
276 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

GA-Based Fuzzy Reinforcement Learning for Control
of a Magnetic Bearing System

Chin-Teng Lin, Senior Member, IEEEand Chong-Ping Jou

Abstract—This paper proposes a TD (temporal difference) and
GA (genetic algorithm)-based reinforcement (TDGAR) learning
method and applies it to the control of a real magnetic bearing
system. The TDGAR learning scheme is a new hybrid GA, which
integrates the TD prediction method and the GA to perform
the reinforcement learning task. The TDGAR learning system is
composed of two integrated feedforward networks. One neural
network acts as a critic network to guide the learning of the
other network (the action network) which determines the outputs
(actions) of the TDGAR learning system. The action network can
be a normal neural network or a neural fuzzy network. Using the
TD prediction method, the critic network can predict the external
reinforcement signal and provide a more informative internal
reinforcement signal to the action network. The action network
uses the GA to adapt itself according to the internal reinforcement
signal. The key concept of the TDGAR learning scheme is to
formulate the internal reinforcement signal as the fitness function
for the GA such that the GA can evaluate the candidate solutions
(chromosomes) regularly, even during periods without external
feedback from the environment. This enables the GA to proceed
to new generations regularly without waiting for the arrival of
the external reinforcement signal. This can usually accelerate the
GA learning since a reinforcement signal may only be available
at a time long after a sequence of actions has occurred in the
reinforcement learning problem. The proposed TDGAR learning
system has been used to control an active magnetic bearing (AMB)
system in practice. A systematic design procedure is developed
to achieve successful integration of all the subsystems including
magnetic suspension, mechanical structure, and controller
training. The results show that the TDGAR learning scheme can
successfully find a neural controller or a neural fuzzy controller
for a self-designed magnetic bearing system.

Index Terms—Action network, active magnetic bearing, adap-
tive heuristic critic, critic network.

NOMENCLATURE

Effective flux density of the magnetic circuit.
External disturbance.
Upward force.
Downward force.
Fitness function.
Acceleration of gravity.
Generation size.
Effective inductance of the magnetic circuit.
Mass of the levitated object.
Number of crossover point.

Manuscript received May 12, 1998; revised January 5, 2000. This
work was supported by the R.O.C. National Science Council under Grant
NSC88-2213-E-009-116. This paper was recommended by Associate Editor
A. Kandel.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C.

Publisher Item Identifier S 1083-4419(00)02966-6.

Permeance of the air gap and the leakage path.
Population size.
External reinforcement signal.
Internal reinforcement signal.
Effective resistance of the magnetic circuit.
Reluctance of the iron core of stator.
Reluctance of the main air gap.
Reluctance of leakage.
Reluctance of the permanent magnet.
Reluctance of the rotor.
Supplied voltage to the system.
Prediction of the external reinforcement value.
Leviated object position.
Speed of .
Permeability of air.
Relative permeability of the iron core of stator.
Relative permeability of the permanent magnet.
Relative permeability of the rotor.
Sampling interval.
Magnetic flux of the magnetic circuit.
Discount rate.
Learning rate.

I. INTRODUCTION

M AGNETIC levitation is a subject of considerable scien-
tific interest. It offers many advantages and opportuni-

ties for a wide variety of industrial, medical, and scientific appli-
cations [1]–[3], and high-speed ground transportation systems
[4], [5]. An active magnetic bearing (AMB) is a collection of
electromagnets used to suspend an object via feedback control.
Traditionally, the termmagnetic bearinghas referred to devices
for the suspension of a rotor. Its obvious feature is noncontact
motion. Commercial applications include pumps, compressors,
flywheels, milling and grinding spindles, turbine engines, and
centrifuges. Magnetic suspension offers a number of practical
advantages over conventional bearings such as lower rotating
losses, higher speeds, elimination of the lubrication system and
lubricant contanimation of the process, operation at tempera-
ture extremes and in vacuum, and longer life. However, mag-
netic suspensions have also been applied to nonrotating objects
(sometimes referred to asflotors) for applications as varied as
precision motion, wind tunnel model levitation, vibration iso-
lation systems, and the treatment of brain tumors. AMB appli-
cations often require the solution of very interesting and formi-
dable control problems because of the inherent instability and
the nonlinear relationship between the lift force and the air gap
distance. Thus, many control methods have been proposed to

1083–4419/00$10.00 © 2000 IEEE

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 277

solve these problems, such as gain schedule robust con-
trol [6], nonlinear control [7], [8], adaptive autocentering con-
trol [9], and sliding control [10]. However, all these approaches
need the precise mathematical model of the AMB system. In this
paper, we propose a GA-based reinforcement learning scheme
to solve the control problem of a self-designed and self-built
AMB system with low power consumption.

In neural learning methods, supervised learning is more
efficient than the reinforcement learning when the input-output
training data are available [11]. However,many control problems
require selecting control actions whose consequences emerge
over uncertain periods for which input-output training data are
not readily available. In such a case, reinforcement learning can
be used to learn the unknown desired outputs by providing the
system with a suitable evaluation of its performance [12]. Hence,
the reinforcement learning techniques are more appropriate
than the supervised learning for practical systems such as the
real AMB system studied in this paper. Two general approaches
can achieve the goal of reinforcement learning; theactor-critic
architecture and the genetic algorithm (GA).

Barto and his colleagues built the original actor-critic
architecture using the neuron-like adaptive elements in [13].
This architecture and the adaptive heuristic critic (AHC)
algorithm were fully developed in [14]. The AHC algorithm
belongs to a class of adaptive critic reinforcement learning
algorithms that rely upon both a learned critic function and a
learned action function. Adaptive critic algorithms are designed
for reinforcement learning with delayed rewards. The AHC
algorithm uses the temporal difference method to train a critic
network that learns to predict failure. The prediction is then
used to heuristically generate plausible target outputs at each
time step, thereby allowing the use of backpropagation in a
separate neural network that maps state variables to output
actions. They also proposed the associative reward-penalty

algorithm for adaptive elements called ele-
ments [15]. Several generalizations of algorithm have
been proposed [11]. Williams formulated the reinforcement
learning problem as a gradient-following procedure [16],
and he identified a class of algorithms, called REINFORCE
algorithms, that possess the gradient ascent property; i.e., for
any such algorithm the average update direction in weight
space lies in a direction for which the performance measure
(i.e., average reinforcement) is increasing. In other words, if
the reinforcement indicates improved performance, then the
weights are changed so as to make the element more likely to
do whatever it did; otherwise, if the reinforcement indicates
decreased performance, then the weights are changed to make
the element more likely to do something else. Hence, the
REINFORCE algorithms are gradient-descent optimization
algorithms. Anderson [17] developed a numerical connectionist
learning system by replacing the neuron-like adaptive elements
in the actor-critic architecture with multilayer networks. With
multilayer networks, the learning system can learn more new
features that are required by or that facilitate the search for
the task's solution. In [18] and [19], neural fuzzy networks
were used to replace the neuron-like adaptive elements in the
actor-critic architecture, so that the neural fuzzy network could
house available expert knowledge to speed up its learning.

