
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 3, APRIL 2000 439

A Simple Processor Core Design for DCT/IDCT
Tian-Sheuan Chang, Student Member, IEEE, Chin-Sheng Kung, and Chein-Wei Jen, Member, IEEE

Abstract—This paper presents a cost-effective processor core de-
sign that features the simplest hardware and is suitable for discrete
cosine transform/indiscrete cosine transform (DCT/IDCT) opera-
tions in H.263 and digital camera. This design combines the tech-
niques of fast direct two-dimensional DCT algorithm, the bit-level
adder-based distributed arithmetic, and common subexpression
sharing to reduce the hardware cost and enhance the computing
speed. The resulting architecture is very simple and regular such
that it can be easily scaled for higher throughput rate require-
ments. The DCT design has been implemented by 0.6m SPDM
CMOS technology and only costs 1493 gate count, or 0.78 mm2.
The proposed design can meet real-time DCT/IDCT requirements
of H.263 codec system for QCIF image frame size at 10 frames/s
with 4:2:0 color format. Moreover, the proposed design still pos-
sesses additional computing power for other operations when op-
erating at 33 Mhz.

Index Terms—DCT/IDCT, H.263, processor.

I. INTRODUCTION

D ISCRETE cosine transform (DCT), which can exploit the
spatial redundancy, has played an important role in video

data compression standards such as JPEG, MPEG1, MPEG2,
and H.26X [1]. To meet the real-time video processing require-
ment, DCT and inverse DCT (IDCT) implementations often
use efficient dedicated hardware units [2]–[11] that lead to
fast speed but high hardware cost. However, the complex data
routing in the hardware architectures induces many hardware
overheads to implement the fast algorithms, such as fast direct
two-dimensional (2-D) DCT/IDCT algorithms using very large
scale integration (VLSI). On the other hand, the fast algorithms
[12]–[15] with minimum numbers of multiplication are often
realized by flexible software approaches on the digital signal
processing (DSP) processors [16]–[20]. High-speed DSP pro-
cessors can meet the speed requirement but it still needs to pay
high hardware cost due to its inherent multiplier complexity in
DSP processors.

In this paper, we propose a hybrid approach that combines
the advantages of the flexible software-like approach and the
efficient dedicated hardware units. DCT/IDCT functions can be
reformulated with adder-based distributed arithmetic (DA) al-
gorithms [6], such that only shift and addition operations are
required. Thus, we can implement the shift-and-add function
with a multiplierless arithmetic unit (AU) datapath. In such pro-
cessor-like design, the lower the AU operation number is, the
higher performance the design can attain. Therefore, we adopt

Manuscript received December 5, 1997; revised June 23, 1999. This work
was supported by the National Science Council, R.O.C., under Grant NSC-86-
2221-E-009-014. This paper was recommended by Associate Editor N. Ran-
ganathan.

The authors are with the Department of Electronics Engineering, National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier S 1051-8215(00)02806-8.

the fast direct 2-D DCT algorithms [14], [15] that are superior
to row–column DCT because the numbers of multiplication-ac-
cumulation operations have been reduced to half. However, it
sacrifices with the irregular data permutation. This problem is
not affective in this AU-based design due to the software-like
controller design. Furthermore, since all multiplication-accu-
mulation operations are expressed as shift-and-add, common
subexpression can be shared [21]–[25] such that these common
ones are computed only once and then used for many times. So,
the proposed architecture combines the techniques of bit-level
DA, fast direct 2-D DCT algorithm, and common subexpression
sharing, to successfully design the efficient 2-D DCT/IDCT pro-
cessor. The resulting implementation has shown that it meets the
real-time H.263 encoding requirement, with high scalability to
higher throughput rate applications such as MPEG2 MP@ML
decoding.

This paper is organized as follows. In Section II, we intro-
duce the design techniques used in this paper, including the
fast direct 2-D DCT/IDCT algorithms, the corresponding DA
formulations, and common subexpression sharing. Section III
presents the architecture design with design techniques and
scheduling considerations. We will show the hardware cost
and performance comparison in Section IV. Section V presents
the applications and comparisons of this processor. Finally,
concluding remarks are given in Section VI.

II. DESIGN TECHNIQUES

A. Fast Direct 2-D DCT/IDCT Algorithm

The 2-D DCT and IDCT coefficient for a block sequence
with is defined as

(1)

(2)

where

for
otherwise.

