
A robust training algorithm for adverse speech recognition

Wei-Tyng Hong a,*, Sin-Horng Chen b

a E000/CCL, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, ROC
b Department of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 10 November 1998

Abstract

In this paper, a new robust training algorithm is proposed for the generation of a set of bias-removed, noise-sup-

pressed reference speech HMM models in adverse environment su�ering from both channel bias and additive noise. Its

main idea is to incorporate a signal bias-compensation operation and a PMC noise-compensation operation into its

iterative training process. This makes the resulting speech HMM models more suitable to the given robust speech

recognition method using the same signal bias-compensation and PMC noise-compensation operations in the recog-

nition process. Experimental results showed that the speech HMM models it generated outperformed both the clean-

speech HMM models and those generated by the conventional k-means algorithm for two adverse Mandarin speech

recognition tasks. So it is a promising robust training algorithm. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Background noise and channel bias are the two major interference factors that seriously degrade the
performances of speech recognizers operating in adverse environments such as telephone speech through
public switching network. Recently, IBM built an HMM-based Mandarin telephone speech recognition
system using a large telephone speech database called ÔMandarin call home databaseÕ (Liu et al., 1996). The
vocabulary contained about 44 000 words. The word and syllable error rates were, respectively, 70.5% and
58.7%, which were much worse than those achieved in microphone-speech recognition (Lee and Juang,
1996). In the past, many studies have been devoted to the ®eld of robust speech recognition for adverse
environment (Juang, 1991; Furui, 1992; Gong, 1995; Junqua and Haton, 1996). Major e�orts of those
studies were put on developing robust recognition algorithms to compensate or to eliminate noise/channel
e�ect based on a given set of reference speech models trained usually in clean-speech environment. In the
non-linear noise subtraction method (Lockwood and Boudy, 1992; Mokbel and Chollet, 1995), a noise
model was ®rst estimated from the non-speech precursor of the testing utterance and then subtracted
from the speech part in linear spectrum domain in order to obtain noise-suppressed features to be
recognized using the clean-speech reference models. In (Acero and Stern, 1990, 1991), the CDCN
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(codeword-dependent cepstral normalization) algorithm was proposed to estimate equalization vectors for
the best transformation, in the maximum likelihood sense, from the universal codebook into the testing
acoustic space in order to eliminating both the noise and channel e�ects. In the RASTA method
(Hermansky and Morgan, 1994), a ®lter was used to eliminate the speaker/channel bias for obtaining bias-
removed recognition features. In the parallel-model-combination (PMC) method (Gales and Young, 1996),
clean-speech HMM models were combined with the current noise model to form noise-compensated
composite HMM models for recognizing noisy speech. In the state-based Wiener ®ltering method (Hansen
and Clements, 1991; Ephraim, 1992; Vaseghi and Milner, 1997), a two-stage recognition method was used.
It ®rst used the Viterbi algorithm in the ®rst stage to ®nd the best state sequence for the input testing noisy
speech, and then applied state-based Wiener ®ltering to estimate the clean-speech and recognized it using
the clean-speech HMM models in the second stage. In (Zhao, 1996), a two-step procedure was employed to
detect a spectral bias vector for the input testing utterance by using Gaussian distributed phone models. It
then removed the estimated bias vector from the testing utterance for recognition. In the stochastic
matching algorithm (Sankar and Lee 1996; Lee, 1998), the parameters of mapping functions between the
testing speech and reference HMM models were estimated iteratively using the expectation maximization
(EM) algorithm (Dempster et al., 1977). In (Minami and Furui, 1996), an integrated method for adapting
HMM models to additive noise and channel distortion was proposed. This method ®rst estimated the
signal-to-noise ratio by maximizing the likelihood of the PMC-compensated HMM models to the input
speech, and then estimated the cepstral bias by the SankarÕs method (Sankar and Lee, 1996). The procedure
is iteratively applied until a convergence is reached.

Apart from the above-mentioned main research stream, the robust training issue is also important for
adverse speech recognition when the clean-speech reference models are not available. Its main concern is to
train a set of robust reference speech models directly from a database collected in adverse environment for
adverse speech recognition. The issue is important because the set of reference speech models obtained by
the conventional segmental k-means algorithm (Juang and Rabiner, 1990) is usually not robust. This is
mainly owing to the high variability on the characteristics of the training speech signals collected in the
adverse environment. For example, a training data set collected from telephone calls through the public
switching network will su�er diverse recording conditions caused by di�erent background noises, di�erent
types of transducers, di�erent telephone channels, etc. This will make speech patterns distribute more
widely in the feature space so as to overlap to each other more seriously and cause the trained speech
models degrade on their discrimination capabilities.

In the past, many robust training algorithms have been proposed. In the signal bias removal (SBR)
algorithm (Rahim and Juang, 1996), a codebook-based iterative signal bias removing technique was per-
formed on both the training and testing phases for minimizing the channel-induced variations. In (Anas-
taskos et al., 1997), the speaker-speci®c characteristics were ®rst modeled by a linear-regressive
transformation between the speaker-independent models and the speaker-dependent models. A speaker-
adaptive training algorithm designed basing on the EM algorithm was then employed to iteratively estimate
the parameters of the transformation and the compact speaker-normalized HMM models. In (Gong, 1997),
a source normalization training algorithm, which modeled the environmental corruption as a form of linear
transformation, was proposed to estimate the HMM models. The noise and channel e�ects were modeled
implicitly in the linear transformation. In the testing stage, the MLLR adaptation (Gales and Woodland,
1996) was applied to estimate the state-dependent transformation matrices and the bias terms for recog-
nition. Those training algorithms have been shown to be e�ective on removing the channel biases and/or the
speaker variations. However, the noise e�ect is still seldom considered in the robust training issue.

In this study, we are interested in the robust training issue with both the signal bias and noise e�ects
being considered. A robust training algorithm, referred to as the robust environment-e�ects suppression
training (REST) algorithm, is proposed. The design goal of the REST algorithm is twofold. One is to
countervail the large variability of the corrupted training samples for obtaining a set of compact reference
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speech HMM models with both signal bias and noise being suppressed. The other is to make the generated
compact reference speech HMM models better for a given robust speech recognition method. The REST
algorithm is an iterative training procedure that sequentially optimizes the following three operations:
parameter estimation for environment characterization, environment-e�ect compensation for speech seg-
mentation, and environment-e�ect suppression for HMM model re-estimation. The parameter estimation
for environment characterization is to detect the signal bias and to estimate the noise statistics for each
training utterance. It assumes that each utterance has its own environmental characteristics. Based on an
assumed environment contamination model, the environment-e�ect compensation uses the estimated en-
vironment characterization parameters to adapt the HMM models to match with the current training
utterance for optimal segmentation. Using the segmentation results and the same environment contami-
nation model, the environment-e�ect suppression is to remove the signal bias and the noise out of the
corrupted speech for updating the HMM models. Owing to the involvement of the environment-e�ect
compensation operation in the training process of the REST algorithm, we expect that it will generate
better reference speech HMM models for the robust recognition method which employs the same envi-
ronment-e�ect compensation operation in the recognition process. This is especially true for the case when
the environment-e�ect compensation operation is not perfect due either to the non-existence of a perfect
one or to the use of an inaccurate environment contamination model in its derivation.