The main drawback of these actor-critic architectures is that
they usually suffer from the local minima problem in network
learning due to the use of gradient descent learning method.

Another approach to reinforcement learning is by the use of
GA’s. GA’s are general purpose optimization algorithms with a
probabilistic component that provides a means to search poorly
understood, irregular spaces [20]–[24]. From the network
learning point of view, GA’s only need a suitable evaluation
of the network performance to yield the fitness values for
evolution. Because GA’s do not require or use derivative infor-
mation, the most appropriate applications are problems where
gradient information is unavailable or costly to obtain, such as
reinforcement learning problems. GA’s have been widely used
for the design of fuzzy or neural controllers [25]–[30]. Karr [31]
used GA’s to alter the shape of the fuzzy sets used in a given
rule base. Lee and Takagi [32] used a GA to optimize the rule
base (including the number of rules and fuzzy sets per domain).
Kropp and Baitinger [33] proposed the use of a GA to optimize
rule bases such that the problem of generating meaningless
genes using crossover and mutation was avoided. The applica-
tion of GAs to the evolution of neural network topologies has
also produced interesting results [34]–[39]. Whitley and his
colleagues [40] demonstrated how GA’s can be used to train
neural networks for reinforcement learning and neurocontrol
applications. They used the external reinforcement signal from
the environment as the fitness function for the GA’s. Moriarty
and Miikkulainen [41] proposed a new reinforcement learning
method called SANE (Symbiotic Adaptive Neuro-Evolution).
SANE achieves efficient learning throughsymbiotic evolution,
where each individual in the population represents only a partial
solution to the problem, and complete solutions are formed
by combining several individuals. As compared to the afore-
mentioned actor-critic architecture, all the above GA-based
reinforcement learning schemes use only the action networks.
Without the predictions (internal critics) of the critic network,
the GA cannot proceed to the next generation until the arrival
of the external reinforcement signals. This constitutes the main
drawback of these pure GA approaches, since a reinforcement
signal may only be available at a time long after a sequence of
actions has occurred in the reinforcement learning problems.

In this paper, we integrate the actor-critic architecture and the
GA into a new reinforcement learning method. This scheme can
solve the local minima problem in the actor-critic architecture
by making use of the global optimization capability of GA’s.
Also, this method uses a critic network to provide the action net-
work with a more informative internal reinforcement signal, so
that the GA can perform a more effective search on the weight
space of the action network. The proposed method is called the
TD (temporal difference) and GA (genetic algorithm)-based re-
inforcement (TDGAR) learning method, and integrates the TD
prediction method and the GA into the actor-critic architec-
ture to perform the reinforcement learning task. The TDGAR
learning system is constructed by integrating two feedforward
multilayer networks. One neural network acts as a critic network
to guide the learning of the action network, and the other is a
neural network or a neural fuzzy network acting as an action
network for determining the outputs (actions) of the TDGAR
learning system. Using the TD prediction method, the critic net-

278 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

work can predict the external reinforcement signal and provide a
more informative internal reinforcement signal to the action net-
work. The action network uses the GA to adapt itself according
to the internal reinforcement signal. The key concept of the pro-
posed TDGAR learning scheme is to formulate the internal re-
inforcement signal as the fitness function for the GA. By using
the internal reinforcement signal as the fitness function, the GA
can evaluate the candidate solutions (chromosomes) regularly
even during periods without external feedback from the envi-
ronment. Hence, the GA can proceed to new generations regu-
larly without waiting for the arrival of the external reinforcement
signal. The proposed TDGAR learning scheme has been used
to train, respectively, a neural controller and a neural fuzzy con-
troller for a self-designed active magnetic bearing system. Both
trained controllers can suspend the rotor successfully. Also, the
trained neural fuzzy controller does achieve the goal of low-
power-consumption control.

This paper is organized as follows. Section II describes the
mechanical structure of the magnetic bearing system, and its
design issues. The structure of the proposed TDGAR learning
system and the corresponding learning algorithm is presented
in Section III. In Section IV, the TDGAR learning method is
applied to control the magnetic bearing system. Finally, conclu-
sions are made in Section V.

II. DESIGN OF THEACTIVE MAGNETIC BEARING SYSTEM

The basic form of our magnetic bearing system consists
of a levitated object (rotor) and a pair of opposing E-shaped
controlled-PM (permanent magnet) electromagnets with coil
winding, as shown in Fig. 1. The attractive force each elec-
tromagnet exerts on the levitated object is proportional to the
square of the current in each coil and is inversely dependent
on the square of the gap. The coil is highly inductive and the
rate of change of the current is limited. The main advantages
of such a system lie in its higher lift-to-weight ratio and lower
power consumption as compared to the conventional magnetic
suspension system. In this section, the preliminary analysis of
the magnetic circuit is carried out and the design process is
introduced.

Because of the symmetric structure of this system, only one
of the two opposing electromagnetics is considered, as shown
in Fig. 2. The permanent magnet produces not only the main
air gap flux, but also a significant amount of leakage flux. Let

represent the permeance of the air gap and the leakage path.
Expressions of these parameters are given as follows:

(1)

(2)

(3)

(4)

(a)

(b)

Fig. 1. (a) Schematic of the self-designed magnetic bearing system. (b) Picture
of the real magnetic bearing system.

(5)

where is the permeability of air.

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 279

Fig. 2. Air gap and flux leakage for one of the two opposing E-shaped
controlled-PM (permanent magnet) electromagnets with coil winding in the
magnetic bearing system in Fig. 1.

By paralleling and , the main air gap and
leakage reluctance can be obtained as follows:

(6)

(7)

The reluctance of the permanent magnet and the iron core of
stator and rotor are

(8)

(9)

(10)

where are relative permeabilities with respect to PM,
core, and rotor.

The overall magnetic circuit with the permanent magnet as
the mmf source is shown in Fig. 3. From Fig. 3, we apply the
equivalence of Kirchhoff's voltage law to the magnetic circuit
and obtain the magnetic flux in the circuit as

(11)

and

(12)

(13)

(14)

(15)

(16)

Fig. 3. Magnetic circuit of the magnetic bearing system in Fig. 1.

where is the magnetic flux with respect to theth path in
Fig. 3, for .

The average cross-sectional area of each pathis expressed
as follows:

(17)

(18)

(19)

(20)

(21)

According to (12)–(21), the lift force is obtained from the
equation

(22)

Therefore, we get the total force as

(23)

where is the upward force and is the downward force.
By Newton's second law, the force equilibrium equation is

(24)

where and are the mass and position of the rotor, respec-
tively.