Since computing the above 2-D DCT/IDCT by using matrix
multiplication requires multiplications, a commonly used

1051–8215/00$10.00 © 2000 IEEE

440 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 3, APRIL 2000

Fig. 1. 8� 8 2-D DCT computation flow of fast direct 2-D DCT algorithms
[14], where the cross symbols in the block denote the butterfly additions and the
numbers of I/O channels for each stage are all 64.

approach in hardware designs to reduce the computation com-
plexity is row–column decomposition that performs row-wise
one-dimensional (1-D) transform followed by column-wise 1-D
transform with intermediate transposition. Though row–column
decomposition is simpler and more regular for hardware imple-
mentations, their computation cost is much higher than that of
the fast direct 2-D algorithms [14], [15].

The fast direct 2-D algorithms [14], [15], as shown in Fig. 1,
explore the trigonometry equality such that it needs1-D DCT
instead of 1-D DCT, as that in the row-column decomposi-
tion, to compute a 2-D DCT. Besides, the fast direct
2-D algorithms do not need transpose memory. However, the
fast direct 2-D algorithms have several stages of butterfly addi-
tions, which makes them difficult for hardware implementation.
This problem is avoided in our designs by using the appropriate
address generation. Thus, the proposed design can preserve the
low computation cost of fast direct 2-D DCT algorithms and
avoid irregular routing cost.

B. DA Formulation

DA [26], [27] has been regarded an efficient computation
method since DA distributes the arithmetic operations rather
than lumps them as multipliers do. Conventional DA (called
ROM-based DA) [26], [27] decomposes the variable input of the
inner product into bit level to efficiently sum up the selected pre-
computed data. The precomputed data is stored in a ROM table
for table look-up operations, which makes ROM-based DA reg-
ular and attractive in VLSI circuits. However, the ROM area in
ROM-based DA increases exponentially and becomes imprac-
tical large when the size of the inner product increases. Besides,
this type of DA does not exploit the numerical properties of the
constant coefficients.

Another type of DA [6] (called adder-based DA) contrasts
with conventional DA, and decomposes the constant operand of

Fig. 2. CSD represented coefficients and common subexpression, whereN

denotes�1.

Fig. 3. Computation flow of the filter example.

inner products into bit level and distributes the multiplication
operations. This adder-based DA can exploit the distribution of
binary value patterns and may maximize the hardware sharing
possibility in the implementation. Considering an-tap inner
product with input sequence , output sequence , and coef-
ficient , we can express the inner product formulation as

(3)

The inner product expression reformulated with the adder-based
DA algorithm is

(4)

where is the word length of and denotes the -th bit
of . Without loss of generality, this equation is expressed in an
unsigned fraction form. This formulation enables the combina-
tion of DA and subexpression sharings since we can combine the
same subexpression together and avoid the computation when

is zero. Thus, the computation of the inner product only re-
quires addition and shift operations such that they can be imple-
mented by a sequence of shift-add operations. DA formulation
can directly be applied to DCT/IDCT designs, since DCT/IDCT
can be viewed as a collection of multiple inner products.

C. Common Subexpression Sharing

Since transform coefficients in the DCT/IDCT computation
are constant for fixed -point transforms, these transform
computations can be simplified by expressing the multiplica-
tions into shift-and-add operations and sharing the common
ones. This technique is called common subexpression sharing
[21]–[25]. Fig. 2 shows a filter example with coefficients

and represented by the canonical signed digit (CSD).
The circled groups of digits have the same subexpression,

CHANG et al.: A SIMPLE PROCESSOR CORE DESIGN FOR DCT/IDCT 441

Fig. 4. Design techniques used in 2-D DCT/IDCT.

TABLE I
DCT COEFFICIENTS AND THEIR CSD

REPRESENTATIONS

so they can share the same computation unit. The filtering
operation represented by shift and addition is

(5)

where denotes “ ” sample delay and “” digit right
shifts of . If we define

(6)

we can rewrite the filtering operation as

(7)

Thus, by sharing the common subexpression, the number of ad-
ditions is reduced from six to four. Fig. 3 shows the computation
flow of the filter example. The common subexpression part is
done first, then the result is shifted or negated for other computa-
tions. Therefore, much computation can be saved if we find the
better common subexpression. However, sharing the common

subexpression will result in irregular routing for hardware de-
signs. This problem is also avoided in our design by using a
proper address-generation scheme.