The organization of the paper is stated as follows. Section 2 presents the proposed REST algorithm in
detail. Section 3 describes the robust speech recognition method using the reference speech HMM models
generated by the REST algorithm. E�ectiveness of the REST algorithm is evaluated by simulations dis-
cussed in Section 4. Some conclusions are given in Section 5.

2. The REST algorithm

The proposed REST training algorithm consists of an iterative procedure which sequentially performs
the following three steps:
1. optimally segment each training utterance by using the environment-compensated HMM models,
2. estimate the environment characteristics and enhance the speech by eliminating the noise using the state-

based Wiener ®ltering method and by removing the signal bias using the SBR method, and
3. re-estimate the speech HMM models.
Operations performed in these three steps are derived based on a presumed environment contamination
model. A schematic diagram of the model is displayed in Fig. 1. It assumes that, for each utterance, the
observed speech z is generated from the clean speech x by corrupting ®rst with a convolutional channel b
and then with an additive noise n. Here b is assumed to be time-invariant and n is stationary throughout the
utterance. In linear spectrum domain, the model can be expressed by

yt�f � � b�f � � xt�f �; �1a�

Fig. 1. A schematic diagram of the environment contamination model.
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zt�f � � yt�f � � nt�f �; �1b�
where the subscript t denotes the frame index and yt�f � is an intermediate signal showing the corruption of the
clean-speech with the channel bias only. We can also express the relation of x and y in cepstrum domain by

yt�m� � b�m� � xt�m�; �1c�
where m denotes the order of cepstral coe�cient. Obviously, it is troublesome to directly estimate the
original clean speech x in either linear spectrum domain or cepstrum domain when both noise interference
and channel distortion exist. We had better, as suggested by above formulations, to separately deal with the
channel distortion in cepstrum domain and the noise interference in linear spectrum domain. In the fol-
lowing discussions, we specify a signal in linear spectrum domain and in cepstrum domain by attaching it
with parameters f and m, respectively.

The REST algorithm is derived as follows. Assume that the training data set contains R utterances. Let
Ke � K�r�n ; b

�r�� 	
r�1;...;R

denote the set of environmental interference models of the whole training data set,

where b�r� and K�r�n � fl�r�n ;R
�r�
n g are, respectively, the signal bias and the noise model of the rth training

utterance; l�r�n and R�r�n are the mean vector and covariance matrix of K�r�n . Let Z�r� � �z�r�1 ; . . . ; z�r�Tr
� and

X �r� � �x�r�1 ; . . . ; x�r�Tr
� be, respectively, the observed and clean-speech feature vector sequence of the rth

utterance, and Kx denote the set of environment-e�ect normalized speech HMM models that we want to
generate. Based on the maximum likelihood criterion, the goal of an ideal robust training algorithm is to
jointly estimate Kx and Ke with given fZ�r�gr�1;...;R by

�K�x ;K�e� � arg max
�Kx;Ke�

L fZ�r�gr�1;...;R jKx;Ke

� �
; �2�

where L��� is the likelihood function of the observation sequence Z�r� given the parameter set of �Kx;Ke�.
But, due to the fact that it is generally di�cult to derive a close form solution for the above joint maxi-
mization problem, we therefore use a three-step iterative training procedure in the REST algorithm to
obtain a sub-optimal solution. The three steps are:
1. Form the environment-compensated speech HMM models K�r�z by using the current �Kx;Ke� and use it to

optimally segment the training utterance Z�r�.
2. Based on the segmentation result, estimate K�r�n and enhance the adverse speech Z�r� to obtain Y �r� by the

state-based Wiener ®ltering method; and then, estimate b�r� and further enhance the speech Y �r� to obtain
X �r� by the SBR method.

3. Update the current speech HMM models Kx using the enhanced speech fX �r�gr�1;...;R. We discuss these
three steps in more detail as follows.

The ®rst step of the REST algorithm is to optimally segment each training utterance using the current
speech HMM models Kx;kÿ1 and the environmental interference model Ke;kÿ1 given by the previous itera-
tion, where the subscript k denotes the index of iteration. The task can be accomplished, based on the
maximum likelihood criterion, by solving the following optimization problem to ®nd the best state se-
quence U �r�k � �u�r�1;k; . . . ; u�r�Tr ;k� and the best mixture component sequence V �r�k � �v�r�1;k; . . . ; v�r�Tr ;k� of the optimal
segmentation:

�U �r�k ; V �r�k � � arg max
�U �r�;V �r��

Pr Z�r�;U �r�; V �r�
��Kx;kÿ1;Ke;kÿ1

ÿ �
� arg max

u�r�
1
;...;u�r�Tr� �; v�r�

1
;...;v�r�Tr� �� �

YTr

t�1

a
u�r�tÿ1

;u�r�t
Pr z�r�t

��u�r�t ; v
�r�
t ;K

�r�
z;kÿ1

� �( )
; �3�
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where ai;j denotes the transition probability from state i to state j. Eq. (3) is solved in this study by ®rst
forming the environment-compensated speech HMM models K�r�z;kÿ1 using Kx;kÿ1 and Ke;kÿ1, and then using
the Viterbi search to simultaneously ®nd U �r�k and V �r�k . The formation of K�r�z;kÿ1 from Kx;kÿ1 and Ke;kÿ1 is
based on the assumed environment contamination model de®ned in Eqs. (1b) and (1c), and realized by the
following two sub-steps:

(1.1) Calculate K�r�y;kÿ1 in cepstrum domain by

l�r�y;j;q;kÿ1�m� � lx;j;q;kÿ1�m� � b�r�kÿ1�m�; �4a�
R�r�y;j;q;kÿ1�m� � Rx;j;q;kÿ1�m�; �4b�

where l�r�y;j;q;kÿ1�m� and R�r�y;j;q;kÿ1�m� are, respectively, the mean vector and covariance matrix of the qth

Gaussian mixture in the jth state of K�r�y;kÿ1, and b�r�kÿ1�m� is the bias vector given in Ke;kÿ1.

(1.2) Use the PMC method to form K�r�z;kÿ1 by ®rst transforming K�r�y;kÿ1 from cepstrum domain to linear
spectrum domain, then combining it with K�r�n;kÿ1 in linear spectrum domain, and lastly transforming the
result back to cepstrum domain.

