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V. CONCLUSION

We have proposed the algorithm which enables us to obtain
reduced-order Riccati equations for PRness, WSPRness and SPRness.
WSPRness can be characterized by the existence of a symmetric
positive definite stabilizing solution for the reduced-order Riccati
equation and, in addition to the existence of the stabilizing solu-
tion, SPRness by zero or two inherent integration of�(s). While
WSPRness and SPRness have been used with confusion in some
literature, the necessary and sufficient condition in the time domain
for a WSPR transfer function to be SPR has been demonstrated. This
condition is very important in the adaptive control, Popov criterion,
and absolute stability theory. We have also shown that the feedback
system consisting of a nonlinear time-invariant passive system and a
WSPR transfer function is asymptotically stable, which has been an
open problem.
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General Two-Stage Kalman Filters

Chien-Shu Hsieh and Fu-Chuang Chen

Abstract—A general two-stage Kalman filter (GTSKF) that is equivalent
to, but numerically more efficient than, the standard single-stage Kalman
filter is developed for general, time-varying, linear discrete-time systems.
Analytical results defining the reduction in computational burdens are pre-
sented. Simulation results that validate the predicted efficiency improve-
ments are shown as well.

Index Terms—Reduced-order estimator, reduced-order observer, single-
stage Kalman filter, two-stage Kalman estimator.

I. INTRODUCTION

The general state estimation problem in a stochastic linear system is
solved by the well-known Kalman filter (KF). It is known that the KF
may suffer from computational burden and numerical problems when
state dimensions are large. To reduce the computational burden of the
KF, researchers have tried the basis changes technique [1] or used the
uncorrelated assumption of the measurement noises [2] to simplify the
computation. However, their methods are either restricted to time-in-
variant systems with some off-line preprocessing requirement, or non-
practical for general systems. On the other hand, some researchers have
tried to apply reduced-order observers, e.g., [3]–[6]. However, their re-
sults are optimal when all or some of the measurements are perfect.

The goal of this correspondence is to propose a general decoupled
structure of the KF. With this new structure, a more efficient KF, suitable
for parallel-computing, can be obtained. It is shown that the conven-
tional two-stage decoupling technique, originally proposed by Fried-
land [7] to decouple the bias augmented state filter, can be generalized
to achieve this. This correspondence presents the derivation of a general
two-stage Kalman filter (GTSKF) which provides the optimal estimate
of the system state and can be applied to general, time-varying, linear
dynamic systems without a constraint on their structure. This new filter
is more efficient than the single-stage KF. Analytical and numerical
results are both presented to verify this computational advantage. It is
also shown that this computational superiority will gain the most ben-
efit when the proposed GTSKF is applied to implement the interacting
multiple model (IMM) algorithm [10].

This correspondence is organized as follows. The problem is stated
in Section II. In Section III, we apply the two-stage transformation to
the KF to obtain the GTSKF which is optimal in the minimum-mean-
square-error (MMSE) sense. In Section IV, the computational savings
of the GTSKF are analyzed to demonstrate the superiority of the pro-
posed filter. Section V gives a simulated example to verify the results
of Section IV. Section VI gives a potential application of the GTSKF
as an alternative to implement the IMM algorithm. Section VII has the
conclusions.

II. STATEMENT OF THE PROBLEM

Consider the following discrete-time system:

Xk+1 = AkXk +Bkuk + wk (1)

Yk = CkXk + �k (2)
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where
Xk 2 R

n system state;
uk 2 R

q control vector;
Yk 2 R

m measurement vector.
MatricesAk; Bk, andCk have the appropriate dimensions (rank of
Ck ism < n). The process noiseswk and the measurement noise�k
are zero-mean white Gaussian sequences with the following variances:
E[wk(wl)

0] = Qk�kl, E[�k(�l)
0] = Rk�kl, andE[wk(�l)

0] = 0,
where0 denotes transpose and�kl denotes the Kronecker delta function.
The initial stateX0 is assumed to be uncorrelated with the white noise
sequenceswk and�k, and is assumed to be Gaussian random variables
with E[X0] = X0 andVar[X0] = P 0.