In addition, the characteristic of electricity can be obtained
by applying the equivalence of Kirchhoff's voltage law to the
system. The characteristic of electricity describes the dynamic
relationship among the applied voltage to the system and the
resulting current, the effective resistance, and the flux of the
two electromagnets of our system. The diagram of characteristic

280 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

Fig. 4. Diagram for obtaining the characteristic of electricity of the proposed
magnetic bearing system.

of electricity is shown in Fig. 4. Applying the equivalence of
Kirchhoff's voltage law to the circuit in this figure, we can obtain

(25)

supplied voltage to the system;
effective resistance of the magnetic circuit;
effective inductance of the magnetic circuit;
effective flux density of the magnetic circuit.

Hence, we have a simplified dynamic model for the magnetic
bearing system.

The above formulas are used to analyze and design our AMB
system. From Fig. 2, we see that there are eight parameters to
be decided in this system; they are , and

. In this paper, we propose the use of GA to perform this dif-
ficult combinatorial design task. We code the eight parameters
into a chromosome (string) using the real-value coding scheme
(to be discussed in Section III-B2), eight bits for each parameter.
The population size is set as 40. A fitness function is defined to
evaluate if a given AMB system has the desired magnetic force,
Cu-wire resistance, and the flux density in the weak corner.
Also, the eight parameters selected have to avoid crush prob-
lems; that is, to avoid the leviated object (rotor) bumping into
the upper or lower electromagnets. In GA evolution, for each
chromosome we compute the total magnetic force according to
(23) for the corresponding AMB system. With the knowledge
of total magnetic force, we can evaluate the fitness value for
the AMB system and produce the next generation by applying
genetic operators (reproduction, crossover, and mutation). This
process continues until a satisfactory design is obtained. We
have verified that the final design successfully passed the FEM
(finite element method) checking [42].

III. TD AND GA-BASED REINFORCEMENTLEARNING SYSTEM

The proposed TDGAR learning method is an hybrid GA al-
gorithm [43]. Traditional simple GA’s, though robust, are gen-
erally not the most successful optimization algorithm on any
particular domain. Hybridizing a GA with domain-specific al-
gorithms can produce an algorithm better than the GA and the

Fig. 5. Proposed TDGAR learning system.

current algorithms [44]–[50]. GA’s may be crossed with var-
ious problem-specific search techniques to form a hybrid that
exploits the global perspective of the GA (global search) and the
convergence of the problem-specific technique (local search).
In some situations, hybridization entails using the representation
as well as optimization techniques already in use in the domain,
while tailoring the GA operators to the new representation. Ac-
cording to this concept, the proposed TDGAR learning method
is a hybrid of GA and the actor-critic architecture, which is a ma-
ture technique in the reinforcement learning domain. We shall
introduce the structure and learning algorithm of the TDGAR
learning system in the following subsections.

A. Structure of the TDGAR Learning System

The proposed TDGAR learning system is constructed by
integrating two feedforward multilayer networks. One neural
network acts as a critic network for guiding the learning of
the action network, which is a neural controller or a neural
fuzzy controller for determining the outputs (actions) as shown
in Fig. 5. The TDGAR learning system is basically in the
form of the actor-critic architecture [14]. Since we want to
solve reinforcement learning problems in which the external
reinforcement signal is available only after a long sequence
of actions have been acted on the environment, we need a
multistep critic network to predict the external reinforcement
signal. In the TDGAR learning system, the critic network
models the environment such that it can perform a multistep
prediction of the external reinforcement signal caused by the
current action given by the action network. With the multistep
prediction, the critic network can provide a more informative
internal reinforcement signal to the action network. The action
network can then determine a better action for the next time
step, according to the current environment state and the internal
reinforcement signal. The internal reinforcement signal from
the critic network enables both the action network and the
critic network to learn at each time step without waiting for the
arrival of an external reinforcement signal, greatly accelerating
the learning of both networks. The structures and functions of

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 281

Fig. 6. Structure of the critic network in the TDGAR learning system.

the critic network and the action network are described in the
following subsections.

1) The Critic Network: The critic network constantly pre-
dicts the reinforcement associated with different input states,
and thus evaluates the “goodness” of the control actions deter-
mined by the action network. The only information received by
the critic network is the state of the environment in terms of state
variables and whether or not a failure has occurred. The critic
network is a standard three-layer feedforward network with sig-
moids in the hidden layer and output layer. The input to the critic
network is the state of the plant, and the output is an evaluation
of the state, denoted by. This value is suitably discounted and
combined with the external failure signal to produce the internal
reinforcement signal, .

Fig. 6 shows the structure of the critic network. It includes
hidden nodes and input nodes including a bias node (i.e.,

). In this network, each hidden node receives
inputs and has weights, while each output node receives
inputs and has weights. The output of the node in the
hidden layer is given by

(26)

where

(27)

and are successive time steps, andis the weight from
the th input node to theth hidden node. The output node of the
critic network receives inputs from the nodes in the hidden layer
(i.e.,) and directly from the nodes in the input layer (i.e.,):

(28)

where is the prediction of the external reinforcement value,
is the weight from the th input node to output node, andis
the weight from theth hidden node to output node.

The critic network evaluates the action recommended by the
action network and represents the evaluated result as the in-
ternal reinforcement signal. The internal reinforcement signal is
a function of the external failure signal and the change in state

Fig. 7. Structure of a neural fuzzy controller as the action network.

evaluation based on the state of the system at time

start state
failure state
otherwise

(29)
where is the discount rate. In other words, the change
in the value of plus the value of the external reinforcement
signal constitutes the heuristic or internal reinforcement signal,

, where the future values ofare discounted more the fur-
ther they are from the current state of the system.

2) The Action Network:The action network determines a
proper action acting on the environment (plant) according to the
current environment state. If a neural controller is used, the struc-
ture of the action network is exactly the same as that of the critic
network shown in Fig. 6. If a neural fuzzy controller is used, the
structure is shown in Fig. 7. Given the current state of the plant,
the action network selects an action by implementing an infer-
ence scheme based on fuzzy control rules. It can be represented
as a network with five layers of nodes, each layer performing
one stage of the fuzzy inference process. The connections are
feedforward, with each node performing a local computation.
Layer 1 is the input layer, consisting of the real-value input
variables. These can also be thought of as the linguistic variables
of interest. No computation is done at these nodes. Nodes at
layer 2 act as membership functions to represent the terms of
the respective linguistic variable at layer 1. Each node at layer
3 is a rule node which represents one fuzzy logic rule. Thus,
all layer-three nodes form a fuzzy rule base. Each layer 4 node
corresponds to a consequent label. Its inputs come from all rules
which use this particular consequent label. The node in layer 5 is
an output node reprensenting one output linguistic variable.