The second step of the REST algorithm is to enhance the adverse speech by ®rst suppressing the noise
using the state-based Wiener ®ltering method (Hansen and Clements, 1991; Ephraim, 1992; Vaseghi and
Milner 1997) and by then removing the signal bias by the SBR method (Rahim and Juang, 1996). It consists
of the following two sub-steps:

(2.1) Noise suppression: Given the segmentation information U �r�k , estimate the noise model K�r�n;k and
eliminate it from the input adverse speech z�r�t �f �, in linear-spectrum domain, by the state-based Wiener
®ltering method to obtain the intermediate signal y�r�t;k �f �. The noise model K�r�n;k and its average power
spectrum density P �r�n;k �f � of the rth utterance are re-estimated from the non-speech frames by

l�r�n;k�m� �
PTr

t�1 z�r�t �m� � I u�r�t;k 2 non-speech
� �

PTr
t�1 I u�r�t;k 2 non-speech

� � ; �5a�

R�r�n;k�m� �
PTr

t�1 z�r�t �m�
� �2

� I u�r�t;k 2 non-speech
� �

PTr
t�1 I u�r�t;k 2 non-speech

� � ÿ l�r�n;k�m�
� �2

; �5b�

P �r�n;k �f � �
PTr

t�1 P̂ �r�z;t �f � � I u�r�t;k 2 non-speech
� �

PTr
t�1 I u�r�t;k 2 non-speech

� � ; �5c�

where P̂ �r�z;t �f � is the periodogram of z�r�t , which is de®ned as

P̂ �r�z;t �f � �
1

L
z�r�t �f �
�� ��2; �6�

and L is the analysis length of the FFT operation; I��� is the zero±one indicator function. Basing on Eq. (1b)
of the assumed environment contamination model, the Wiener ®lter for the jth state of speech model and
the rth training utterance is constructed and expressed by

W �r�
j;k �f � �

Py;j;kÿ1�f �
Py;j;kÿ1�f � � P �r�n;k �f �

; �7a�

where Py;j;kÿ1�f � is the average power density spectrum corresponding to the jth state of the bias-
compensated speech HMM models. After forming all state-based Wiener ®lters, we calculate the enhanced
signal by
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y�r�t;k �f � � W �r�
ut ;k�f � � z�r�t �f �; for t � 1; . . . ; Tr and ut 6� non-speech: �7b�

(2.2) SBR: Given with the segmentation information �U �r�k ; V �r�k �, estimate the signal bias and remove it
from the intermediate signal y�r�t;k �f � to obtain the environment-normalized speech estimate. The SBR
method is realized by ®rst transforming y�r�t;k �f � to y�r�t;k �m�, then making a simpli®ed assumption of R�r�z;j;q �
identity matrix in Eq. (A.11) of Appendix A to obtain

b�r�k �m� �
PTr

t�1 y�r�t;k �m� ÿ l
x;u�r�t;k ;v

�r�
t;k ;kÿ1

�m�
� �

� I u�r�t;k 62 non-speech
� �

PTr
t�1 I u�r�t;k 62 non-speech

� � �8a�

and lastly removing the signal bias by

x�r�t;k �m� � y�r�t;k �m� ÿ b�r�k �m�: �8b�

The third step of the REST algorithm is to re-estimate the speech HMM models Kx;k and the average
power density spectrum fPy;j;kÿ1�f �gj�1;...;Nj

using, respectively, the enhanced speech signals fX �r�k �m�gr�1;...;R
and fY �r�k �m�gr�1;...;R based on the current segmentation information f�U �r�k ; V �r�k �gr�1;...;R, where Nj denotes
the total number of states in HMM models.

The combination of all operations in above three steps can be interpreted as a sequential optimal es-
timation procedure listed in the following:

For iteration k
For utterance r � 1 to R, do

�U �r�k ; V �r�k � � arg max
�U �r�;V �r��

Pr Z�r�;U �r�; V �r�
��Kx;kÿ1;Ke;kÿ1

ÿ �
; �9a�

K�r�n;k � arg max
K�r�n

Pr Z�r� K�r�n ; U �r�k ; V �r�k

� ����� �
; �9b�

Y �r�k � arg max
Y �r�

Pr Y �r� Z�r�;U �r�k

��� ;K�r�n;k; Py;j;kÿ1

� 	
j�1;...;Nj

� �
; �9c�

b�r�k � arg max
b�r�

Pr Y �r�k b�r�; U �r�k ; V �r�k

� �
;Kx;kÿ1

���� �
; �9d�

X �r�k � arg max
X �r�

Pr X �r� Y �r�k ; b�r�k

���� �
: �9e�

End loop for r

Py;j;k

� 	
j�1;...;Nj

� arg max
fPy;jgj�1;...;Nj

Pr Y �r�
� 	

r�1;...;R
Py;j

� 	
j�1;...;Nj

��� ; U �r�k

� �
r�1;...;R

� �
; �9f�

Kx;k � arg max
Kx

Pr X �r�k

n o
r�1;...;R

����Kx; U �r�k ; V �r�k

� �
r�1;...;R

� �
: �9g�

Repeat for k until the average likelihood score converges.

278 W.-T. Hong, S.-H. Chen / Speech Communication 30 (2000) 273±293



A similar idea was used in (Lim and Oppenheim, 1978; Hansen and Clements, 1991) to employ a se-
quential MAP estimation procedure in an iterative algorithm to sequentially estimate the linear prediction
coe�cients, gain, and the noise-free speech waveform for frame-level speech enhancement.

The REST algorithm can also be derived by using the EM algorithm (Dempster et al., 1977). So its
convergence can be guaranteed. Detailed derivations of the EM procedure for estimating �Kx;Ke� is given in
Appendix A.

Like other iterative algorithms, the REST algorithm must be initialized by giving an initial set of speech
HMM models, an initial set of state averaged power density spectra, an initial channel bias vector, and an
initial noise model. The initial speech HMM models and the initial state averaged power density spectra can
be constructed by a conventional ML training algorithm using either an enhanced version of the given
adverse-speech training set or another training set with high SNR. In the study, we adopt the former
approach to use an enhanced speech training set obtained by subtracting the given initial noise model from
the adverse-speech training set. The initial noise models are obtained from non-speech frames of the ad-
verse-speech training set detected by an RNN-based speech segmentation method (Hong and Chen, 1997).
It uses an RNN classi®er, directly trained from adverse speech, to classify the input speech pattern into
three broad-classes: initial, ®nal and non-speech. The speech segmentation method has been shown to
perform well in noisy environment (Hong et al., 1999). The initial bias vector is obtained by the SBR
method using the above enhanced speech training set.

3. The PMC±SBC method for Mandarin base-syllable recognition

Mandarin Chinese is a tonal language. Each Chinese character is pronounced as a syllable with a tone.
There are, in total, about 1300 syllables. If the tones are disregarded, there are only 411 phonologically
allowed base-syllables. The phonetic structures of these 411 base-syllables are very regular and relatively
simple as compared with English. A base-syllable can be decomposed into an optional initial and a ®nal.
There are in total 22 initials (including a null) and 39 ®nals. Although, the base-syllable set is only in
medium size, its recognition is actually very di�cult because it comprises many highly confusable sets.
Speci®cally, all 411 base-syllables can be categorized into 39 confusable sets according to their ®nals. Like
the English E-set, all base-syllables in each confusable set di�er only in their initial consonants and are
therefore di�cult to be distinguished (Chang et al., 1993; Lee and Juang, 1996). Besides, cross-set confusion
between these 39 sets are also easy to occur. Medial confusion and nasal-ending confusion are the two most
commonly occurred types of cross-set confusion. Highly discriminative speech models are therefore needed
to tackle the di�cult task. In this study, a set of sub-syllable HMM models containing 100 3-state right-
®nal-dependent initial models and 39 5-state context-independent ®nal models is used as basic recognition
units (Wang and Chen, 1998). In each state, a mixture Gaussian distribution with diagonal covariance
matrices is used. The number of mixture in each state is variable and depends on the number of training
samples, but a ®xed maximum value is set for it. Besides, a single-state, single-mixture, utterance-dependent
model is used for noise.

