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Abstract. We study the mechanism of the enhanced gauge symmetry of the bosonic open string compact-
ified on a torus by analyzing the zero-norm soliton (non-zero winding of the Wilson line) gauge states in
the spectrum. Unlike the closed string case, we find that the soliton gauge state exists only at massive
levels. These soliton gauge states correspond to the existence of enhanced massive gauge symmetries with
transformation parameters containing both Einstein and Yang–Mills indices. In the T -dual picture, these
symmetries exist only at some discrete values of compactified radii when N D-branes are coincident.

1 Introduction

The discovery of the D-brane as an R–R charge carrier [1]
and its applications to various string dualities has made it
clear that the open string is essential in the study of string
theory. Historically, Yang–Mills gauge symmetry was in-
corporated into string theory through different mecha-
nisms for closed and open strings. For the closed string,
it was built into the theory through compactification of
the string coordinates or, more generally, by adding an
internal Kac–Moody conformal field theory with the ap-
propriate central charge[2]. For the open string instead,
a Yang–Mills degree of freedom was built into the theory
through the Chan–Paton effect [3] by adding charges at
the end points of string.

In the previous paper [4], we related the closed string
Kac–Moody gauge symmetry to the existence of mass-
less zero-norm soliton gauge states (SGS) in the spectrum
of the torus compactification. This program was then ex-
tended to the massive states. The existence of the massive
SGS thus implies that there is an infinite enhanced gauge
symmetry of compactified closed string theory. In this pa-
per, we will study the SGS of compactified open string
theory. Unlike the closed string case, we find that the
SGS exists only at massive levels. This SGS corresponds
to the enhanced massive symmetries with transformation
parameters containing both Einstein and Yang–Mills in-
dices. This is reminiscent of the symmetry of the closed
massive heterotic string modes discovered previously [5].
In the T -dual picture, these SGS implies the existence of
enhanced massive gauge symmetry at some discrete values
of the compactified radii when N D-branes are coincident.

This paper is organized as follows. In Sect. 2, we dis-
cuss the uncompactified open string. We first derive both
the massless and massive Chan–Paton zero-norm gauge
states. The corresponding gauge symmetries and Ward
identities are then derived. In the massive case, we get a
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mixed Einstein–Yang–Mills type symmetry, which is simi-
lar to the one we derived in the closed heterotic string the-
ory. Section 3 is devoted to the compactified open string
case. Massive SGS, which is responsible for the enhance-
ment of massive gauge symmetry, is shown to exist at any
higher massive levels of the spectrum. A brief discussion
is given in Sect. 4.

2 Chan–Paton gauge states

In this section, we discuss the (zero-norm) gauge state of
the uncompactified open string with a Chan–Paton fac-
tor and its implication for the on-shell symmetry and for
the Ward identity. For simplicity, we consider the oriented
U(N) case. The vertex operators of massless gauge state
are

θaλa
ijk · ∂xeikx (1)

where λ ∈ U (N) , i ∈ N , j ∈ N and a ∈ the adjoint rep-
resentation of U (N). The on-shell conformal deformation
and the U (N) gauge symmetry to lowest order in the weak
background field approximation are (2θa = 0,2 ≡ ∂µ∂µ)

δT = λa
ij∂µθa∂xµ (2)

and

δAa
µ = ∂µθa (3)

with T the energy momentum tensor and Aa
µ the massless

gauge field.
One can verify the corresponding Ward identity by cal-

culating e.g., 1-vector and 3-tachyons four point correla-
tors. The amplitude is calculated to be

T abcd
µ =

∫ 4∏
i=1

dxi〈eik1x1∂xµeik2x2eik3x3eik4x4〉
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In (4) , s, t and u are the usual Mandelstam variables.
One can then verify the Ward identity

θbkµ
2 T abcd

µ = 0. (5)

We now discuss the massive gauge states. The vertex
operator of the type I massive vector gauge state is

θa
µλa

ij

[
k · ∂x∂xµ + ∂2xµ

]
eikx. (6)

We note that the gauge state polarization contains both
Einstein and Yang–Mills indices. This is very similar to
the 10D closed heterotic string case [5]. The only differ-
ence is that in the heterotic string one could have more
than one Yang–Mills index. The on-shell conformal defor-
mation and the mixed Einstein–Yang–Mills type symme-
try to lowest order in the weak field approximation are(
(2 − 2) θa

µ = ∂ · θa = 0
)

δT = λa
ij∂(µθa

ν)∂xµ∂xν + λa
ijθ

a
µ∂2xµ (7)

and
δMa

µν = ∂µθa
ν + ∂νθa

µ. (8)

One can also derive the corresponding massive Ward iden-
tity by calculating the decay rate of one massive state to
three tachyons. The most general amplitude is calculated
to be

Aabcd = εaεcεd
(
εb

µνTµν + εb
µTµ

)
Tr

(
λaλbλcλd

)
(9)
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and
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×
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. (11)

In (9) εa etc. are the polarization of the tachyons and(
εb

µν , εb
µ

)
is the polarization of the massive state. The

above amplitude satisfies the following Ward identity:

k(µθa
ν)T

µν + θa
µTµ = 0. (12)

A similar consideration can be applied to the following
type II massive scalar gauge state

[
1
2
α−1 · α−1 +

5
2
k · α−2 +

3
2

(k · α−1)
2
]

| k, l = 0, i, j〉,
(13)

which corresponds to a massive U(N) symmetry.