It is well known that the KF may be used to produce the optimal state
estimate. However, the computational cost and the numerical errors of
the KF increase drastically with the state dimension. Hence, the KF
may be impractical to implement. In such cases, reduced-order filters
are preferable. The computational load of the KF mainly comes from
the calculation of the error covariance updating equations. Thus, if one
can simplify the calculation of these equations, a more efficient filter
may be obtained. At the same time, the numerical errors can also be
reduced.

Recently, the two-stage decoupling technique of [9] has been used
to reduce the computational complexity of an augmented state Kalman
filter (ASKF) by decoupling the ASKF into two quasiparallel, reduced-
order Kalman filters. These two subfilters are simpler than the ASKF,
and are suitable for parallel computing. The objectives here are: 1)
to apply the two-stage approach to the standard single-stage Kalman
filter to derive the optimal two-stage Kalman filter for general systems,
which can exactly reconstruct the Kalman estimate, and 2) to evaluate
its computing performance.

III. GENERAL TWO-STAGE KALMAN FILTERS

The previously proposed optimal two-stage Kalman estimator
(OTSKE) [9] sought to reduce the computational complexity of
the ASKF in which the augmented state transition matrix was in a
two-block upper triangular form. The efficiency, in terms of fewer
computations required, of the two-stage decoupling technique is due
to order reduction, i.e., implementing an “n1 + n2” order filter costs
more than two lesser order “n1” and “n2” filters. In this section, the
authors generalize the OTSKE to apply to the more general two-block
partitioned state transition matrix, and the obtained filter will be called
the general two-stage Kalman filter (GTSKF) which is equivalent to,
but more efficient than, the single-stage KF.

Before proposing the GTSKF, some necessary assumptions must be
made about the measurement matrixCk. Without loss of generality,
it will be assumed that the last “m” columns ofCk, with a possible
renumbering of the states, are linearly independent [4]. Therefore, we
assumeCk may be partitioned as follows:

Ck = C
1
k C

2
k C

3
k

whereC1
k 2 Rm�(n�p), C2

k 2 Rm�(p�m), C3
k 2 Rm�m, andm �

p < n. Then, the following state transformation:

Xk =

I 0 0

0 I 0

� C3
k

�1
C1
k 0 I

X
t
k (3)

will transform the original measurement equation (2) into the following
desired form:

Yk = [0 Ck]Xk + �k (4)

whereCk = [C2
k C3

k ]. To facilitate the derivation of the GTSKF, it
will be assumed that the measurement equation is already of the form
(4). However, the extra computational load for this state transformation
will be considered in Section IV.

The key idea for developing the two-stage filter is based on state
transformations that make the covariance matrices block diagonal. This
can be achieved by applying the following two-stage transformation
[9]:

T (M) =
In�p M

0 Ip

to the KF. The transformed filter then becomes

Xkjk�1 = T (�Uk)Xkjk�1 (5)

Xkjk = T (�Vk)Xkjk (6)

P kjk�1 = T (�Uk)Pkjk�1T
0(�Uk) (7)

Kk = T (�Vk)Kk (8)

P kjk = T (�Vk)PkjkT
0(�Vk) (9)

whereP = diagfP 1; P 2g. The blending matricesUk andVk are
left to be determined to make the predicted covariance and the filtered
covariance block diagonal, respectively.

Next, based on thetwo-steps iterative substitutionmethod of [9], the
transformed filter expressed by (5)–(9) can be recursively calculated as
follows:

Xkjk�1 = T (�Uk)(Ak�1T (Vk�1)Xk�1jk�1 +Bk�1uk�1) (10)

Xkjk = T (Uk � Vk)Xkjk�1 +Kk(Yk � CkT (Uk)Xkjk�1) (11)

P kjk�1 =T (�Uk)(Ak�1T (Vk�1)P k�1jk�1

� T
0(Vk�1)A

0
k�1 +Qk�1)T

0(�Uk) (12)

Kk =T (Uk � Vk)P kjk�1T
0(Uk)