An integrated PMC-based Mandarin base-syllable recognition method, which is a modi®ed version of
the PMC method for additive and convolutional noise (Gales and Young, 1995; Nakamura et al., 1996) by
additionally considering broad-class based likelihood compensation (Hong and Chen, 1997), is employed
in this work to test the reference speech HMM models generated by the proposed REST training algo-
rithm. It can be regarded as the combination of the PMC method and a signal bias compensation (SBC)
method and is referred to as the PMC±SBC method. A block diagram of the new recognizer is displayed in
Fig. 2. Each input testing utterance is ®rst processed in the RNN-based Speech Segmentation (Hong and
Chen, 1997) to detect non-speech frames. The RNN-based speech segmentation uses a three-layer simple
RNN to discriminate each input frame among three broad-classes of initial, ®nal and non-speech.
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Non-speech frames are then detected by comparing the RNN non-speech output with a pre-determined
threshold and used in the noise estimations to estimate the noise model. The input utterance is then
processed in the Noise Subtraction and Signal Bias Estimation by ®rst subtracting the noise model estimate
to obtain an enhanced speech and then transforming to cepstrum domain to estimate the signal bias by the
SBR method (Rahim and Juang, 1996). The SBR method estimates the signal bias by ®rst encoding the
feature vectors of the enhanced speech using a codebook and then calculating the average encoding re-
siduals. The codebook is formed by collecting the mean vectors of mixture components of all reference
speech HMM models. The bias estimate is then used in the Bias Compensation to convert all reference
speech HMM models into bias-compensated speech HMM models. These models are then further con-
verted, in the PMC Noise Compensation, into noise- and bias-compensated speech HMM models using the
above noise model estimate. The PMC noise-compensation method used adopts the log-normal approx-
imation (Gales and Young, 1993) for its noise-combination operator. These noise- and bias-compensated
speech HMM models are then used in the One-stage DP Search to generate the recognized base-syllable
sequence for the input adverse testing utterance. The One-stage DP Search uses a Viterbi search algorithm
invoking with cumulative bounded-state-duration constraints (Wang and Chen, 1998) to accomplish its
task with the help of the Likelihood Compensation. The likelihood compensation (LC) scheme used is the
one proposed previously for improving the PMC-based recognition method for noisy Mandarin speech
(Hong and Chen, 1997; Hong et al., 1999). The LC scheme uses the broad-class classi®cation information,
provided by the RNN outputs, to help reduce the recognition errors caused by the misalignments of
syllable boundaries. Due to its importance, the LC scheme is brie¯y discussed as follows. Although the
PMC method is e�ective on adapting the clean-speech HMM models to match with the testing noise
environment, the discrimination capabilities of the noise-compensated HMM models are still subject to be
degraded resulted from the noise perturbation on the distributions of the recognition features of speech
patterns. This noise-perturbation e�ect will make all speech phones more di�cult to be distinguished not

Fig. 2. A block diagram of the PMC±SBC method for testing the REST algorithm.
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only to each other but also from the background noise. The PMC method can do nothing to compensate
this e�ect. This noise-induced confusing e�ect was also con®rmed in a recent study by Junqua et al. (1994)
on a simple 10-digit noisy speech recognition task. They found that a large portion of recognition errors is
owing to word boundary misalignments caused by the confusing between speech signals and the back-
ground noise. To partially cure the weakness of the PMC method, the LC scheme uses the broad-class
classi®cation information provided by the RNN to assist in the recognition. It directly takes the three
RNN outputs as weighting factors to add additional scores to the log-likelihood scores of HMM states
associated with the three broad classes, i.e.,

qc
j�zt� �

qj�zt� � a log�WI�t��; j 2 initial;
qj�zt� � a log�WF �t��; j 2 final;
qj�zt� � a log�WN �t��; j 2 non-speech;

8<: �10�

where WI (t), WF (t) and WN (t) are the initial, ®nal and non-speech outputs of the RNN, qj�zt� is the log-
likelihood score of state j, and a is a scaling factor to control the degree of the likelihood compensation. It is
noted that, if hard-decisions are performed in the broad-class classi®cation to make WI (t), WF (t) and WN (t)
become 0±1 functions, the LC scheme is equivalent to a restricted recognition search scheme in which only
sub-syllables belonging to the detected broad-class are needed to be considered.

4. Evaluation

Performance of the proposed REST algorithm was evaluated on two multi-speaker Mandarin base-
syllable recognition tasks. Due to the fact that the previous studies on robust training for eliminating the
noise e�ect were still very few, we examined the e�ectiveness of the REST training algorithm on eliminating
the noise e�ect in detail in the ®rst task. Both the REST training algorithm and the PMC±SBC recognition
method were simpli®ed by discarding the parts related to the signal bias compensation. In the second task,
the complete function of the REST algorithm on eliminating both the signal bias and noise e�ects was
examined. In the following experiments, the base-syllable accuracy rate de®ned below was used to evaluate
the recognition performance:

base-syllable accuracy rate � 1

�
ÿ Subs�Dels � Ins

number of testing base-syllables

�
� 100�%�; �11�

where Subs, Dels and Ins denoted the numbers of substitution, deletion and insertion errors, respectively.

4.1. Performance evaluation I

In the ®rst task, the performance of the REST algorithm on the adverse environment with only additive
noise interference was examined. The noisy speech databases used in this study were generated by arti®cially
adding noises to a clean-speech database composing of 1200 utterances of four speakers including two males
and two females. Each utterance comprised several syllables and was pronounced in such a way that every
syllable was clearly pronounced. The database contained in total 6197 syllables including 5124 training
syllables and 1073 testing syllables. All speech signals were digitally recorded in a laboratory using a PC with
a 16-bit Sound Blaster card and a head-set microphone. A sampling rate of 16 kHz was used. Two noisy-
speech databases were arti®cially generated from the clean-speech database by adding noises of two di�erent
types including the Lynx helicopter noise from NOISEX-92 (Varga, 1993) and a computer-generated white
Gaussian noise. For simplicity, these two noise types are referred to as Lynx and White noises, respectively.
For each noise type, the training database contained three noisy-speech data sets of 12, 24 and 36 dB in SNR.
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The open test used another three data sets for each noise type with 9, 18 and 30 dB in SNR. All speech signals
were ®rst pre-processed for each of 20 ms Hamming-windowed frame with 10 ms shift. Then, a set of 25
recognition features including 12 MFCC, 12 delta MFCC and a delta log-energy was computed for each
frame. The maximum number of mixture components in each HMM state was set to be 5.