The only information received by the action network is the
stateof theenvironment in termsofstatevariablesandthe internal
reinforcementsignal fromthecriticnetwork.SincetheGAisused
totraintheactionnetwork forcontrolapplications, theconnection
weights of the action network are encoded as a real-value string,

282 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

where for using neural fuzzy controller as the action network,
the shapes and positions of the membership functions of the
input/output variables are viewed as parameters to be learned.
Initially, the GA generates a population of real-value strings
randomly. An action network corresponding to each string then
runs ina feedforward fashion toproducecontrol actionsactingon
the environment according to (26) and (28). At the same time, the
critic network constantly predicts the reinforcement associated
with changing environment states under the control of the current
action network. After a fixed time period, the internal reinforce-
ment signal from the critic network will indicate the “fitness” of
the current action network. This evaluation process continues for
each string (action network) in the population. When each string
in the population has been evaluated and given a fitness value, the
GA can look for a better set of strings and apply genetic operators
on them to form a new population as the next generation. Better
actions can thus be chosen by the action network in the next gen-
eration. After a fixed number of generations, or when the desired
control performance is achieved, the evolutionprocess stops, and
the string with the largest fitness value in the last generation is
selected and decoded into the final action network. The detailed
learning scheme for the action network will be discussed in the
next subsection.

B. Learning Algorithm of the TDGAR Learning System

The flowchart of the TDGAR learning algorithm is shown in
Fig. 8. In the following subsections, we first consider the rein-
forcement learning scheme for the critic network of the TDGAR
system, and then introduce the GA-based reinforcement learning
scheme for the action network of the TDGAR system.

1) Learning Algorithm for the Critic Network:When both
the reinforcement signal and input patterns from the environ-
ment depend arbitrarily on the past history of the action net-
work outputs and the action network only receives a reinforce-
ment signal after a long sequence of outputs, the credit assign-
ment problem becomes severe. Thistemporal credit assignment
problem results because we need to assign credit or blame to
each individual step in a long sequence leading up to eventual
success or failure. Thus, to handle this class of reinforcement
learning problems, we need to solve the temporal credit assign-
ment problem along with solving the original structural credit
assignment problem concerning attribution of network errors to
different connections or weights. The solution to the temporal
credit assignment problem in the TDGAR system is to use a
multistep critic network that predicts the reinforcement signal
at each time step in the period without any external reinforce-
ment signal from the environment. This can ensure that both the
critic network and the action network can update their param-
eters during the period without any evaluative feedback from
the environment. To train the multistep critic network, we use
a technique based on the temporal difference method, which is
often closely related with the dynamic programming techniques
[13], [51], [52]. Unlike the single-step prediction and the su-
pervised learning methods which assign credit according to the
difference between the predicted and actual outputs, the tem-
poral difference methods assign credit according to the differ-
ence between temporally successive predictions. Note that the
term “multistep prediction” used here means the critic network

Fig. 8. Flowchart of the proposed TDGAR learning method.

can predict a value that will be available several time steps later,
although it does such prediction at each time step to improve its
prediction accuracy.

The goal of training the multistep critic network is to mini-
mize the prediction error. It is similar to a reward/punishment
scheme for updating the weights in the critic network. If posi-
tive (negative) internal reinforcement is observed, the values of
the weights are rewarded (punished) by being changed in the di-
rection which increases (decreases) its contribution to the total
sum. The weights on the links connecting the nodes in the input
layer directly to the nodes in the output layer are updated ac-
cording to the following rule:

(30)

where is the learning rate and is the internal
reinforcement signal at time .

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 283

Fig. 9. Encoding of the neural network in Fig. 6 on chromsomes.

Similarly, for the weights on the links between the hidden
layer and the output layer, we have the following weight update
rule

(31)

The weight update rule for the hidden layer is based on a modi-
fied version of the error backpropagation algorithm [53]. Since
no direct error measurement is possible (i.e., knowledge of cor-
rect action is not available),plays the role of an error measure
in the update of the output node weights. In Section III-A1, we
have stated that is the prediction of the external reinforcement
value. Changes in due to problem-state transitions are com-
bined with the failure signal to form [see (29)]. For all states
but those corresponding to failure,is zero and is just the dif-
ference between successive values of. After learning, a posi-
tive change in the prediction of failure means the present state
entered a state from which failure occures less often or further in
the future than from the previous state. An action is considered
desirable if it leads to a positive change in failure prediction and
undesirable if it leads to a negative change. Hence, a positive
(or negative) value of results in an increase (or decrease) of
the preceding state's evaluation, effectively shifting evaluations
to earlier states. Therefore, the equation for updating the hidden
weights is

(32)

Note that the sign of a hidden node's output weight is used,
rather than its value. The variation is based on Anderson's em-
pirical study [17] that the algorithm is more robust if the sign
of the weight is used rather than its value. Their results suggest
that this variation speeds learning and decreases the sensitivity
to the value of the learning rate parameter.

2) Learning Algorithm for the Action Network:The GA
is used to train the action network by using the internal rein-
forcement signal from the critic network as the fitness function.
Initially, the GA randomly generates a population of real-value
strings, each of which represents one set of parameters for the
action network. Roughly speaking, GA’s manipulate strings of
binary digits, 1's and 0's, called chromosomes which represent
multiple points in the search space through proper encoding
mechanism. GA’s carry out simulated evolution on populations

of such chromosomes. Bit string encoding is the most common
encoding technique used by GA researchers because of its ease
of creating and manipulating [20]. However, with a binary string
encoding the resulting search time is much longer than that of
using real-value string encoding [55]. Hence, the real-value
encoding scheme instead of the normal binary encoding scheme
is used here, so recombination can only occur between weights.
An example in Fig. 9 shows the encoding of the action network
on chromosomes with population size. Also, one example
illustrating the crossover operation for real-value encoding
is demonstrated in Fig. 10. Another example illustrating the
mutation operation for real-value encoding is demonstrated in
Fig. 11. The details of the real-value-coded GA can be found
in [40] and reference therein. A small population is used in
our learning scheme. The use of small population reduces
the exploration of the multiple (representationally dissimilar)
solutions for the same network.