� C
0
kfCkT (Uk)P kjk�1T

0(Uk)C
0
k +Rkg

�1 (13)

P kjk = (T (Uk � Vk)�KkCkT (Uk))P kjk�1T
0(Uk � Vk): (14)

Define the following notations:

T (Uk) = [Tk Ek]; AkT (Vk) =
Hk Sk

Lk Mk

: (15)
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Then, using the fact thatCkTk = 0 andCkEk = Ck, (10)–(14) can
be expanded into the followingtwo-stage decoupled subfilter one:

X
1

kjk =Hk�1X
1

k�1jk�1 + Sk�1X
2

k�1jk�1

+B
1

k�1uk�1 � UkX
2

kjk�1 (16)

P
1

kjk =Hk�1P
1

k�1jk�1H
0
k�1 + Sk�1P

2

k�1jk�1S
0
k�1

+Q
11

k�1 � Uk P
12

k�1

0
(17)

where

P
12

k = HkP
1

kjkL
0
k + SkP

2

kjkM
0
k +Q

12

k (18)

and the followingtwo-stage decoupled subfilter two:

X
2

kjk�1 =Mk�1X
2

k�1jk�1 + Lk�1X
1

k�1jk�1 +B
2

k�1uk�1 (19)

X
2

kjk = X
2

kjk�1 +K
2

k Yk � CkX
2

kjk�1 (20)

P
2

kjk�1 =Mk�1P
2

k�1jk�1M
0
k�1 + Lk�1P

1

k�1jk�1L
0
k�1

+Q
22

k�1 (21)

K
2

k = P
2

kjk�1C
0
k CkP

2

kjk�1C
0
k +Rk

�1

(22)

P
2

kjk = I �K
2

kCk P
2

kjk�1: (23)

The blending matrices are given by

Uk = Vk = P
12

k�1 P
2

kjk�1

�1

: (24)

Equations (16)–(24) are derived in the Appendix. To guarantee that the
matrix inverse in (24) exists, the covarianceP 2

kjk�1
must be positive

definite. This is guaranteed by assuming thatQ22

k > 0. The blending
matrixUk can be viewed as the gain of subfilter one, and acts as the
correcting factor to cancel the coupling effect from subfilter two. This
can be seen by reformulating (16) and (17) into the following modified
Kalman filter form:

~X1

kjk�1 =Hk�1X
1

k�1jk�1 + Sk�1X
2

k�1jk�1 +B
1

k�1uk�1 (25)

X
1

kjk = ~X1

kjk�1 + Uk 0�X2

kjk�1 (26)

~P 1

kjk�1 =Hk�1P
1

k�1jk�1H
0
k�1 + Sk�1P

2

k�1jk�1S
0
k�1

+Q
11

k�1 (27)

Uk =P 12

k�1 P
2

kjk�1 + 0
�1

(28)

P
1

kjk = ~P 1

kjk�1 � Uk P
12

k�1

0
: (29)

It can be proven that this correcting gain vanishes when the system
transition matrix is in diagonal form, i.e.,A12

k = 0, A21

k = 0, and
Q12

k = 0. Then, from (18), one obtainsP 12

k = 0. In this case, the two
subfilters are completely decoupled.

Based on the above two-stage decoupled subfilters (16)(23) and (6)
and (9), the Kalman estimate can be reconstructed as stated in the fol-
lowing theorem.

Theorem 1: If the predicted error covarianceP 2

kjk�1
of the decou-

pled subfilter two given by (21) is positive definite, and the following
initial conditions

X0 = T0X
1

0j0 +E0X
2

0j0

P 0 = T0P
1

0j0T
0
0 + E0P

2

0j0E
0
0 (30)

are satisfied, the following general two-stage Kalman filter (GTSKF):

X̂kjk = TkX
1

kjk + EkX
2

kjk (31)

P̂kjk = TkP
1

kjkT
0
k +EkP

2

kjkE
0
k (32)

gives the MMSE estimate of the system state.
Remarks:

1) The above GTSKF is optimal in the MMSE sense since it is
equivalent to the KF, and this is deduced from the reasoning
imbedded in the proposed two-steps recursive substitution
method (see [9]), and can be verified by using the inductive
reasoning as in [8].