We ®rst examined the e�ciency of the speech HMM models generated by the REST algorithm using the
F-ratio measure (Nicholson et al., 1997). The F-ratio is a measure of class separability in the acoustic
feature space and can be roughly de®ned by

F -ratio � variance of means

mean of variances
: �12�

In this test, the classes were de®ned to include all states of the speech HMM models. The variance of means
is the sample variance of all state means of these HMM models, and the mean of variances is the sample mean
of all state variances. Obviously, a larger F-ratio measure indicates a larger separation among the states of
the speech HMM models, which in turn roughly indicates that they have a higher discrimination capability. In
the study, two schemes of the REST training algorithm with two di�erent sets of initial models were tested.
The ®rst set of initial models, denoted as INIT1, was formed by the clean-speech HMM models, clean-speech
state average power density spectra, and the exact noise models. Since INIT1 was an ideal model, the ®rst
scheme was not practical and hence was taken for reference only. The other set of initial models, denoted as
INIT2, was a practical one and was generated by ®rstly segmenting all training utterances by the RNN-based
speech segmentation method (Hong and Chen, 1997), secondly estimating the initial utterance-dependent
noise models from non-speech frames of those training utterances, and lastly estimating the initial speech
HMM models and the initial state average power density spectra from the enhanced version of the original
training set obtained by subtracting the initial noise model. Figs. 3 and 4 show the feature-based F-ratio
measures of the resulting HMM models for the two cases using Lynx and White noises, respectively. It can be
seen from these two ®gures that the F-ratio measures for both schemes of the REST algorithm with INIT1 and
INIT2 are comparable and are all better than the HMMB models (to be de®ned later) trained by the con-
ventional k-means algorithm. This is especially true for the lower-order recognition features. So the speech
HMM models generated by the proposed REST algorithm are more compact and hence expected to possess
better discrimination capability. Fig. 5 shows the learning curve of the REST algorithm. It can be found from
Fig. 5 that the average log-likelihood score increases monotonically with respect to the iteration number. This
empirically shows the convergence of the REST algorithm.

Fig. 3. The F-ratio measures of the speech HMM models trained from the noisy speech training database corrupted with Lynx noise.
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We then examined the recognition performance of the speech HMM models generated by the REST
algorithm. The performance of the HMM method when both training and testing data were clean speech
was also tested and taken as a benchmark. Its base-syllable recognition rate was 80.5%. In this test, four sets
of reference speech HMM models were compared. They included:

M1. HMMC: The HMM models trained from the clean-speech database by the ML-based segmental k-
means algorithm.

M2. HMMB: The HMM models trained from the noisy-speech database with three di�erent SNRs by the
ML-based segmental k-means algorithm.

M3. HMMR: The HMM models trained from the noisy-speech database with three di�erent SNRs by the
proposed REST algorithm.

M4. HMMM: The HMM models trained from a noisy-speech data set with SNR matched with the testing
speech by the ML-based segmental k-means algorithm. That is, the HMM models trained from 9, 18
or 30 dB noisy-speech data set were used to recognize noisy speech with the same SNR.

Fig. 4. The F-ratio measures of the speech HMM models trained from the noisy speech training database corrupted with White noise.

Fig. 5. The learning curve of the REST algorithm for the ®rst task.
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For comparing the performances of these four sets of reference speech HMM models on noisy speech
recognition, the following three recognition schemes were used:

Tables 1 and 2 show the experimental results of the open tests for the two cases using Lynx and White
noises, respectively. It is noted that, in the implementation of the PMC recognition method using HMMB as
reference models, the mean of the estimated noise model, l̂�r�n �f �, was intuitively modi®ed by

l̂�r�n �f �  l̂�r�n �f � ÿ l̂n0
�f �; if l̂�r�n �f � > l̂n0

�f �;
0; otherwise;

(
�13�

to count the noise e�ect embedded in the HMMB models. Here l̂n0
�f � is the noise mean of the training

database estimated in the training process of generating the HMMB models. From Tables 1 and 2, the
following observations can be found:

S1-1. The ÔNCÕ scheme: The conventional HMM recognition method without noise compensation.
S1-2. The ÔPMCÕ scheme: The conventional PMC method (Gales and Young, 1993) with noise model

being estimated based on RNN-based speech segmentation. Its noise-compensation operation used
the log-normal approximation.

S1-3. The ÔPMC/LCÕ scheme: An extended version of the ÔPMCÕ scheme invoking with the likelihood
compensation scheme. It is a degenerated version of the PMC±SBC method discussed in Section 3
with the parts related to signal-bias compensation being discarded.

O1. For HMMB, the NC scheme performed fair for both noise types with SNR � 18 dB and SNR � 30
dB. But it performed very bad for both noise types with SNR � 9 dB.

O2. For HMMM, the NC scheme performed very well for both noise types with all the three SNRs.
O3. For HMMB, the PMC scheme performed only slightly better than the NC scheme for both noise types

with SNR � 18 dB and SNR � 30 dB, and much better for SNR � 9 dB.
O4. The NC scheme with HMMM performed better than the PMC scheme with HMMC for both noise

types with all the three SNRs.

Table 1

The recognition results of the open tests for noisy speech corrupted with Lynx noise (unit: %)

HMMB HMMC HMMR HMMM

NCSNR (dB) NC PMC PMC PMC/LC PMC PMC/LC

9 )12.1 34.9 39.1 42.3 43.6 48.7 45.0

18 51.4 52.0 58.6 62.5 62.8 67.7 66.3

30 62.3 65.1 71.2 75.1 73.6 78.3 75.6

Table 2

The recognition results of the open tests for noisy speech corrupted with White noise (unit: %)

HMMB HMMC HMMR HMMM

NCSNR(dB) NC PMC PMC PMC/LC PMC PMC/LC

9 )35.9 29.8 26.9 33.0 35.0 38.1 33.6

18 42.8 45.2 48.3 52.0 54.2 58.0 57.0

30 58.4 59.9 65.4 71.8 68.2 73.8 68.6
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Based on these observations, the following conclusions can be drawn:

An extra test on noisy English digit recognition using the NOISEX-92 database (Varga and
Steeneken, 1993) was performed to examine the validity of the proposed REST algorithm. The database
contains utterances of isolated digits and digit triples uttered by one male and one female speakers.
Here only the part of isolated-digit utterances was used. The database contains in total 400 digits
including 200 training tokens and 200 testing tokens. Each testing utterance comprises 100 digits and
was uttered in such a way that every digit was clearly pronounced. All speech signals were ®rst pre-
processed for each of 25 ms Hamming-windowed frame with 10 ms shift. Then, 12 MFCC were
computed for each frame and taken as the recognition features. For each digit, an 8-state HMM model
with observations in each state being modeled by a mixture Gaussian distribution was trained. The
number of mixture components in each state was set to be 2. Besides, a single-state, single-mixture
model was used for noise.

