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V. CONCLUSION General Two-Stage Kalman Filters

We have proposed the algorithm which enables us to obtain Chien-Shu Hsieh and Fu-Chuang Chen
reduced-order Riccati equations for PRness, WSPRness and SPRness.
WSPRness can be characterized by the existence of a symmetric
positive definite stabilizing solution for the reduced-order Riccati Abstract—A general two-stage Kalman filter (GTSKF) that is equivalent
equation and, in addition to the existence of the stabilizing soltf. but numerically more efficient than, the standard single-stage Kalman

tion, SPRness by zero or two inherent integration®gf). While
WSPRness and SPRness have been used with confusion in sQ@g

filter is developed for general, time-varying, linear discrete-time systems.
Analytical results defining the reduction in computational burdens are pre-
d. Simulation results that validate the predicted efficiency improve-

literature, the necessary and sufficient condition in the time domaisents are shown as well.

for a WSPR transfer function to be SPR has been demonstrated. Thils

ndex Terms—Reduced-order estimator, reduced-order observer, single-

condition is very important in the adaptive control, Popov criteriony,ge kaiman filter, two-stage Kalman estimator.
and absolute stability theory. We have also shown that the feedback

system consisting of a nonlinear time-invariant passive system and a

WSPR transfer function is asymptotically stable, which has been an I. INTRODUCTION

open problem.

The general state estimation problem in a stochastic linear system is
solved by the well-known Kalman filter (KF). It is known that the KF
ACKNOWLEDGMENT may suffer from computational burden and numerical problems when
state dimensions are large. To reduce the computational burden of the
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where whereC, = [C; C}]. To facilitate the derivation of the GTSKF, it
Xi € R*  system state; will be assumed that the measurement equation is already of the form
up € RY control vector; (4). However, the extra computational load for this state transformation
&+ € R™  measurement vector. will be considered in Section IV.

Matrices Ay, By, andC}, have the appropriate dimensions (rank of The key idea for developing the two-stage filter is based on state
C'. ism < n). The process noises; and the measurement noige transformations that make the covariance matrices block diagonal. This
are zero-mean white Gaussian sequences with the following varianaes) be achieved by applying the following two-stage transformation

E[’LU]\:(’LL'I)/] = Qkékl, E[7]A»(7]1)/] = Rybu, andE[wk(n,)’] =0, [9]
where denotes transpose afid denotes the Kronecker delta function.

The initial stateX, is assumed to be uncorrelated with the white noise T(M)= [I”*P }I}
sequences; andn,., and is assumed to be Gaussian random variables 0 P
with E[Xo] = Xo andVar[Xo] = Po. to the KF. The transformed filter then becomes
Itis well known that the KF may be used to produce the optimal state
estimate. However, the computational cost and the numerical errors of X = T(~Un) Xy s )

the KF increase drastically with the state dimension. Hence, the KF
may be impractical to implement. In such cases, reduced-order filters
are preferable. The computational load of the KF mainly comes from
the ca_tlcul_atlon of the error covariance upda_tlng equations. Thus, |f one Yklk = T(=Vi) Xk (6)
can simplify the calculation of these equations, a more efficient filter

may be obtained. At the same time, the numerical errors can also be

reduced.

Recently, the two-stage decoupling technique of [9] has been used Prjo—r = T(=Uk) Prj—1 T'(=Uy) (7
to reduce the computational complexity of an augmented state Kalman
filter (ASKF) by decoupling the ASKF into two quasiparallel, reduced-
order Kalman filters. These two subfilters are simpler than the ASKF,
and are suitable for parallel computing. The objectives here are: 1)
to apply the two-stage approach to the standard single-stage Kalman
filter to derive the optimal two-stage Kalman filter for general systems,
which can exactly reconstruct the Kalman estimate, and 2) to evaluate Fk\k =T (=Vi) Py I (=Vi) 9
its computing performance.

Fk = T(—V’};)B’k (8)

where P = diag{P', P?}. The blending matrice’, andV, are

left to be determined to make the predicted covariance and the filtered
covariance block diagonal, respectively.