3 Chan–Paton soliton gauge state
on R25 ⊗ T 1

In this section, we discuss soliton gauge states on a torus
compactification of the bosonic open string. As is well
known, the massless U(N) gauge symmetry will be broken
in general after compactification unless N D-branes, in
the T -dual picture, are coincident. We will see that when
D-branes are coincident, one has enhancement of (unwind-
ing) zero-norm gauge states and the massless U(N) sym-
metry will be recovered. These zero-norm gauge states can
be considered as charges or symmetry parameters of an
U(N) group.

In the discussion of open string compactification, one
needs to turn on the Wilson line or nonzero background
gauge field in the compact direction. This will affect the
momentum in the compact direction, and the Virasoro
operators become

L0 =
1
2

(
2πl − θj + θi

2πR

)2

+
1
2
(kµ)2 +

∞∑
n=1

(
αµ

−nαµ
n + α25

−nα25
n

)
, (14)

Lm =
1
2

∞∑
−∞

⇀
αm−n · ⇀

αn . (15)

Note that in (15), α25
0 ≡ p25 which also appears in the first

term in (14). k is the 25D momentum. θi, R are the gauge
and space-time moduli, respectively, and l is the winding
number in the compact direction. The spectra of type I
and type II zero-norm gauge states become [4]

M2 =
(

2πl − θj + θi

2πR

)2

+ 2I, (16)

and

M2 =
(

2πl − θj + θi

2πR

)2

+ 2(I + 1) (17)

where I =
∑∞

n=1(α
µ
−nαµ

n + α25
−nα25

n ).
For the massless case I = l = 0, one gets N2 massless

solution from (16)

kµαµ
−1 | k, l = 0, i, j〉 (18)
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if all θi are equal, or in the T -dual picture when N D-
branes are coincident. These N2 massless gauge states
correspond to the charges of the massless U(N) gauge
symmetry. There is no type II massless solution in (17).

We are now ready to discuss the interesting massive
case. For M2 = 2 and general moduli (R, θi),

1. I = 1, l = 0, One gets two gauge states solutions from
(16):
[(ε · α−1) (k · α−1) + ε · α−2] | k, l = 0, i, i〉, ε · k = 0

(19)
and (

k · α−1α
25
−1 + α25

−2
) | k, l = 0, i, i〉. (20)

If all θi are equal, the (i, i) is enhanced to (i, j) . Equa-
tion (20) implies a massive U (N) symmetry with
transformation parameter θa. Equation (19) implies a
massive Einstein–Yang–Mills type symmetry with
transformation parameter θa

µ.

2. I = 0, (2πl − θj + θi)/(2πR) = ±(2)1/2, one gets the
solution from (16):(

k · α−1 ±
√

2α25
−1

)
| k, l, i, j〉. (21)

Now since |θi − θj | < 2π , for any given R, there is at
most one solution of (|l| , |θi − θj |) . One is tempted to
consider the case(

k · α−1 ±
√

2α25
−1

)
| k, l = ±

√
2R, i, i〉. (22)

That means in the moduli
(
R = (2)1/2n, θi

)
with n ∈

Z+, one has soliton gauge states which imply a mas-
sive U (1)N symmetry. If all θi are equal, the (i, i) is en-
hanced to (i, j) . Equation (22) implies a massive U(N)
symmetry at the discrete values of the moduli points
R = (2)1/2n. For example, in the T -dual picture, for
R = (2)1/2, l = ±2, and if all D-branes are coinci-
dent, we have an enhanced massive U (N) symmetry.
This phenomenon is very different from the massless
case, where one gets enhanced U (N) symmetry at any
radius R when N D-branes are coincident.

We would like to point out that a similar Einstein–
Yang–Mills type symmetry was discovered before in the
closed heterotic string theory. There, however, one could
have more than one Yang–Mills indices on the transfor-
mation parameters.

For the type II states with M2 = 2 in (17), I = l = 0.
One gets one more U (N) gauge state

[
1
2
α−1 · α−1 +

1
2
α25

−1α
25
−1 +

5
2
k · α−2

+
3
2

(k · α−1)
2
]

| k, l = 0, i, j〉 (23)

if all θi are equal.
For the general mass level, choosing I = 0 and i, j in

(15), we have l/R = ±M. For, let us take, say, R = (2)1/2

and l = ±(2)1/2M, which implies

M2 = 2n2, n = 0, 1, 2, · · · (24)

So we have Chan–Paton soliton gauge states at any higher
massive level of the spectrum. A similar result was found
in the closed string case.

4 Conclusion

The zero-norm gauge state solution in the old covariant
quantization of string theory is closely related to the
BRST cohomology of the theory. Physically, this corre-
sponds to the charges of the symmetries [6]. It is believed
that all space-time symmetry of string theory, including
closed or open and compactified or uncompactified ones,
are due to the existence of a (soliton) gauge state in the
spectrum. A similar consideration can be applied to the
R–R charges and D-branes. Presumably, there are no R–
R zero-norm gauge states as charges of R–R gauge fields
in the type II string spectrum. How D-branes carry the
zero-norm gauge state charges to emit R–R fields is an
interesting question to study.
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