In the test, we considered the performance of the REST algorithm on the adverse environment with
additive noise interference only. Noisy-speech databases were arti®cially generated from the clean-speech
database by adding computer-generated white Gaussian noise. The noisy training database contained four
data sets of 0, 6, 12 and 24 dB in SNR. The open test used another ®ve data sets of )3, 0, 3, 9 and 18 dB in
SNR. The same accuracy rate de®ned in Eq. (11) was used to evaluate the recognition performance. We
note that the benchmark of the recognition performance achieved by the conventional ML-trained HMM
method for the clean-speech case is 100%. Three recognition schemes used in the ®rst test were compared.
They included:

C1-1. From O1±O2, the conventional HMM method without noise compensation can be used in noisy
speech recognition only when the noise level of the training data set is the same as that of the
testing speech. If the training database contains noisy speech with diverse noise levels, its
performance will degrade seriously.

C1-2. From O1±O3, the HMM models generated by the conventional k-means training algorithm are
good for the NC scheme in the noise-level matched condition, fair in the noise-level interpolation
condition, and bad in the noise-level extrapolation condition.

C1-3. From O1 and O3, the performance improvements for the HMM method using HMMB reference
models by the PMC noise compensation are very limited.

C1-4. From O4, the log-normal approximation of the noise-compensation operation used in the PMC
scheme is not perfect.

C1-5. From O5 and C1-4, the REST algorithm is a very e�cient training algorithm to generate noise-
suppressed HMM models directly from a noisy speech database with diverse noise levels. The
resulting HMM models perform very well in the PMC scheme for testing noisy speech with
untrained noise levels. They are even better than the clean-speech HMM models for the PMC
method when the noise-compensation operation is not perfect. So it is a very promising robust
training algorithm.

C1-6. From O6±O7, the likelihood compensation scheme is very helpful for the PMC-based noisy speech
recognition. Actually, the PMC/LC scheme using HMMR reference models performed best in all
cases of the test.

O5. For both PMC and PMC/LC schemes, HMMR performed better than HMMC for both noise types
with all the three SNRs.

O6. For both HMMR and HMMC, the PMC/LC scheme performed much better than the PMC scheme.
O7. The PMC/LC scheme with HMMR performed better than the NC scheme with HMMM.
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1. HMMB±NC: The conventional HMM method without noise compensation using HMM models trained
from noisy speech.

2. HMMC±PMC: The PMC method using clean-speech HMM models.
3. HMMR±PMC: The PMC method using HMM models trained by the REST algorithm.
Table 3 shows the experimental results. It can be seen from the table that HMMB±NC performed the worst,
HMMC±PMC the next, and HMMR±PMC the best. This result is consistent with what we have obtained in
the ®rst test of the study on adverse Mandarin speech recognition.

4.2. Performance evaluation II

In the second task, the performance of the REST algorithm on adverse environment with both
channel bias and noise interferences was examined. A simulated telephone-speech database generated by
corrupting a clean-speech database with both convolutional channel bias and additive white noise was
used in this study. The clean-speech database was generated by 10 speakers including 8 males and 2
females. It was a super-set of the clean-speech database used in the ®rst task with the same recording
condition. It contained, in total, 3050 utterances including 2572 training utterances (12 800 syllables)
and 478 testing utterances (2666 syllables). To generate the adverse-speech database, each clean-speech
utterance was ®rst corrupted by a computer-generated white Gaussian noise and then passed through a
®lter which simulated a telephone channel. This was realized simply by ®rst adding the white noise in
time domain and then adding the channel bias in frequency domain. It is noted that the assumed
environment contamination model shown in Fig. 1 is still suitable for modeling the simulated database.
In the training database generation, noises with levels of 12, 24 and 36 dB in SNR were separately
added to three subsets of the clean-speech training database. These three subsets contained utterances
of three, three and four speakers, respectively. In the testing database generation, noises with levels of
9, 18 and 30 dB in SNR were added to the whole clean-speech testing database. To simulate the
channel variations on the telephone speech through the public switching network, a set of 227 simu-
lated ®lters was generated from a large telephone-speech database provided by Chunghwa Telecom-
munication Laboratories. Each ®lter was obtained by performing a frame-based cepstrum average to
the long utterance of a telephone call through the public switching network. Fig. 6 shows their fre-
quency responses. Among these 227 channel ®lters, 195 were used to generate the training database
while all others were used in the testing database generation. It is noted that the stationarity of the
environment characteristics for each utterance is guaranteed in this simulated adverse-speech database
via the use of utterance-dependent channel ®lter and noise level.

The same format of speech HMM models as the ®rst task was used here. The only di�erence was that the
maximal number of mixtures used in each HMM state was increased to 20. In the REST algorithm, the
initial condition was generated from the same adverse training database by a four-step procedure. First,
segment all training utterances by the RNN-based speech segmentation method (Hong and Chen, 1997).
Second, estimate the initial utterance-dependent noise model from the non-speech frames of each training
utterance. Third, estimate the initial speech HMM models and the initial state average power density

Table 3

The recognition results of the NOISEX-92 database corrupted by White noise (unit: %)

SNR (dB) HMMB±NC HMMC±PMC HMMR±PMC

)3 39.5 72.0 82.5

0 63.5 86.0 94.5

3 82.0 94.0 99.0

9 93.0 98.5 99.5

18 94.0 99.5 99.5
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spectra from the enhanced version of the original training set obtained by subtracting the initial noise
models. Last, estimate the initial channel bias vectors from the same enhanced training set by the SBR
method (Rahim and Juang, 1996).

In this test, the following recognition schemes were compared:

Table 4 shows the base-syllable recognition results of these six schemes for adverse speech corrupted with
channel bias and White noise. It can be found from Table 4 that, according to the recognition rate, these six
schemes can be ordered as: REST=LC > REST > REST-noise or REST-bias > BASELINE > CLEAN.
Based on the experimental results, the following conclusions can be made:

S2-1. The ÔBASELINEÕ scheme: The conventional HMM method using the reference speech models
trained directly from the adverse training database by the segmental k-means algorithm.

S2-2. The ÔCLEANÕ scheme: The PMC±SBC recognition method using the clean-speech reference HMM
models, but without invoking the LC scheme.

S2-3. The ÔREST-biasÕ scheme: The SBC recognition method using the reference HMM models trained by
the REST algorithm without considering noise suppression.

S2-4. The ÔREST-noiseÕ scheme: The PMC recognition method using the reference HMM models trained
by the REST algorithm without considering signal bias removal.

S2-5. The ÔRESTÕ scheme: The PMC±SBC recognition method using the REST-trained reference HMM
models, but without invoking the LC scheme.

S2-6. The ÔREST/LCÕ scheme: The PMC±SBC recognition method using the REST-trained reference HMM
models.

Table 4

The recognition results of the open tests for adverse speech corrupted with channel bias and White noise (unit: %)

SNR (dB) BASELINE CLEAN REST-bias REST-noise REST REST/LC

9 23.4 14.8 24.5 29.3 33.0 35.2

18 46.7 27.3 50.2 48.4 53.7 56.5

30 60.2 45.6 62.7 61.8 65.5 66.7

Fig. 6. The frequency responses of the simulated telephone channels.
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A ®nal test to check whether the REST training scheme is operable for clean-speech environment was
lastly done. It is worthwhile to note that some robust training algorithms, designed for improving the
performance of speech recognizers under adverse-speech environment, performed not well for clean-speech
environment. In the test, two sets of HMM models were generated, respectively, by the conventional ML
training method and by the REST training scheme using the same clean-speech database. The base-syllable
recognition rate was 76.05% for the ML method and 76.24% for the REST scheme. This result con®rmed
that the REST algorithm did not degrade the system performance when the training data were clean
speech.