2) From (16), (17), and (24), it is clear that subfilter one is uncorre-
lated with the matrixRk, and hence it is insensitive to the mea-
surement noise covariance uncertainty. Thus, only subfilter two
involves this measurement uncertainty. This is different from the
KF in which all estimates are affected by the measurement noise
covariance.

3) The GTSKF is computationally attractive since only reduced-
order filters, which are amenable for parallel computing, are in-
volved in the computation. This computational advantage stems
from the fact that the redundant computations and the coupling
effects present in the KF have been reduced. Thus, the GTSKF
can be thought of as a simplified version of the partitioned KF.

4) Since subfilter two is a standard KF, it is clear that subfilter two
can further be simplified by using the same two-stage decoupling
technique presented here.

5) Owing to the specific decoupled structure, the GTSKF is
amenable for serving as a unified framework to derive re-
duced-order filters. One known result is the derivation of the
optimal minimum-order observer [4] which can be obtained by
substituting the following values:

Ck = Im; Rk = 0; p = m

into the GTSKF.

IV. PERFORMANCEEVALUATIONS

To demonstrate the computational advantage of the GTSKF over the
KF, the authors used floating point operations, or “flops,” in Matlab as a
measure of the computational complexity. Each multiplication and each
addition contributed one to the flops counts. First, the authors listed the
flops count of the KF as follows:

flops(KF) = 6n3 + 4(m+ 1)n2 + (4m2 + 4m+ 2q + 2)n

+ 2m3 +m
2 +m: (33)
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Second, the authors listed the flops count of the GTSKF via the flops
of the two-stage decoupled subfilter one (TSDSO), the two-stage de-
coupled subfilter two (TSDST), and the output estimate(X̂kjk) as

flops(TSDSO) = 4n3 + 5n2 + (2q + 3)n� 2p3

+ (4n� 1)p2 � (4n2 + 3n+ 2q + 3)p (34)

flops(TSDST) = 6p3 + (4m+ 3� 2n)p2 + (2n2 + 4m2 + 2n

+ 4m+ 2q + 1)p+ 2m3 +m
2 +m (35)

flops(X̂kjk) = 2np+ n� 2p2 � p: (36)

Note that (32) is not included in the above evaluation since it is not
involved in the recursive algorithm of the GTSKF.

Using (33)–(36), the flops savings, denoted by4 flops, of the
GTSKF as compared to the KF is given as

4flops
KF

(GTSKF) = 2n3 + (4m� 1)n2

+ (4m2 + 4m� 2)n� 4p3 � (2n+ 4m)p2

+ (2n2 + 3� 4m2
� 4m� n)p: (37)

Forn � m and (37) having the maximum value, the authors setp =
0:25nwhich was obtained by minimizing the following:4p3+2np2�
2n2p. Then (37) become

4flops
KF

(GTSKF) � 2:31n3 + (3:75m� 1:25)n2

+ (3m2 + 3m� 1:25)n: (38)

From (38), the relative improvement ratio (RIR) of the GTSKF, which
is defined by

RIR(GTSKF) = 1� lim
n!1

flops(GTSKF)
flops(KF)

(39)

was about 40%.
The above analytical results are for sequential processing. Since sub-

filter two is a reduced-order KF with external inputLk�1X1

k�1jk�1+

B2

k�1uk�1, it can be run without waiting for the message from subfilter
one. On the other hand, the only messages subfilter one needs from
subfilter two are the prediction information, i.e.,X2

kjk�1 andP 2

kjk�1.
Thus, they can be easily programmed to run concurrently. To maxi-
mize this parallel effect, the authors usedp = 0:7n to minimize the
term “flops(TSDSO)� flops(TSDST).” In this case, the flops savings
of the GTSKF as compared to the KF is modified from (38) to

4flops
KF

(GTSKF) = 3:52n3 + (2:04m+ 0:71)n2

+ (1:2m2 + 1:2m+ 0:6q + 1)n: (40)