The previously proposed optimal two-stage Kalman estimator Next, based on thisvo-steps iterative substitutianethod of [9], the

(OTSKE) [9] sought to reduce the computational complexity afansformed filter expressed by (5)—(9) can be recursively calculated as
the ASKF in which the augmented state transition matrix was infgllows:

two-block upper triangular form. The efficiency, in terms of fewer
computations rlequi.red, 'of the two.-stage decoupling tephnique is duyw_1 =T(=U)(Ap 1 T (Vi) X e lk—1 + Be_1ur_1) (10)
to order reduction, i.e., implementing an,“+ ny" order filter costs
more than two lesser orderi” and “n.” filters. In this section, the
authors generalize the OTSKE to apply to the more general two-block
partitioned state transition matrix, and the obtained filter will be called__ o _ -
the general two-stage Kalman filter (GTSKF) which is equivalent to, X xis = T(Uk = Vi) X et + Ko (Y = CuT(U) X gpmr) (1)
but more efficient than, the single-stage KF.

Before proposing the GTSKF, some necessary assumptions must be
made about the measurement matfix. Without loss of generality,
it will be assumed that the last” columns of C, with a possible Prjoot =T(=Ur)(Ar1T(Vi—1) Pr—1ji—1
renumbering of the sta@s, are linearly independent [4]. Therefore, we X T (Vee )ALy + Qe )T (=Us) (12)
assume”;. may be partitioned as follows:

I1l. GENERAL TWO-STAGE KALMAN FILTERS

Cv=[Ck C& ]

. Ky =T(Ux — Vi) Prpr T(U,
WhereC]l c an,)((n—p)’clz c R1n><(77—7n)’cij c anxnl,andﬂl S \ & ( k ]\) klk—1 ( k)

p < n. Then, the following state transformation: X CHACKT(U) Py T'(Un)Cr + R} (13)
I 0 0
Xy = 0 I 0|Xx; ® _ _
_ (le:)*l Cll 0 I Py = (T(U, — Vi) — Ika/CT(Uk))P,,,,“,,_1T'(Uk —Vi). (14)

will transform the original measurement equation (2) into the followinpefine the following notations:
desired form:

(15)

Tw) =1 Bl areh= |7 o]

Y =[0 CklXk + s (4) L, M
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Then, using the fact thaf,. T, = 0 andCE;, = C., (10)—(14) can
be expanded into the followingvo-stage decoupled subfilter ane

Xipe =Heor X poajems + Se—1 X fo1ji

+Bi -1 — UnXije_s (16)
?L\k = Hk—I?L—L\k’—lHIQ—l + Sk—lﬁi_uk—isllcfl
+Qily - U (P2 (17)
where
P? = Hy Py Ly, + Sk P My + Q3 (18)
and the followingtwo-stage decoupled subfilter two
Yﬁ\k-i = .Mk71yi~_1|k—1 + Llefly}c—uk—l + Bi_jur—1 (19)
X =Xrppa + K (Yo — CreXipea) (20)
Fi\k—] =M1 Pi_, [k—1 Mi_+ Li—1Pp_, [k—1 Ly
+ Qi (21)
— = — (= — — -1
K} =TTy {CkPi,H._@; n Bk} (22)
Pi = (I - K30 Phuca. (23)
The blending matrices are given by
Up=Vp = Pkl»zl (F)I_Clkfl)_] (24)

Equations (16)—(24) are derived in the Appendix. To guarantee that the5)

matrix inverse in (24) exists, the covarianBg,,_, must be positive
definite. This is guaranteed by assuming tgat > 0. The blending

matrix U, can be viewed as the gain of subfilter one, and acts as the
correcting factor to cancel the coupling effect from subfilter two. This

821

It can be proven that this correcting gain vanishes when the system
transition matrix is in diagonal form, i.e4,> = 0, A}' = 0, and

+2 = 0. Then, from (18), one obtainB*> = 0. In this case, the two
subfilters are completely decoupled.

Based on the above two-stage decoupled subfilters (16)(23) and (6)
and (9), the Kalman estimate can be reconstructed as stated in the fol-
lowing theorem.