After a new real-value string is created, an interpreter takes
this real-value string and uses it to set the parameters in the ac-
tion network. The action network then runs in a feedforward
fashion to control the environment (plant) for a fixed time pe-
riod (determined by the constant “TIME” in Fig. 8) or until a
failure occurs. At the same time, the critic network predicts the
external reinforcement signal from the controlled environment
and provides an internal reinforcement signal to indicate the “fit-
ness” of the action network. In this way, according to a defined
fitness function, a fitness value is assigned to each string in the
population, where high fitness values mean good fit. It is very
free to choose the fitness function, FIT; functional character-
istics such as nonlinear, nondifferentiable, discontinuous, and
positive are all permissible, because the GA only needs a fitness
value assigned to each string. In this paper, we use the internal
reinforcement signal from the critic network to define the fitness
function. The fitness function is defined by

(33)

which reflects the fact that smaller internal reinforcement values
mean higher fitness of the action network, whereis the current
time step, , and the constant “TIME” is a fixed
time period during which the performance of the action network
is evaluated by the critic network. If a failure signal occurs from
the environment before the time limit (i.e.,), then an

284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

Fig. 10. Illustration of crossover operation on real-value strings.

Fig. 11. Illustration of mutation operation on a real-value string.

action network having higherwill obtain higher fitness value.
With the definition of fitness function in (33), the GA is not
engaged at the start state of learning, so the divided-by-zero
problem will not occure in the first beginning. However, there
might be a divided-by-zero problem occurred in other situations.
In such case, we can assign a defaulted big value to the evaluated
action network as its fitness value. The above fitness function is
different from that defined by Whitley and his colleagues [40].
Their relative measure of fitness takes the form of an accumu-
lator that determines how long the experiment is still “success.”
Hence, a string (action network) cannot be assigned a fitness
value until an external reinforcement signal arrives to indicate
the final success or failure of the current action network.

When each string in the population has been evaluated and
given a fitness value, the GA then looks for a better set of strings
to form a new population as the next generation by using ge-
netic operators (i.e., the reproduction, crossover, and mutation
operators). In basic GA operators, the crossover operation can
be generalized to multipoint crossover in which the number of
crossover point is defined. With set to 1, generalized

crossover reduces to simple crossover. The multipoint crossover
can solve one major problem of the simple crossover; one-point
crossover cannot combine certain combinations of features en-
coded on chromosomes. In the proposed GA-based reinforce-
ment learning algorithm, we choose . Although we tried
to use higher values such as , and
in our experiments, the results showed no remarkable change in
the TDGAR learning system. For the mutation operator, since
we use the real-value encoding scheme, we use a higher muta-
tion probability in our algorithm. This is different from the
traditional GA’s that use the binary encoding scheme. The latter
are largely driven by recombination, not mutation. The above
learning process continues to new generations until the number
of generations meets a predetermined stop criterion. After the
whole evolution process is stopped, the string with the largest
fitness value in the last generation is selected and decoded into
the final action network.

The major feature of the proposed hybrid GA learning scheme
is that we formulate the internal reinforcement signal as the
fitness function for the GA based on the actor-critic architecture.

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 285

In this way, the GA can evaluate the candidate solutions (the
weights of the action network) regularly during periods without
external feedback from the environment. The GA can thus
proceed to new generations in fixed time steps [specified by
the constant “TIME” in (33)] without waiting for the arrival of
the external reinforcement signal. In other words, we can keep
the time steps (TIME) for evaluating each string (action network)
and the generation size fixed in our learning algorithm
(see the flowchart in Fig. 8), since the critic network can give
predicted reward/penalty information to a string without waiting
for the final success or failure. This can usually accelerate the
GA learning since an external reinforcement signal may only be
available at a time long after a sequence of actions has occurred
in the reinforcement learning problems. This is similar to the
fact that we usually evaluate a person according to his/her
potential or performance during a period, not after he/she has
done something really good or bad.

IV. CONTROL OF THEMAGNETIC BEARING SYSTEM

In this section, we shall apply the proposed TDGAR learning
method to control the magnetic bearing system (Fig. 1) designed
in Section II. Two controllers, a neural controller and a neural
fuzzy controller, are trained and their performance is compared.
The control problem is to keep around an operational point of
the magnetic bearing system (i.e., to maintain the leviated ob-
ject position of the magnetic bearing system around an equilib-
rium point, 0.196 mm). This system is nonlinear, autonomous
and intrinsically unstable. There are three input state variables
in this system: , levitated object position; , speed of ;
and , the coil current. The only control action is the voltage

, supplied to the two E-shaped electromagnets. The physical
constraints of the magnetic levitation system are: mm

mm and . Since no exact
teaching information is available, this is a typical reinforcement
learning problem and the feedback failure signal serves as the
external reinforcement signal.

In our experiments, we first apply the TDGAR learning
system on the simplified dynamical model of our magnetic
bearing system given in Section II to train the controller (action
network) off-line. This will result in a TDGAR learning system
with a good initial controller (action network) for the real mag-
netic bearing system. Then the TDGAR learning is performed
continuously on the real magnetic bearing system on-line to
obtain the final controller. Such a two-step learning procedure
can shorten the number of trials required by the TDGAR
learning on the real system and thus make the experiments
more feasible, since the off-line trained action network has
gained most of the control skills according to the simplified

dynamic model of the real system. The equations of motion
that we used are from (24) and (25):

(34)

(35)

(36)

where

m/s acceleration of gravity
kg mass of the levitated object

sampling interval
ohm effective resistance of the magnetic circuit

external disturbance
effective inductance of the magnetic circuit
effective flux density of the magnetic circuit
the upward force
the downward force.

(37)
Notice that, since the real AMB system was built based on
the mathematical model derived in Section II, where some
key mechanical parameters were chosen through GA, and
the final design successfully passed the FEM (finite element
method) checking, the derived mathematical model should
have captured the dynamical characteristics of the real system
precisely. However, due to the measurement errors of some
system parameters [e.g., the parameters in (37)] and the
discretization error resulting from transforming a continuous
system [(24) and (25)] to a discrete-time system [(34)–(36)] in
digital simulations, (34)–(36) can only form a mathematical
approximation of the real AMB system. Our testing in [42]
showed that (34)–(36) and the real system have quite similar
system responses (e.g., response shop, time constant) but differ
in response details (e.g., overshoot value, ripples). Hence, the
TDGAR learning system can learn the “skeleton” of the final
controller in the off-line learning step via simplified dynamic
model, and then is tuned finely in the on-line learning step via
the real system.

The (external) reinforcement signal in this problem is defined
as (38), shown at the bottom of the page. To allow the transient
behavior of a controller, we set less strict conditions of failure
in the beginning of learning. Hence, during the first 0.1 s of
learning, the leviated object position at mm or

mm will be treated as a failure. Later on, since we
hope to control the leviated object position around the equi-
librium point mm after 0.1 s,
mm or mm for s will also be treated

if or for s and
if or for s,
otherwise

(38)

286 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

as a failure. It is understood that the external reinforcement
signal may only be available after a long sequence of time
steps in this failure avoidance task. Hence we need the multi-
step prediction capability of the critic network in the TDGAR
learning system.