5. Conclusions

A robust training algorithm for generating a set of speech HMM models directly from a training dat-
abase collected in adverse environment for adverse speech recognition has been discussed in this paper. Its
main advantage lies on the incorporation of the signal bias-compensation and PMC noise-compensation
operations of a given robust adverse speech recognition method into its iterative training process so as to
make the resulting speech HMM models more suitable to be used in the given robust adverse speech
recognition method. Its e�ectiveness on generating robust speech HMM models has been con®rmed by
simulations. Experimental results showed that the HMM models it generated were even better than the
clean-speech HMM models for use in the given robust adverse speech recognition method when the PMC
noise-compensation and/or channel bias-compensation operations are imperfect. So it is a promising robust
training algorithm.
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C2-1. The conventional HMM method using the reference models trained by the k-means algorithm
performed fair in adverse speech recognition.

C2-2. The result that the CLEAN scheme performed much worse than the BASELINE scheme is mainly
owing to the imperfection of the channel bias compensation performed in the SBC method.
Actually, the CLEAN scheme was totally fail to compensate the mismatch between the testing
speech and the clean-speech HMM model. This primarily resulted from the large deviation on the
estimated signal bias from the real channel bias.

C2-3. Although the channel bias-compensation operation of the SBC method is imperfect, the REST
training algorithm can still take its advantage by embedding it into the iterative training process to
make the resulting HMM models more suitable to be used with the channel bias compensation of
the testing process. This has been con®rmed by the fact that both the REST-bias and REST scheme
performed better than the BASELINE scheme.

C2-4. The HMM models generated by the REST algorithm which considers both noise suppression and
signal bias removal are better than those obtained by the REST algorithm considering only noise
suppression or signal bias.

C2-5. The likelihood compensation scheme is still e�ective on assisting in the adverse speech
recognition.
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Appendix A. The EM procedure for estimating Kx;Kef g

Eq. (2) can be solved using an iterative EM procedure (Dempster et al., 1977) which tries to ®nd the local
optimal estimate of Ĥ � K̂x; K̂e

� 	
with the following two intermediate parameter sequences involved:

the hidden state sequences fU �r� � �u�r�1 ; . . . ; u�r�Tr
�gr�1;...;R and the mixture component sequences

fV �r� � �v�r�1 ; . . . ; v�r�Tr
�gr�1;...;R. The ®rst (expectation) step of the EM procedure is to compute the auxiliary Q-

function de®ned as

Q�H; Ĥkÿ1� � E log L fZ�r�;U �r�; V �r�gr�1;...;R

� ���H� fZ�r�gr�1;...;R;
��� Ĥkÿ1

n o
: �A:1�

Here the subscript k ) 1 denotes the iteration index. In the second (maximization) step, new values of Ĥk are
computed based on the maximization of Q�H; Ĥkÿ1�:

Ĥk � arg max
H

Q�H; Ĥkÿ1�: �A:2�

The detailed derivation of the EM procedure is described as follows.
Let

K�r�z �
G Kx; K

�r�
n ; b

�r�
� �

for adverse-speech model;

K�r�n for non-speech model

(
�A:3�

be the environment-compensated HMM models, constructed from Kx and ( K�r�n , b�r�), for the rth obser-
vation utterance Z�r�. Here G��� denotes a mapping function that transforms Kx to match with the current
environment of Z�r�. By assuming that, in K�r�z , observations are mixture-Gaussian-distributed, we can
calculate the mean vector l�r�z;j;q and covariance matrix R�r�z;j;q of the qth mixture component in the jth state of
K�r�z , based on the assumed environment contamination model de®ned in Eqs. (1b) and (1c), by

l�r�z;j;q � �lx;j;q � b�r�� 
 K�r�n ; j 2 adverse-speech model;

l�r�n ; j 2 non-speech model;

�
�A:4a�

R�r�z;j;q � Rx;j;q 
 K�r�n ; j 2 adverse-speech model;
R�r�n ; j 2 non-speech model;

�
�A:4b�

where 
 denotes the PMC noise-compensation operator (Gales and Young, 1993), and lx;j;q and Rx;j;q are,
respectively, the mean vector and covariance matrix of the qth mixture component in the jth state of Kx. By
further assuming that the state-based Wiener ®ltering is the inverse operation of the PMC (Gales and
Young, 1993; Vaseghi and Milner, 1997), we can express the compensated cepstral mean l�r�z;j;q in Eq. (A.4a)
by (Gales and Young, 1993; Vaseghi and Milner, 1997)

l�r�z;j;q � lx;j;q � b�r� � hj; j 2 adverse-speech model;

l�r�n ; j 2 non-speech model;

�
�A:5�

where hj is the cepstral coe�cients of the state-based Wiener ®lter of the jth state which is constructed from
an estimate of the signal power density spectrum at the jth state and an estimate of the noise power density
spectrum of the rth utterance.

Based on the above expression of K�r�z , the auxiliary Q-function can be rewritten as (Sankar and Lee,
1996)
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Q�H; Ĥkÿ1� � Q Kx; fK�r�n ; b
�r�gr�1;...;R

� �
; Ĥkÿ1

� �
� Q fK�r�z gr�1;...;R

� �
; Ĥkÿ1

� �
� Qkÿ1 �

XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;kÿ1�j; q� log Pr z�r�t ; ut

ÿ � j; vt � q
��H�

� Qkÿ1 �
XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;kÿ1�j; q� logN�z�r�t ; l�r�z;j;q;R
�r�
z;j;q�; �A:6�

where

c�r�t;kÿ1�j; q� � Pr z�r�t ; u
�r�
t

�
� j; v�r�j � q Ĥkÿ1

��� �
�A:7�

is the probability of the observation z�r�t produced from the qth mixture component of the jth state; Nj and
Nq denote, respectively, the total numbers of states and mixture components; N��� represents normal dis-
tribution; and Qkÿ1 is a function depending only on the transition probability and mixture probability of
K̂�r�z;kÿ1 (which are assumed to be the same as those of K̂x;kÿ1). But, due to the fact that it is generally di�cult
to derive a close form solution for the above joint maximization problem, a multi-stage sequential maxi-
mization procedure is employed to approximate the local optimum of Ĥk. In each stage, only one type of
parameters is optimally estimated.

We ®rst estimate the parameters of noise model K̂�r�n;k to maximize the Q-function in Eq. (A.6). They can
be obtained by

l̂�r�n;k �
PTr

t�1

PNj
j�1

PNq
q�1 c�r�t;n;kÿ1�j; q�z�r�tPTr

t�1

PNj
j�1

PNq
q�1 c�r�t;n;kÿ1�j; q�

; �A:8a�

R̂�r�n;k �
PTr

t�1

PNj
j�1

PNq
q�1 c�r�t;n;kÿ1�j; q� z�r�t ÿ l̂�r�n;k

� �
z�r�t ÿ l̂�r�n;k

� �T

PTr
t�1

PNj
j�1

PNq
q�1 c�r�t;n;kÿ1�j; q�

; �A:8b�

where c�r�t;n;kÿ1�j; q� � c�r�t;kÿ1�j; q�I�j 2 non-speech� and I��� is the zero±one indicator function.