Theorem 1: If the predicted error covariand_é\i‘,i,_l of the decou-
pled subfilter two given by (21) is positive definite, and the following
initial conditions

Xo =ToXo)0 + EoXopo
Py = TO?JHOT[; + Eoﬁng(’) (30)
are satisfied, the following general two-stage Kalman filter (GTSKF):

(31
(32

Xije = TeXap + Ex X7
Py = TPy Ti + EvDP7 B

gives the MMSE estimate of the system state.
Remarks:

1) The above GTSKF is optimal in the MMSE sense since it is
equivalent to the KF, and this is deduced from the reasoning
imbedded in the proposed two-steps recursive substitution
method (see [9]), and can be verified by using the inductive
reasoning as in [8].

2) From (16), (17), and (24), itis clear that subfilter one is uncorre-
lated with the matrix?., and hence it is insensitive to the mea-
surement noise covariance uncertainty. Thus, only subfilter two
involves this measurement uncertainty. This is different from the
KF in which all estimates are affected by the measurement noise
covariance.
The GTSKF is computationally attractive since only reduced-
order filters, which are amenable for parallel computing, are in-
volved in the computation. This computational advantage stems
from the fact that the redundant computations and the coupling
effects present in the KF have been reduced. Thus, the GTSKF
can be thought of as a simplified version of the partitioned KF.

Since subfilter two is a standard KF, it is clear that subfilter two

can further be simplified by using the same two-stage decoupling

technique presented here.

Owing to the specific decoupled structure, the GTSKF is

amenable for serving as a unified framework to derive re-

duced-order filters. One known result is the derivation of the
optimal minimum-order observer [4] which can be obtained by
substituting the following values:

3

~

4

~

can be seen by reformulating (16) and (17) into the following modified

Kalman filter form:

1\;1{'\1671 = Hk—1711c71|k71 + 51*—17%71%71 + Bli71“l~':—1 (25)

Xipe =X + Uk (0—X5161) (26)
Pipor =HiaPrypo Hiy + Sk1 Pi_ 1Sy

+ Qit 27)

Ue =P {Pije s + 0}_1 (28)

Pk = Pijj—s — Ui (P21)'. (29)

ék’ = Iwu
into the GTSKF.

IV. PERFORMANCEEVALUATIONS

To demonstrate the computational advantage of the GTSKF over the
KF, the authors used floating point operations, or “flops,” in Matlab as a
measure of the computational complexity. Each multiplication and each
addition contributed one to the flops counts. First, the authors listed the
flops count of the KF as follows:

flops(KF) = 6n° + 4(m + l)n2 + (4771,2 +4m +2g+ 2)n

+om® +m? 1+ m. (33)
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Second, the authors listed the flops count of the GTSKF via the flopsien performance (37) become

of the two-stage decoupled subfilter one (TSDSO), the two-stage de-

coupled subfilter two (TSDST), and the output estimatg,) as Aflops, (GTSKF) = 2n® — 2(m + 1)n?

+(2m> — gm — 2)n — 4p® — 2(n 4+ m)p’
+ (2772 +4mn + gm + 3 — om? — 3m)p
—2m® — gm —m. (42)

flops(TSDSO = 4n” 4 5n° + (24 + 3)n — 2p°
4+ (4n —1)p” — (4n° +3n+2¢+3)p  (34)

flops(TSDST) =6p® + (4m + 3 — 2n)p” + (2n” + 4m> + 2n Comparing (42) with (37), itis clear that the flops counts in (41) will
not affect the RIR value of the GTSKF whens> m. Similarly, it can

A p 3 7 2 7
+dm +20+ Dp+2m° 4 m” +m (35) be checked that the above claim is also true for the parallel result.
In summary, the GTSKF is computationally superior to the KF. Its
ﬂops();—k\k) — 2nptn—2p% — p. (36) computational savings are most significant when the computational

load of the single-stage Kalman filter is heavy because of limited com-

Note that (32) is not included in the above evaluation since it is nButer power.
involved in the recursive algorithm of the GTSKF.
Using (33)—(36), the flops savings, denoted hyflops, of the V. SIMULATION EXAMPLE

GTSKF as compared to the KF is given as To verify the previous analytical results, the following target tracking

5 R simulation was conducted. Consider a target maneuvers a sfoiu90
Aflopsg (GTSKF) = 2n” + (4m — 1)n” with an acceleration of = § = 0.075 m/s’. The initial position and
+ (4m> + 4m — 2)n — 4p° — (2n+4m)p®  velocity of the target were(0) = 2000 m, (0) = 0 m/s,y(0) =
+ (2712 +3—4m?—dm — n)p. (37) 10000 m, andg(0) = —15 m/s. The sampling interval w&s = 10 s;
the simulation time wa800 s. The target position was measured. The