In the first set of experiments, a neural network in Fig. 6
is used as the action network. We use the fitness function de-
fined in (33), i.e., , in the TDGAR learning
system, where is the internal reinforcement signal from
the critic network. The critic network and action network both
have four input nodes, four hidden nodes, and one output node.
Hence, there are 24 weights in each network. A bias node fixed
at 0.5 is used as the fifth input to the network; a weight from
the bias node to a hidden node (or to the output node) in ef-
fect changes the threshold behavior of that node. The learning
parameters used in the TDGAR system are the learning rate

, the population sizes , the time limit
, and the generation size is not limited here.

Initially, we set all the weights in the critic network and ac-
tion network to random values between2.5 and 2.5. To as-
sign credit to the individual action of the action sequence, the
critic network evaluates each individual and sort the population
according to the fitness. In reproduction, we use the roulette
wheel selection technique [43] to pick two parent individuals,
and then apply two-point crossover and mutation operators to
these two parents to generate two new individuals according
to the crossover probability and mutation probability. After 50
occurences of reproduction, 100 new individuals are produced.
These 100 new individuals are evaluated, their fitness are cal-
culated, and they replace the current 100 individuals to form
the next generation. The crossover probability is set as 0.9 and
the crossover sites are randomly seclected. For the mutation op-
erator, the mutation probablity is set as 0.1, and the mutation
site is randomly seclected and a random value with range2.0
is added to the chosen site. A control strategy is deemed suc-
cessful if the individual with maximum fitness could maintain
the leviated object position around the equilibrium point [i.e., to
satisfy (38)]. Then the GA stops; otherwise the evolution of the
next generation starts.

Fig. 12 shows the control performance of the neural controller
trained by the TDGAR learning method on the real magnetic
bearing system for different initial positions. Note that although
the trained neural controller can levitate the rotor and keep it
balanced around the equilibrium point, it cannot stabilize the
rotor well and causes obvious oscillations. Fig. 13 shows one
set of control signals (the other sets of control signals are quite
similar to this). It shows that the power needed to control the
magnetic bearing system is large. This dose not satisfy the goal
of low power consumption.

In the second set of experiments, the neural fuzzy network in
Fig. 7 is used as the action network. There are two input vari-
ables, error (the difference of the levitated object position and
the operational point) and error change (the speed of the lev-
itated object), and one output variable, the voltage applied to
the driver of the magnetic bearing system. Fig. 14 shows the
types of membership functions used for the input and output
variables. Each variable has three fuzzy partitions, with mem-
bership functions labeled as , where Neg-

Fig. 12. Position variations of the rotor under the control of the neural
controller trained by the TDGAR learning method for different initial positions.

Fig. 13. One set of control signals corresponding to the control performance
of Fig. 12.

ative, Zero, and Positive. Nine fuzzy control rules
are designed for the magnetic bearing system as follows:
R1: IF error is NE ANDerror changeis NE THENoutputis

NE
R2: IF error is NE AND error changeis ZE THENoutputis

NE
R3: IF error is NE AND error changeis PO THENoutputis

ZE
R4: IF error is ZE AND error changeis NE THENoutputis

NE
R5: IF error is ZE AND error changeis ZE THENoutputis

ZE
R6: IF error is ZE AND error changeis PO THENoutputis

PO
R7: IF error is PO ANDerror changeis NE THENoutputis

ZE
R8: IF error is PO ANDerror changeis ZE THENoutputis

PO
R9: IF error is PO ANDerror changeis PO THENoutputis

PO

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 287

Fig. 14. Types of membership functions used for the input and output variables
in the neural fuzzy controller in Fig. 7.

Fig. 15. Position variations of the rotor under the control of the neural fuzzy
controller trained by the TDGAR learning method for different initial positions.

In the GA learning, an individual of the population repre-
sents one trial set of fuzzy membership functions. As mentioned
above, there are three input variables (, and) in the
magnetic bearing system and one control action, the voltage

, supplied to the system. Each variable has three fuzzy par-
titions, with membership functions labeled as Negative, Zero,
and Positive (as shown in Fig. 14), respectively. A membership
function is specified by three parameters, so each variable has
nine parameters. Because the relationship betweenand is

, where is the effective resistance of the magnetic
circuit, chooosing either or as a variable for learning is
enough. Therefore, only three variables are used (, and

) for GA learning here. These 27 parameters (membership
functions) are concatenated into a real-value string as an in-
dividual for GA learning. For the input variables, the universe of
discourse is , and the universe
of discourse of the output variable is . The ini-
tial population is randomly generated. The learning parameters
are the same as before, the fitness function is defined as in (33),
the (external) reinforcement signal is defined as in (38), and the
critic network is kept the same as in the neural controller case.

Fig. 15 shows the control performance of the neural fuzzy
controller trained by the TDGAR learning method on the real
magnetic bearing system for different initial positions. They
appear to be better than those of the previous neural controller
in Fig. 12. Fig. 16 shows the control signals for different
initial conditions. It is observed that the trained neural fuzzy
controller does achieve the goal of low power consumption.
Fig. 17 shows some of the membership functions trained by the
TDGAR learning method for the input and output variables.
Note that the incorporation of expert knowledge into the neural

Fig. 16 Sets of control signals corresponding to the control performance of
Fig. 15.

Fig. 17. Examples of the learned membership functions for the neural fuzzy
controller after the TDGAR learning.

fuzzy network does speed up the learning, and generates better
controllers.

V. CONCLUSION

This paper integrates the temporal difference (TD) tech-
nique, gradient descent method, and genetic algorithm (GA)
into the actor-critic architecture to form a new reinforcement
learning system, called the TDGAR learning system. Using the
TDGAR learning system, we can train a neural controller or
a neural fuzzy controller for the plant according to a simple
reinforcement signal. The proposed TDGAR learning method
makes the design of neural fuzzy controllers or neural con-
trollers more feasible and practical for real-world applications,
since it greatly lessens the quality and quantity requirements
of the teaching signals, and reduces the long training time of
a pure GA approach. In this paper, we also design and build
a magnetic bearing system by using the GA for parameter
selection. The proposed TDGAR learning method has been
applied to control the magnetic bearing system in practice, and
achieves very satisfactory results.

288 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 2, APRIL 2000

REFERENCES

[1] R. L. Hollis, S. E. Salcudean, and A. P. Allan, “A six-degree-of-freedom
magnetically levitated variable compliance fine-motion-wrist: Design,
modeling and control,”IEEE Trans. Robot. Automat., vol. 7, pp.
320–332, Mar. 1991.

[2] T. Eiichi, K. Kiyoshi, and M. Yuji, “An ionization chamber using a mag-
netically suspended electrode and its application to environmental radi-
ation monitoring,”IEEE Trans. Nucl. Sci., vol. 38, pp. 491–493, Feb.
1991.

