 1-5 hold. Then the origin of (1) -
without any actuator outage is locally asymptotically stabilizable by v (x(c0)) — V(2(0)) < — / (2" Qx +u" Ru) dt. (20)
the controlu™ as in (10). ‘ ' 0

~ Proof: Suppose Assumptions 1-5 hold. By [4, Lemma 2] and thgaseq on the discussion above, an estimation of the upper bound of the
discussions above, we deduce the origin is locally Lyapunov stable.; function for (1) is obtained in the next theorem.

This results in every trajectory being locally bounded. Since each trahagrem 3: Suppose Assumptions 1-5 hold and let the control input

jectory withV' = 0 has the propertlim;—o. x(f) = 0, we thus have e in the form of (14). Then the closed-loop system satisfies the fol-
the invariant set il” = 0 being the origin only. The conclusion of lowing performance bound:

theorem is then implied by LaSalle’s Invariant Set Theorem [3]m

Next, we consider the case of which actuators fail to operate or have
change in gain magnitude. Denatg,s and N, the diagonal gain ma-
trices corresponding to the control inputs andu.q, respectively. The
effective control input of (1) then becomes

J= /m(x'fcg;r +u' Ru)dt < V(xo) (21)
0

for N = I and0 < Nq < 21, wherexo denotes the initial state of

the system.
u o [t (14) Proof: For No: = I and0 < No < 2I, by Theorem 2, the
T\ ug origin of (1) is guaranteed to be locally asymptotically stable. Thus,

we havelim:_ .. x(t) = 0. From (20) and’(0) = 0, the conclusion
of theorem is hence implied. [ |

i = f(2) = Lgor () Ney Rt b () VEV (2 Remark 1:In Assumption 4, assume the Hamilton-Jacobi in-
&= J(@) = 390/ (2)Nar Roy 9o (0)V, V() equality as in (7) is replaced by the Hamilton—Jacobi equality

with uqr = Nosug andug = Nougo. Rewriting (1), we have

- %gg(a:)NgR&lgé(a:)VfY”(a:). (15)
V.V () f(x) 4+ h(z) h(x)

SinceV (x) satisfies (7), the time derivative &f(x) along the state ) ) LT
— L VLV (@)gar (1) Ry g (o) VIV(2) = 0. (22)

trajectory of (15) is hence calculated as

V < —h(z) h(z) Then it can be shown by a slight modification of the proof of Theorem 3
B ivﬂ;‘f(l’)ggf(.7:)(217\/.9/ B I)R;l,‘ g&(l’)VIV(m) that the worst fault performance (that i§, = 0) for (1) becomes

— IV, V(2)ga(x)NaRg ' g (2) VIV (2). (16) J= /x (+7 Qe + ub Rarugy ) dt = V(xo).  (23)
0

Itis easy to check from (16) th&t < 0 for Ngys > 0.5-I andNg > 0, ) o
wherel denotes an identity matrix. Note that the definitionfofvill ~ H€re,zo denotes the given initial state. .
be in effect throughout the remaining of this paper. We have the next 0" the case of which actuators in a sulise 2 fail to operate, the

result, which provides an estimation of the gain margitVof andN,, nextresult follows readily from Theorem 3.
to provide the reliable stability of (1). Corollary 1: Suppose Assumptions 1-5 hold and let the control

Theorem 2: Suppose Assumptions 1-5 hold and let the control inpmput be in the form of (14). Then the closed-loop system satisfies the

be in the form of (14). Then the origin of () will be locally asymptoti-following performance bound:

cally stable fotVg: > 0.5-1 andNg, > 0. Thatis, the gains associated oo -
with the control input.q can be within0, o) and those gains associ- J= / (l’l Qz + uéfRQ'UQf> dt < V(wo) (24)
ated withug, can be within(0.5, 5c). 0

The proof of Theorem 2 is similar to that of Theorem 1. Details afer No, = I and N, = 0, where2 C Q andx, denotes the given
omitted. initial state of the system.
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Note that, for the case of which (1) is a linear control system, As- To verify Assumption 4, we choose the positive semidefinite func-
sumptions 1-3 as given in Section Il are the same as those of Vibn V() as
lette’s [7]. Moreover, Assumptions 4 and 5 automatically hold for linear i , ,
systems since the algebraic Riccati equation is a special case of the Viz) = w5 + k. (28)
Hamilton—Jacobi inequality as (7). The results for linear system op-
tained in [7] can be abstracted from this paper. por (25), we then have
V.V (x)f(x)+ " (x)h(x)

IV. |LLUSTRATIVE EXAMPLE _ iVZV(m)ggr(m)ggff(,r)VIV(,r)

This section presents an example to illustrate the use of the main =254+ Qk+1 -k + 2+ 2k)asx;. (29)
results.

Example 1: Consider system (1) with The Hamilton-Jacobi inequality is found from (7) to hol@i + 1 —

k?* < 0. That means Assumption 4 holdskif> /2 4+ 1. Moreover,
3 1 0 it is not difficult to verify that Assumption 5 holds for (25) by the sim-

g+ 1L3 4 0 ilar approach as those for the verification of Assumption 2. Details are
flz) = 9 and g(x) = (25) omitted. Thus, as implied by Theorems 2 and 3, we can choose the con-
—x3 + @ 0
S trol inputs as
X4 + XT3X4g 0 1

, up = —;L’é and u, = —kxy with &k > V2+1 (30)