We then estimate the signal bias b̂�r�k . After replacing K�r�n and Kx with K̂�r�n;k and K̂x;kÿ1, the Q-function
becomes

Q K̂x;kÿ1; K̂�r�n;k; b
�r�

n o
r�1;...;R

� �
; Ĥkÿ1

� �
� Q0kÿ1 �

XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;s;kÿ1�j; q� log N z�r�t ; l̂x;j;q;kÿ1

�
� b�r� ÿ hj;k;R

�r�
z;j;q;k

�
� Q0kÿ1 �

XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;s;kÿ1�j; q� log N z�r�t

ÿ� � hj;k ÿ b�r�
�
; l̂x;j;q;kÿ1;R

�r�
z;j;q;k

�
� Q0kÿ1 �

XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;s;kÿ1�j; q� log N y�r�t;j;k

��
ÿ b�r�

�
; l̂x;j;q;kÿ1;R

�r�
z;j;q;k

�
; �A:9�

where c�r�t;s;kÿ1�j; q� � c�r�t;kÿ1�j; q�I�j 2 speech�; hj;k and R�r�z;j;q;k are updated versions of hj and R�r�z;j;q with K�r�n and

Kx being replaced with K̂�r�n;k and K̂x;kÿ1, and y�r�t;j;k is the Wiener-®ltered version of z�r�t at the jth state. By
solving
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oQ K̂x;kÿ1; K̂�r�n;k; b
�r�

n o
r�1;...;R

� �
; Ĥkÿ1

� �
ob�r�

� 0; �A:10�

the pth element of b̂�r�k can be obtained by (Sankar and Lee, 1996)

b̂�r�k �p� �
PTr

t�1

PNj

j�1

PNq

q�1 c�r�t;s;kÿ1�j; q� R�r�z;j;q;k�p; p�
� �ÿ1

y�r�t;j;k�p� ÿ l̂x;j;q;kÿ1�p�
� �

PTr
t�1

PNj
j�1

PNq
q�1 c�r�t;s;kÿ1�j; q� R�r�z;j;q;k�p; p�

� �ÿ1
; �A:11�

where y�r�t;j;k�p� and l̂x;j;q;kÿ1�p� denote, respectively, the pth elements of y�r�t;j;k, and l̂x;j;q;kÿ1, and R�r�z;j;q;k�p; p� is

the �p; p�th element of R�r�z;j;q;k.

We then estimate K̂x;k. After replacing K�r�n and b�r� with K̂�r�n;k and b̂�r�k , the Q-function becomes

Q Kx; K̂�r�n;k; b̂
�r�
k

n o
r�1;...;R

� �
; Ĥkÿ1

� �
� Q0kÿ1 �

XR

r�1

XTr

t�1

XNj

j�1

XNq

q�1

c�r�t;s;kÿ1�j; q� log N x�r�t;j;k; lx;j;q;Rx;j;q

� �
;

�A:12�
where

x�r�t;j;k � y�r�t;j;k ÿ b̂�r�k � z�r�t � hj;k ÿ b̂�r�k �A:13�
is the signal bias-removed and Wiener-®ltered signal of the jth state. The Q-function is now in the same
form as that in the conventional EM algorithm for estimating HMMÕs parameters. So, the mean and
covariance of K̂x;k can be estimated in the same way by

l̂x;j;q;k �
PR

r�1

PTr
t�1

PNj
j�1

PNq
q�1 c�r�t;s;kÿ1�j; q�x�r�t;j;kPR

r�1

PTr
t�1

PNj
j�1

PNq
q�1 c�r�t;s;kÿ1�j; q�

; �A:14a�

R̂x;j;q;k �
PR

r�1

PTr
t�1

PNj

j�1

PNq

q�1 c�r�t;s;kÿ1�j; q� x�r�t;j;k ÿ l̂x;j;q;k

� �
x�r�t;j;k ÿ l̂x;j;q;k

� �T

PR
r�1

PTr
t�1

PNj
j�1

PNq
q�1 c�r�t;s;kÿ1�j; q�

: �A:14b�

The HMM state transition probabilities and the mixture component coe�cients can also be estimated by
the standard EM method.

It can be veri®ed that the Q-function will increase at each stage of the sequential maximization proce-
dure, i.e.,

Q Ĥkÿ1; Ĥkÿ1

� �
� Q K̂x;kÿ1; K̂�r�n;kÿ1; b̂

�r�
kÿ1

n o
r�1;...;R

� �
; Ĥkÿ1

� �
6Q K̂x;kÿ1; K̂�r�n;k; b̂

�r�
kÿ1

n o
r�1;...;R

� �
; Ĥkÿ1

� �
6Q K̂x;kÿ1; K̂�r�n;k; b̂

�r�
k

n o
r�1;...;R

� �
; Ĥkÿ1

� �
6Q K̂x;k; K̂�r�n;k; b̂

�r�
k

n o
r�1;...;R

� �
; Ĥkÿ1

� �
� Q Ĥk; Ĥkÿ1

� �
: �A:15�
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This in turn leads to an increase on the likelihood of the training data in each iteration (Dempster et al.,
1977), i.e.,

L fZ�r�gr�1;...;R Ĥk

���� �
P L fZ�r�gr�1;...;R Ĥkÿ1

���� �
: �A16�

Hence, the EM procedure is guaranteed to converge.
In practical implementation, the above EM procedure needs to be modi®ed by invoking with the seg-

mental k-means algorithm (Juang and Rabiner, 1990) in order to increase its computational e�ciency. It
adds an additional pre-segmentation stage into the above iterative re-estimation procedure. In each iter-
ation, all training utterances are ®rst optimally segmented by the Viterbi algorithm (Forney, 1973) to de-
termine the best state sequences fÛ �r�k gr�1;...;R and the best mixture component sequences fV̂ �r�k gr�1;...;R. Then,
parameters of all models are re-estimated based on the given fÛ �r�k ; V̂ �r�k gr�1;...;R. All formulations of the
above EM procedure listed in Eqs. (A.3)±(A.14) still hold except that c�r�t;s;kÿ1�j; q� and c�r�t;n;kÿ1�j; q� are now
associated only with fÛ �r�k ; V̂ �r�k g and hence all

PNj
j�1

PNq
q�1 in Eqs. (A.6), (A.8), (A.9), (A.11), (A.12) and

(A.14) have to be taken away.
A ®nal modi®cation of the above re-estimation procedure is needed to replace the optimal signal bias

estimation with the conventional SBR method. By making a simpli®ed assumption of R̂�r�z;j;q;kÿ1 � I , the
modi®ed version of Eq. (A.11) can be reduced to Eq. (8a). This completes the derivations of the REST
training algorithm.
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