[3] G. Schweitzer, H. Bleuler, and A. Traxler,Active Magnetic Bearing,
Zürich, Switzerland, 1994.

[4] H. Tsuruga, “Superconductive maglev system on the Yamanashi maglev
test line,”SAE Maglev, pp. 7–17, 1992.

[5] W. W. Dickhart, III, “The trasrpid maglev system,”SAE Maglev Levita-
tion Technology for Advanced Transit System, pp. 13–21, 1989.

[6] F. Mastumura, T. Namerikawa, K. Hagiwara, and M. Fujita, “Applica-
tion of gain scheduleH robust controllers to a magnetic bearing,”
IEEE Trans. Control Syst. Technol., vol. 4, no. 5, pp. 484–493, 1996.

[7] A. Charara, J. De Miras, and B. Caron, “Nonlinear control of a magnetic
levitation system without premagnetization,”IEEE Trans. Control Syst.
Technol., vol. 4, pp. 513–523, May 1996.

[8] M. S. de Queiroz and D. M. Dawson, “Nonlinear control of active mag-
netic bearings: A backstepping approach,”IEEE Trans. Control Syst.
Technol., vol. 4, pp. 545–552, May 1996.

[9] K. Y. Lum, V. T. Coppola, and D. S. Bernstein, “Adaptive autocen-
tering control for an active magnetic bearing supporting a rotor with un-
known mass imbalance,”IEEE Trans. Control Syst. Technol., vol. 4, pp.
587–597, May 1996.

[10] A. E. Rundell, S. V. Drakunov, and R. A. DeCarlo, “A sliding mode
observer and controller for stabilization of rotation motion of a vertical
shaft magnetic bearing,”IEEE Trans. Control Syst. Technol., vol. 4, pp.
598–608, May 1996.

[11] A. G. Barto and M. I. Jordan, “Gradient following without backpropa-
gation in layered network,” inProc. Int. Joint Conf. Neural Networks,
vol. II, San Diego, CA, 1987, pp. 629–636.

[12] S. Mikami and Y. Kakazu, “Extended stochastic reinforcement learning
for the acquisition of cooperative motion plants for dynamically con-
strained agents,” inProc. IEEE Conf. Systems, Man and Cybernetics
Control, New York, 1993, pp. 257–262.

[13] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problem,”IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, pp. 834–847, 1983.

[14] R. S. Sutton, “Temporal Credit Assignment in Reinforcement Learning,”
Ph.D. dissertation, Univ. Massachusetts, Amherst, MA, 1984.

[15] A. G. Barto and P. Anandan, “Pattern-recognizing stochastic learning
automata,”IEEE Trans. Syst,. Man, Cybern., vol. SMC-15, pp. 360–375,
1985.

[16] R. J. Williams, “A class of gradient-estimating algorithms for reinforce-
ment learning in neural networks,” inProc. Int. Joint Conf. Neural Net-
works, vol. II, San Diego, CA, 1987, pp. 601–608.

[17] C. W. Anderson, “Strategy learning with multilayer connectionist rep-
resentations,” inProc. 4th Int. Workshop on Mach. Learn., Irvine, CA,
June 1987, pp. 103–114.

[18] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic con-
trollers through reinforcements,”IEEE Trans. Neural Networks, vol. 3,
pp. 724–740, May 1992.

[19] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning
for an integrated fuzzy neural network,”IEEE Trans. Fuzzy Syst., vol. 2,
pp. 46–63, Feb. 1994.

[20] J. H. Holland,Adaptation in Natural and Artificial System. Ann Arbor,
MI: Univ. of Michigan Press, 1975.

[21] T. Mariti, H. Ishibuchi, and K. H. Lee, “Application of two-objective
genetic algorithm to flowshop scheduling problems with interval pro-
cessing time,” inProc. 4th European Congress Intelligent Techniques
and Soft Computing, Germany, 1996, pp. 443–447.

[22] S. M. Sait and H. Youssef, “Timing-influenced general-cell genetic
floorplanner ,”Microelectron. J., vol. 28, no. 2, pp. 151–166, Feb. 1997.

[23] S. Aiguo, Z. Qingjun, and H. Weiyi, “Identification and control of bilat-
eral telerobot with time delay,” inProc. IEE Int. Conf. Intelligent Robots
and Systems, IROS'96, New York, USA, 1996, pp. 1353–1358.

[24] E. Cox, “A model-free trainable fuzzy system for the analysis of finan-
cial time-series data with fuzzy set morphology rule association opti-
mization through a genetic optimizer,” inProc. of AI Applications on
Wall Street. Gaithersburg, MD, 1993, pp. 280–285.

[25] T. H. Heung and T. K. Ho, “Hierarchical fuzzy logic traffic control at a
road junction using genetic algorithms,” inProc. IEEE Int. Conf. Fuzzy
Systems, New York, 1998, pp. 1170–1175.

[26] S. Tanterdtid, W. Steanputtanagul, and W. Benjapolakul, “Adaptive
ATM network configuration based on the modified genetic algorithm,”
in ACE: Proc. World Telecommunications Conf. Global Network
Evolution: Convergence or Collision?. Toronto, Ont., Canada, 1997,
pp. 619–625.

[27] T. Kawabe, T. Tagami, and T. Katayama, “A genetic algorithm based
minimax optimal design of robust I-PD controller,” inProc. IEE Int.
Conf. Control, London, U.K., 1996, pp. 436–441.

[28] A. Delgado, L. Puigjaner, K. Sanjeevan, and I. Sole, “Hybrid system:
Neural networks and genetic algorithms applied in nonlinear regression
and time series forecasting,” inProc. 12th Symp. Computational Statis-
tics, Heidelberg, Germany, 1996, pp. 217–222.

[29] H. Kobayashi, C. C. Hsu, S. I. Yamada, and H. Fujikawa, “A design
of a model reference fuzzy adaptive controller for linear systems with
time delay using MSGA,” inProc. IEEE Int. Conf. Industrial Elec-
tronics, Control and Instrumentation, IECON'97, New York, 1997, pp.
1040–1045.

[30] Z. Zhang, J. Rayner, A. Cheetham, and T. Lund, “A simplified fuzzy
model to mimic a nonlinear system, applied to a plasma source,”IEEE
Trans. Plasma Sci., vol. 25, pp. 27–36, Feb. 1997.

[31] C. Karr, “Genetic algorithms for fuzzy controllers,”AI Expert, vol. 2,
pp. 27–33, 1991.

[32] M. Lee and H. Takagi, “Integrating design stages of fuzzy systems using
genetic algorithm,” inProc. 2nd IEEE Int. Conf. Fuzzy Systems, San
Francisco, CA, 1993, pp. 612–617.