Denoteg: () andg () the first and second columns @fx), respec-
tively. It is not difficult to check that f, ¢1) is not a stabilizable pair to provide the reliable stability of (25).
since it preserves the unstable eigenvalue 1 no matter what con-  Itis noted that the closed-loop system with control in the form of (30)
trol is applied. Howeverf, g2 ) is a stabilizable pair. For instance, theis a triangular system (for a definition, see e.g., [11]). In the following,
system can be stabilizable by choosing= 0 andu. = —ax4 with  we will employ the results of [11] to estimate the basin of attraction
a > 1. This results in the second actuator cannot be taken as the safsthe reliable closed-loop system. To this end, we first estimate the
ceptible input. Thus, in this example, we consifér = {u-} and domain of attraction of the subsystem associated with the statasd
2 = {1 }. It follows that the condition of Assumption 1 is satisfied. x4. By defining the function

As noted in Remark 1, the performance index can be calculated if . ) .
the Hamilton—Jacobi equation (22) is able to be solved. Otherwise, Wiws, wa) = w5 + hay with i >0 (31)
an upper bound of the perform_ance index_qan be pbtained frqm ng (25) and (30) we have
solution of the associated Hamilton—Jacobi inequality. Thus, without
solving the Hamilton—Jacobi equation, it is in general hard to judge W, = 2{—us — bx5 4+ [(1 4 h)ws + h — hE]zd}. (32)
which of the control input has better performance when all the actua-
tors are taken to be the susceptible input. However, unlike the algebrdire, 5 = 0 if «; fails while 6 = 1 if u; is in normal operating
Riccati equation which can be explicitly solved in the linear case, thegendition. This implies that?y < 0 if z3 < (h(k—1))/(h+1).
does not have to be a systematic way to solve the Hamilton-Jacdbus, the region
equation so far because of its nonlinear nature (see e.g., [5] and [12]). )
A parallel study of linear systems obtained in [7] for the selection of A= (zs,a0)’ | W (23, 24) < <h(k - 1)) (33)
susceptible inputs is generally hard to derive for the nonlinear system. h+1
In this example, we will only calculate an upper bound of the perfor-
mance index from the solution of the Hamilton—Jacobi inequality b:z
takingu to be susceptible input.

Let the weighting matrice® andR for the performance index as in
(2) be chosen as

an estimation of the domain of attraction of the subsystem associated
ith the states:s andxz4 regardless of whether the first actuator fails
or gives normal operation. Next, it is not difficult to check that the
closed-loop subsystem associated with the statendx, by setting

x3 = x4 = 0 is globally asympaitically stable. Finally, to conclude
thatR? x A is an estimation of the domain of attraction for the whole

1 0) closed-loop system, it remains to show that each orbit of the example

01 (26) system with initial point irR? x A is bounded fot > 0. To see this,

and R = <
let us define the function

O

Il
oo oo
coc oo
oo o
— o oo

Wa(x) = 22+ 22+ 2 + 2t (34)
The virtual output is hence obtained from (6) gas= h(x) =
(w3, x4)" . In the following, we will verify the satisfaction of Assump- Then the time-derivative dfi> along the trajectories of (25) is calcu-
tions 2, 4, and 5 to guarantee the reliable stability and estimate iated as
basin of attraction of the reliable closed-loop system.

V., — O S SN e s — ey e
To verify Assumption 2, it is noted thatf(¢) is any state trajectory Wa =2 [—at — a3 — dwras + wawsws — harwaws

of the uncontrolled version of (1) satisfying the conditiof:(t)) = 0 — a5 + 2wsaf — by + (1— k)ti]
forallt > 0, then we haves(t) = x4(t) = 0 forallt > 0. It follows <2 [-at — b — a3 — 6 + (1 — k)ad + ek - [a1ao]
thatx(t) satisfies the constrained dynamics - ‘ '
«(®) y + (6 1] + |2a]) +26°] (35)
7 =—z] and 2= - (27)  for ||(xs,24)T|| < € < 1. Here,|| - || denotes the Euclidean norm

of a vector. It follows thaf¥, < 0 on the setf{x : ||(x3,24)" | <
of (25) withz3(t) = 24 (t) = O forallt > 0. Itis not difficult to check ¢, ||(z1,22)"|| > p} with e sufficient small andp sufficient large.
that the origin of the reduced system (27) will be asymptotically stablaccording to [11, Th. 4.5], every orbit with initial point iR* x A
This results ilim;_ ., z(¢) = 0. Assumption 2 is hence satisfied.  is hence bounded far> 0. The seR? x A is then concluded by [11,
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Corollary 4.6] to be an estimation of the domain of attraction for the
whole closed-loop system.

Numerical simulations for Example 1 are given in Figs. 1 and 2. In
these simulations, the initial state and the positive semidefinite function
V() are chosen to bgy = (0.1,1.2,0.7,0.9)" andV (2) = 23 +
323, respectively. Fig. 1 shows the time evolution of the norm of system
state and Fig. 2 gives the norm of the applied control force. In these
two figures, solid-line associates with the casé®/, No) = (1, 1),
while the dashed line and dotted line correspond to those cases of which
(Nas, No) = (1,0) and(Ngs, No) = (1,2), respectively. Thatis, the
dashed line shows the case in which the first actuator fails to operate,
while the dotted line shows the case in which the first feedback-loop
gain is amplified. In these three cases, all the states are observed to
converge to the origin, which agrees with the conclusion of Theorem 2.
Moreover, by Theorem 3, an upper boukidr, ) for the cost function
J for all three cases is calculated to be 2.92.

V. CONCLUSION

In this paper, we have employed the Hamilton—Jacobi inequality ap-
proach to study the reliable linear-quadratic regulator problem for non-
linear systems. The proposed state-feedback controllers are shown to
be able to tolerate the outage of actuators within a prespecified subset
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of actuators. Moreover, both the gain margins of guaranteeing system
stability and retaining a performance are also estimated.
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