The RIR of this GTSKF is about 59%.
As noted in the preceding section, one may need to carry out a state

transformation in order to get the desired measurement equation (4). In
the following, the authors show that this computational overhead is not
excessive. This can be seen by firstly listing the flops count needed by
the state transformation (ST) (3) as follows:

flops(ST) = (6m+ 1)n2 + (2m2 + qm+ 4m� 4mp� p)n

� 2mp2 � (2m+ q + 1)mp+ 2m3 + qm+m:

(41)

Then performance (37) become

4flops
KF

(GTSKF) = 2n3 � 2(m+ 1)n2

+ (2m2
� qm� 2)n� 4p3 � 2(n+m)p2

+ (2n2 + 4mn+ qm+ 3� 2m2
� 3m)p

� 2m3
� qm�m: (42)

Comparing (42) with (37), it is clear that the flops counts in (41) will
not affect the RIR value of the GTSKF whenn� m. Similarly, it can
be checked that the above claim is also true for the parallel result.

In summary, the GTSKF is computationally superior to the KF. Its
computational savings are most significant when the computational
load of the single-stage Kalman filter is heavy because of limited com-
puter power.

V. SIMULATION EXAMPLE

To verify the previous analytical results, the following target tracking
simulation was conducted. Consider a target maneuvers a slow 90� turn
with an acceleration of�x = �y = 0:075 m/s2. The initial position and
velocity of the target werex(0) = 2000 m, _x(0) = 0 m/s,y(0) =
10000 m, and _y(0) = �15 m/s. The sampling interval wasT = 10 s;
the simulation time was500 s. The target position was measured. The
system matrices were given by

Ak =

1 10 0 0 0 0

0 1 0 0 0 0

0 0 1 10 0 0

0 0 0 1 0 0

10 50 0 0 1 0

0 0 10 50 0 1

; Bk = 0

Ck =

0 0

0 0

0 0

0 0

1 0

0 1

0

; Rk =
10000 0

0 10 000

Qk =

20 2 0 0 100 0

2 0:2 0 0 10 0

0 0 20 2 0 100

0 0 2 0:2 0 10

100 10 0 0 500 0

0 0 100 10 0 500

and the state vector was

Xk = [ _xk �xk _yk �yk xk yk]
0
:

The KF and the GTSKF withp = 2 and3 are considered. All filters
were initialized by taking the initial state estimateX0 and the corre-
sponding covariance matrixP 0 asX0 � N(X0; P 0) andP 0 = Q0,
whereX0 was the initial target state. The tracking error is defined by
the root-mean-square (RMS) of the state estimating error.

A Monte Carlo simulation of 50 runs (using Matlab) was performed.
The simulation results in Table I show the average RMS tracking error
and the corresponding flops generated by Matlab. Table I shows that the
tracking errors of the KF and the GTSKF are the same, but the flops
of the GTSKF is fewer than that of the KF. Note that if one substitutes
n = 6, m = 2, andp = 2(3) into (37), the flops of the GTSKF
with p = 2 and3 as compared to the KF are reduced by 794 and 663,
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respectively. These results comply with the simulation results of 790
and 653, respectively.

VI. A N APPLICATION OF THEGTSKF

To demonstrate the computational advantage of the GTSKF, the
authors give a potential application of the GTSKF as an alternative
to implement the IMM algorithm [10], an attractive way to reduce
model mismatch. The IMM algorithm is characterized by estimating
the system state with two or more system models operating in parallel.
Because of its decoupling structure, the two-stage Kalman estimator
has been proved to reduce the complexity of the IMM algorithm
via the interacting acceleration compensation (IAC) algorithm when
applied to the tracking of maneuvering targets, e.g., [11] and [12].
The IAC algorithm incorporates the concept of the IMM algorithm
for two motion models into the framework of the two-stage estimator.
Simulation results indicate that the tracking performance of the IAC
algorithm approaches that of a comparative IMM algorithm while
requiring only about one-half of the computations.