Forn > m and (37) having the maximum value, the authorgset system matrices were given by

0.25n which was obtained by minimizing the followingp® 4 2np* —

2n%p. Then (37) become rt 10 0 0 00
0 1 0 0 00
Aflopsp (GTSKF) = 2.31n® + (3.75m — 1.25)n° A= 3 8 (1) 110 3 3 . Be=0
+ (3m” +3m — 1.25)n. (38)
10 50 0 10
Lo 0 10 50 0 1

From (38), the relative improvement ratio (RIR) of the GTSKF, which ,

is defined by

0 0
. flops(GTSKF |0 0 __[10000 0
RIR(GTSKF) =1 — lim_ “flops(KF) (39) Ce=14y ol - k= { 0 10 000}

10

was about 40%. L0 1

The above analytical results are for sequential processing. Since sub- - 20 2 0 0 100 0

filter two is a reduced-order KF with external inngﬂY}i,_”k_l + 2 0.2 0 0 10 0

B} juj_,,itcanberun without waiting for the message from subfilter 0 0 20 2 0 100

one. On the other hand, the only messages subfilter one needs from Qr = 0 0 2 02 0 10

subfilter two are the prediction information, i.&; , _, andP5; _; .
Thus, they can be easily programmed to run concurrently. To maxi-
mize this parallel effect, the authors uged= 0.7n to minimize the -
term “flopg TSDSO — flops(TSDST).” In this case, the flops savings

of the GTSKF as compared to the KF is modified from (38) to and the state vector was

0 0 100 10 O 500

Aflops,p (GTSKF) = 3.52n” + (2.04m + 0.71)n° Xi=[dr 2 ge G v oyl
+(1.2m* +1.2m + 0.6g+ 1)n.  (40)
The KF and the GTSKF with = 2 and3 are con_sidered. All filters
The RIR of this GTSKE is about 59%. were initialized by taking the initial state estimatg, and the corre-

As noted in the preceding section, one may need to carry out a stR@nding covariance matriky as-Xo ~ N(Xo, Po) andPo = Qo,
transformation in order to get the desired measurement equation (4)MAereXo was the initial target state. The tracking error is defined by
the following, the authors show that this computational overhead is 1B root-mean-square (RMS) of the state estimating error.

excessive. This can be seen by firstly listing the flops count needed by Monte Carlo simulation of 50 runs (using Matlab) was performed.
the state transformation (ST) (3) as follows: The simulation results in Table | show the average RMS tracking error

and the corresponding flops generated by Matlab. Table | shows that the
_ 2 2 L . tracking errors of the KF and the GTSKF are the same, but the flops
flops(ST) = (G'm +21)n +(2m” 4 qm + %m 5 dmp = p)n of the GTSKF is fewer than that of the KF. Note that if one substitutes
=2mp” — (2m+ q+ L)mp+2m” + gm + m. n = 6,m = 2,andp = 2(3) into (37), the flops of the GTSKF
(41) with p = 2 and3 as compared to the KF are reduced by 794 and 663,
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respectively. These results comply with the simulation results of 790 TABLE |
and 653, respectively. PERFORMANCES OF THEKF AND GTSKF
' FILTERS
VI. AN APPLICATION OF THEGTSKF Performances | KF | GTSKF(p=2) | GTSKF(p=3)
. TrackingError | 125.85 125.85 125.85
To demonstrate thg compytat_lonal advantage of the GTSKF, _the Flops 1900 1116 1947
authors give a potential application of the GTSKF as an alternative RIR = 2% 345,

to implement the IMM algorithm [10], an attractive way to reduce
model mismatch. The IMM algorithm is characterized by estimating
the system state with two or more system models operating in parallel. APPENDIX
Because of its decoupling structure, the two-stage Kalman estimatoysing (15), one can expand (10)—(14) into the following two-stage
has been proved to reduce the complexity of the IMM algorithidecoupled subfilter one:
via the interacting acceleration compensation (IAC) algorithm when
applied to the tracking of maneuvering targets, e.g., [11] and [12]. Yi\k—1 =Hk_lyi_1|k_1 + Sk—lyi—”k—]
The IAC algorithm incorporates the concept of the IMM algorithm
for two motion models into the framework of the two-stage estimator.
Simulation results indicate that the tracking performance of the IAC
algorithm approaches that of a comparative IMM algorithm while fim = fi\kfl + K} (Vi — CL,TL,Y}C“C,I) (45)
requiring only about one-half of the computations.