[33] K. Kropp, “Optimization of fuzzy logic controller inference rules using
a genetic algorithm,” inProc. EUFIT'93, Aachen, Germany, 1993, pp.
1090–1096.

[34] S. Harp, T. Samad, and A. Guha, “Designing application-specific
neural networks using the genetic algorithm,” inNeural Information
Processing Systems. San Mateo, CA: Morgan Kaufman, 1990, vol. 2.

[35] J. D. Schaffer, R. A. Caruana, and L. J. Eshelman, “Using genetic search
to exploit the emergent behavior of neural networks,”Physica D, vol. 42,
pp. 244–248, 1990.

[36] Z. J. Yang, T. Hachino, and T. Tsuji, “On-line identification of contin-
uous time-delay systems combining least-squares techniques with a ge-
netic algorithm,”Int. J. Control, vol. 66, no. 1, pp. 23–42, Jan. 1997.

[37] K. S. Tang, K. F. Man, S. Kwong, and Q. He, “Genetic algorithms and
their applications,”IEEE Signal Processing Mag., vol. 13, pp. 22–37,
Nov. 1996.

[38] Z. Zibo and F. Naghdy, “SISO system identification using genetic algo-
rithms,” in Proc. Electrical Engineering Congr., EEC'94. Barton, ACT,
Australia, 1994, pp. 337–343.

[39] T. Nakatsuji, S. Seki, S. Shibuya, and T. Kaku, “Artificial intelligence
approach for optimizing traffic signal timing on an urban road network,”
Trans. Inst. Syst., Contr. Inform. Eng., vol. 7, no. 11, pp. 470–478, 1996.

[40] D. Whitley, S. Dominic, R. Das, and C. W. Anderson, “Genetic rein-
forcement learning for neurocontrol problems,”Mach. Learn., vol. 13,
pp. 259–284, 1993.

[41] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,”Mach. Learn., vol. 22, pp. 11–32, 1996.

[42] C. T. Lin and C. H. Wu, “Design and Realization of a Magnetic Bearing
System,” Dept. Elect. Contr. Eng., National Chiao-Tung Univ., Hsinchu,
Taiwan, R.O.C., Tech. Rep. CN97-10.

[43] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[44] Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991.

[45] D. Adler, “Genetic algorithms and simulated annealing: A marriage pro-
posal,” inProc. IEEE Int. Conf. Neural Networks, vol. II, San Francisco,
CA, 1993, pp. 1104–1109.

[46] L. Tsinas and B. Dachwald, “A combined neural and genetic learning
algorithm,”Proc. IEEE Int. Conf. Neural Networks, vol. I, pp. 770–774,
1994.

[47] V. Petridis, S. Kazarlis, A. Papaikonomou, and A. Filelis, “A hybrid ge-
netic algorithm for training neural networks,” inArtificial Neural Net-
works 2, I. Aleksander and J. Taylor, Eds. Amsterdam, The Nether-
lands: North Holland, 1992, pp. 953–956.

[48] J. S. Yim and C. M. Kyung, “Datapath layout optimization using genetic
algorithm and simulated annealing,”Proc. Inst. Elect. Eng., Comput.
Digital Techniques, vol. 145, no. 2, pp. 1170–1175, Mar. 1998.

[49] M. Salami, “Genetic algorithm processor on reprogrammable ar-
chitectures,” inProc. 5th Annual Conf. Evolutionary Programming.
Cambridge, MA, 1996, pp. 355–361.

LIN AND JOU: GA-BASED FUZZY REINFORCEMENT LEARNING FOR CONTROL OF MB SYSTEM 289

[50] P. M. Stanfield, R. E. King, and T. J. Hodgson, “Multi-objective sto-
chastic scheduling of job ready times,”Ann. Oper. Res., vol. 70, pp.
221–239, 1997.

[51] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ence,”Mach. Learn., vol. 3, pp. 9–44, 1988.

[52] P. J. Werbos, “A menu of design for reinforcement learning over time,”
in Neural Networks for Control, W. T. Miller III, R. S. Sutton, and P. J.
Werbos, Eds. Cambridge, MA: M.I.T. Press, 1990, ch. 3.

[53] D. Rumelhart, G. Hinto, and R. J. Williams, “Learning internal repre-
sentation by error propagation,” inParallel Distributed Processing, D.
Rumelhart and J. McCelland, Eds. Cambridge, MA: MIT Press, 1986,
pp. 318–362.

[54] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,”Mach. Learn., vol. 8, pp.
229–256, 1992.

[55] D. Whitley and T. Starkweather, “Optimizing small neural networks
using a distributed genetic algorithm,”Int. Joint Conf. Neural Networks,
vol. 1, pp. 206–209, 1990.

Chin-Teng Lin (S’88–M’91–SM’99) received the
B.S. degree in control engineering from the National
Chiao-Tung University (NCTU), Hsinchu, Taiwan,
R.O.C., in 1986 and the M.S.E.E. and Ph.D. degrees
in electrical engineering from Purdue University,
West Lafayette, IN, in 1989 and 1992, respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
NCTU, where he is currently a Professor of Elec-
trical and Control Engineering. He also serves as
the Deputy Dean of the Research and Development

Office of NCTU since 1998. His current research interests are fuzzy systems,
neural networks, intelligent control, human-machine interface, and video and
audio processing. He is the co-author ofNeural Fuzzy Systems—A Neuro-Fuzzy
Synergism to Intelligent Systems(Englewood Cliffs, NJ: Prentice Hall, 1996),
and the author ofNeural Fuzzy Control Systems with Structure and Parameter
Learning(New York: World Scientific, 1994). He has published over 45 journal
papers in the areas of neural networks and fuzzy systems.

Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He has been the Execu-
tive Council Member of Chinese Fuzzy System Association (CFSA) since 1995,
and the Supervisor of Chinese Automation Association since 1998. He was the
Vice Chairman of IEEE Robotics and Automation Taipei Chapter in 1996 and
1997. Dr. Lin won the Outstanding Research Award granted by National Sci-
ence Council (NSC), Taiwan, in 1997 and 1999, and the Outstanding Electrical
Engineering Professor Award granted by the Chinese Institute of Electrical En-
gineering (CIEE) in 1997.

Chong-Ping Jou was born in Taiwan, R.O.C., in
1960. He received the B.S. degree in electrical
engineering from the Chung-Cheng Institute of
Technology, Taiwan, in 1982, the M.S. degree in
electrical engineering from the National Taiwan
Institute of Technology in 1988, and the Ph.D.
degree from the Department of Electrical and
Control Engineering from Chiao-Tung University,
Hsinchu, Taiwan, in 1999.

He is currently an Assistant Researcher at the
Chung-Shan Institute of Science and Technology,

Tao-Yuan, Taiwan. His research interests include neural network, chaos, and
fuzzy control.