This section extends the multiple model approach to reduce the ef-
fect of uncertainty in the measurement noise. This uncertainty may be
caused by time-varying parameter variation in the output matrix. For
illustration, consider two models: one stands for small measurement
noise, and the other stands for large measurement noise. Thus, two
Kalman filters with differentRk are needed in the IMM algorithm. The
flops of these two Kalman filters from (33) is of the order12n3. Al-
ternatively, since subfilter one is constant with this measurement noise
uncertainty, it should be calculated only once in order to implement the
IMM algorithm. On the other hand, subfilter two with differentRk is
then needed to implement the IMM algorithm. In this case, the GTSKF
is composed of three subfilters. If the state dimension is larger than the
measurement dimension, one can choosep = m to reduce the com-
plexity of subfilter two. Substituting thisp into (34) and (35), one finds
that the complexity of subfilter two can be ignored. Hence, the flops of
the GTSKF will be equal to that of subfilter one which is of the order
4n3. Thus, the RIR of the GTSKF becomes

RIR(GTSKF) = 1�
2

3nm
(43)

wherenm is the model number used in the IMM algorithm. In this
two-model case, the RIR is about 70%. It is clear that, from (43), this
superiority will increase even more if more models are involved in the
IMM algorithm.

VII. CONCLUSION

This correspondence presents the general two-stage Kalman filter
(GTSKF). The proposed GTSKF provides the optimal state estimate
which is equivalent to that of the KF. It is shown that the GTSKF is more
efficient than the single-stage KF. This computational superiority gains
the most benefit when the GTSKF is applied to implement complex
KF-based filtering algorithms, such as the IMM algorithm. Simula-
tion results agree with those predicted by the complexity analysis. Our
results suggest that the proposed GTSKF can be used as a simplified
model to replace the KF for obtaining state estimates in time-varying,
linear discrete-time stochastic systems.

Owing to the specific decoupled structure, the proposed GTSKF
may also serve as a unified framework to derive reduced-order filter
algorithms. One known result is the derivation of the optimal min-
imum-order observer of Leondes and Novak [4]. The problem of ap-
plying the GTSKF to derive other reduced-order Kalman filters is under
investigation.

TABLE I
PERFORMANCES OF THEKF AND GTSKF

FILTERS

APPENDIX

Using (15), one can expand (10)–(14) into the following two-stage
decoupled subfilter one:

X
1

kjk�1 =Hk�1X
1

k�1jk�1 + Sk�1X
2

k�1jk�1

+B
1

k�1uk�1 � UkX
2

kjk�1 (44)

X
1

kjk = X
1

kjk�1 +K
1

k Yk � CkTkX
1

kjk�1 (45)

P
1

kjk�1 =Hk�1P
1

k�1jk�1H
0
k�1 + Sk�1P

2

k�1jk�1S
0
k�1

+Q
11

k�1 � Uk P
12

k�1

0
(46)

K
1

k = P
1

kjk�1(CkTk)
0
CkTkP

1

kjk�1(CkTk)
0 +Rk

�1

(47)

P
1

kjk = I �K
1

kCkTk P
1

kjk�1 (48)

and the following two-stage decoupled subfilter two:

X
2

kjk�1 = Lk�1X
1

k�1jk�1 +Mk�1X
2

k�1jk�1 +B
2

k�1uk�1 (49)

X
2

kjk =X
2

kjk�1 +K
2

k Yk � CkTkX
1

kjk�1 � CkEkX
2

kjk�1

(50)

P
2

kjk�1 =Lk�1P
1

k�1jk�1L
0
k�1 +Mk�1P

2

k�1jk�1M
0
k�1 +Q

22

k�1

(51)

K
2

k =P
2

kjk�1(CkEk)
0
CkTkP

1

kjk�1(CkTk)
0

+ CkEkP
2

kjk�1(CkEk)
0+Rk

�1

(52)

P
2

kjk = I �K
2

kCkEk P
2

kjk�1: (53)

The blending matricesUk andVk are given by

Uk = P
12

k�1 P
2

kjk�1

�1

(54)

Vk = Uk �K
1

kCkEk: (55)

Equation (54) is obtained by solving the following constraint:

0 = Hk�1P
1

k�1jk�1L
0
k�1 + Sk�1P

2

k�1jk�1M
0
k�1

+Q
12

k�1 � UkP
2

kjk�1: (56)

SubstitutingCkTk = 0 into (45), (47), and (48), one obtains

X
1

kjk = X
1

kjk�1; K
1

k = 0; P
1

kjk = P
1

kjk�1: (57)

Using (57) and the notation:CkEk = Ck, (44)–(55) become
(16)–(24).
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Adaptive Control of a Weakly Nonminimum Phase Linear
System

Zongli Lin and Gang Tao

Abstract—For a weakly nonminimum phase linear system, we design an
adaptive state feedback control law that causes the system output to track
a desired trajectory to an arbitrarily high degree of precision. The key to
this is the use of a low gain feedback design technique.

Index Terms—Adaptive control, low gain feedback, nonminimum phase,
tracking.

I. INTRODUCTION

It is well known in both classical and modern control that the system
minimum phase property facilitates control designs [1], [3]–[5], [7],
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[9], [10]. However, many practical systems are nonminimum phase
[3]. The nonminimum phase property may prevent some desired con-
trol objectives from being achieved. One of such objectives is that the
system output tracks a desired trajectory. Since the unstable system
zeros cannot be cancelled by standard state or output feedback con-
trollers, special designs are usually needed for output tracking purpose.
Controllers based on the internal model principal [1], [4], [5] are com-
monly used for nonminimum phase systems in order to achieve output
tracking of reference signals at the internal model frequencies.

In this paper we explore a different way of treating nonminimum
phase systems and identify conditions under which certain design ob-
jective can be met for nonminimum phase systems. In particular, by
utilizing the recent development of low gain feedback design tech-
niques [8], we show how adaptive state feedback control laws can be
constructed to cause the output of a weakly nonminimum phase linear
system (a system whose invariant zeros are in the closed left-half of the
complex plane) to track a given reference output trajectory to an arbi-
trarily high degree of precision. The reference output trajectory can be
any smooth signals that do not contain the frequency components of
thejw axis invariant zeros.

The rest of the paper is organized as follows. In Section II, we for-
mulate the problem of designing adaptive state feedback controllers for
weakly nonminimum phase linear systems to ensure desired tracking
properties. In Section III, we will show that, with the use of a low gain
feedback design, our adaptive controller, when applied to a weakly non-
minimum phase linear system, ensures the closed-loop signal bounded-
ness and an output tracking error whose steady-state trajectory can be
made arbitrarily small. We will also present an example with simula-
tion results to illustrate our low gain adaptive controller and its desired
tracking performance. A brief concluding remark is made in Section 4.

II. PROBLEM STATEMENT

Consider the following linear system:

_x0 = A0x0 +B0x1; x0 2
n

_x1 = x2; x1 2
...

_xr�1 = xr

_xr = E0x0 + a1x1 + � � �+ arxr + bu; b > 0

y = x1

(1)

wherex = [x00; x1; x2; . . . ; xr]
0 2 n +r is the state vector,u 2

is the control input,y 2 is the system output, andb andai 's are
unknown system parameters. We have assumed thatb 6= 0, and without
loss of generality, further assumed thatb � b0 > 0 for some knownb0.

We note here that the dynamics ofx0 is the zero dynamics of the
system and the eigenvalues ofA0 are the invariant zeros of the system.
Also note that this system has a relative degree ofr. We further make
the following assumptions on the system.

Assumption 1:The system (1) is of weakly nonminimum phase, i.e.,
all the eigenvalues ofA0 lie in the closed left-half plane.

Assumption 2:The system (1) is stabilizable, i.e., the pair(A0; B0)
is stabilizable.

Our objective is to construct an adaptive state feedback control law
that causes the system outputy(t) to track a desired output trajectory
yd to an arbitrarily high degree of precision without knowing the values
of the system parametersb andai 's. Unlike in the adaptive control of
minimum phase systems in whichA0 is stable, hereA0 is unstable
and needs to be stabilized throughB0. For this reason, we require the
knowledge ofA0 andB0. We also make the following assumption on
the desired trajectoryyd.
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