This section extends the multiple model approach to reduce the ef- el g P e s P s
fect of uncertainty in the measurement noise. This uncertainty may be ~ * #lk—1 = Hk=1 5k 1jk—1Hk 1+ 2kt P 1k 19k 1

+ Blifl'ukﬂ - ery%wfl (44)

caused by time-varying parameter variation in the output matrix. For + Qi = Uk (Pklzl)’ (46)
illustration, consider two models: one stands for small measurement
noise, and the other stands for large measurement noise. Thus, twori _ Fimq(Cka)' {C/”A»,Tzﬁ;ﬂue,l(Cka)' 4 RL:}_1 (47)

Kalman filters with differentR;. are needed in the IMM algorithm. The

flops of these two Kalman filters from (33) is of the orden®. Al- _ o _

ternatively, since subfilter one is constant with this measurement noise Pl = (I = KLCxTi) Prjis (48)
uncertainty, it should be calculated only once in order to implement the . ) .
IMM algorithm. On the other hand, subfilter two with differef. is and the following two-stage decoupled subfilter two:
then needed to implement the IMM algorithm. In this case, the GTSKFE__,

is composed of three subfilters. If the state dimension is larger than the klk—1 =
measurement dimension, one can chgose m to reduce the com-
plexity of subfilter two. Substituting thiginto (34) and (35), one finds <2 <= =2 s <=1 2
that the complexity of subfilter two can be ignored. Hence, the flops of Xpe = Xieor + K (Ve = CTieXgn = CeBrXigia)
the GTSKF will be equal to that of subfilter one which is of the order (50)
4n*. Thus, the RIR of the GTSKF becomes

L’k*ly;c—uk—l + lwkﬂyz—uk—l + B qup—1 (49)

ﬁim—l = L’kflﬁL—L\k—lL;c—l + Alkflﬁi—l\k—lﬂﬂc—l + Q%

2 (51)
3nm (43)

RIR(GTSKP =1 —

Ki = Pijj—1 (ChE) {Ck Tk P (ChTw)'

wheren,,, is the model number used in the IMM algorithm. In this —y , -1

two-model case, the RIR is about 70%. It is clear that, from (43), this + ChEx Py (CrEv) + R} (52)
superiority will increase even more if more models are involved in the

IMM algorithm. Pipp = (I = KiCvEi) Py (53)

The blending matrice&;, andV;. are given by
VIl. CONCLUSION

This correspondence presents the general two-stage Kalman filter U = P2, (ﬁi“t._l)*l (54)
(GTSKF). The proposed GTSKF provides the optimal state estimate
which is equivalent to that of the KF. Itis shown that the GTSKF is more
efficient than the single-stage KF. This computational superiority gains

the most benefit when the GTSKF is applied to implement complgyyation (54) is obtained by solving the following constraint:
KF-based filtering algorithms, such as the IMM algorithm. Simula-

Vi = U — K,CLEy. (55)

tion results agree with those predicted by the complexity analygls. QL_Jr - H,_\P_, o L + S TP, o M.,
results suggest that the proposed GTSKF can be used as a simplified 12 .
model to replace the KF for obtaining state estimates in time-varying, +Qro1 = Uk Pl (56)

linear discrete-time stochastic systems. o ) )
Owing to the specific decoupled structure, the proposed GTSKRubstitutingC.Ti = 0 into (45), (47), and (48), one obtains
may also serve as a unified framework to derive reduced-order filter

algorithms. One known result is the derivation of the optimal min- XLM = Y}c\kfla K, =0, ?}c\k = ?Luﬁl- (57)
imum-order observer of Leondes and Novak [4]. The problem of ap- B
plying the GTSKF to derive other reduced-order Kalman filters isundérsing (57) and the notationC,Ex = 4, (44)-(55) become

investigation. (16)—(24).
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