III. PROCESSORCORE DESIGNS

A. DCT/IDCT Coefficient Exploration

The proposed processor design explores the sharing proper-
ties of the adder-based DA formulation to the extreme case: only
one word adder and shifter. So, fewer computation cycles will
result in higher throughput. Fig. 4 shows how to apply the de-
sign techniques to the 2-D DCT/IDCT designs for achieving
the goals. First, we use the fast direct 2-D DCT algorithm [14]
to reduce 2-D 8 8 DCT computation into eight 1-D DCT’s.
The low computation complexity, i.e., eight 1-D DCT’s, are
preserved in our designs. The drawback of irregular butterfly
routing is solved by memory access associated with proper ad-
dress generation. The coefficients of 1-D 8-point DCT’s can be
computed in two separate 44 matrices, shown in (5) and (6),
which are also used in many fast algorithms to reduce the com-
putation complexity

(8)

(9)

where

Since the coefficient matrixes are constant values, we can min-
imize the number of additions by the signed digit encoding.
A commonly used signed-digit representation is a CSD [28]
that can reduce nonzero digits from half to one-third of the
total digits and no two consecutive digits will be both nonzero
digits. Table I shows the CSD representation of the coefficients.
From the table, it is found that the reduction of the nonzero
bits achieves about 32%. Besides the direct manipulation of the
coefficients, we also try to increase the sharing possibility by

442 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 3, APRIL 2000

scaling the coefficients by . This scale
factor can be easily removed by a shift in 2-D transform de-
signs. The nonzero bit reduction of is about 26%, and the
numbers of nonzero bits are 38 and 39 for and , respec-
tively.

After applying the CSD representations, we use the subex-
pression sharing to share the common computation. With
signed-digit representations, a number and its negative can
be shared with only sign change. However, unlike the subex-
pression sharing used in [24], [25] that follow the strict
CSD representation, we relax the rule by using the general
signed-digit representation. For example, the “10N” and “011”
have the same number of additions, but CSD only allows the
first case. The allowance of “011” may result in better sharing
for the subexpression sharing. Besides, following the formu-
lation of adder-based DA, the subexpression sharing used in
this paper expresses the computation in direct-form scheduling
instead of in transposed direct-form scheduling used in other
methods. Combined with the DA formulations, this scheduling
has better precision by adding terms from LSB to MSB, which
means lower hardware cost. Transposed direct-form scheduling
used in other methods, accepts one input at a time, and multi-
plies the input with all coefficients, which suffers from more
computation cycles for the output in this design case due to
fewer sharing terms. Direct-form scheduling gets all the input
at a time, which will need more temporary storage. However,
we can easily eliminate this disadvantage by sharing the system
memory if the 2-D DCT is used in a video codec system.

Fig. 5 shows the common subexpression sharings for DCT
outputs on scaled coefficients . Scaled coefficients are used
due to their better sharing property. By applying the signed-
digit representation and the common subexpression sharing, the
number of additions in the 1-D DCT is reduced to 98. Com-
paring with the original number of the additions, 144, we have
32% improvement.

B. Datapath Design

Fig. 6 shows the datapath of the proposed architecture, which
includes a 16-bit adder/subtractor and shifter. The adder is a
carry-propagation adder to save area cost. The operands and op-
erations of the datapath are controlled by a dedicated controller.
The input, intermediate results, and final results are stored in the
RAM or register files. This datpath is dedicated to the shift-add
subexpression. The basic operation of this datapath can be ex-
pressed by , where the “BUS” is the
output of the datapath, the “ ” means right shift by -bit, and
the “ ” denotes the add/subtract operation. Therefore, we can
store the operands in the registers RA and RB and select the
desired one by the MUX from one of the two sources, RAM
or BUS. The two registers provide temporary storage to save
memory accesses. The shifter in the datapath performs 0–3-bits
shift that is suitably designed for the DCT coefficient. In the
above subexpression sharing, the maximum number of shifts is
six. We split the 6-bit shift operations into two 3-bit shift op-
erations, which reduces about 30% of shift hardware and just
increases two more computation cycles.

The design of this datapath, contrast to other general pur-
pose CPU designs, places the shifter before the adder/subtractor.

Fig. 5. OutputY 0–Y 7 and their common shared terms, where the gray-shaded
block is the common shared terms and the block with diagonal pattern is the term
without sharing.

Fig. 7 shows the two versions of shifter position designs with an
example. From the operation example shown in Fig. 7, we can
find that version 1 design is not as efficient as version 2 design,
since additional cycles are often required in version 1 design due
to improper shifter positions.

The limitation of the datapath is the available RAM band-
width and the position of the shifter. In this design, one-port
RAM access is assumed for RAM access for simple hardware
consideration. To avoid the idle cycles due to the RAM access
conflict, we schedule the operation sequences according to their
RAM access, which is implemented in the control signal gener-
ation. Other solutions, such as multiport RAM access, can also
be used to solve this problem. The position of the shifter limits
us to do shift and subtraction simultaneously for register RB,
since only register RA can perform shift. This limitation can be
eliminated by proper operation scheduling.

C. Controller Design and Scheduling

Since the datapath is extremely simple, all the operand se-
lections and shared term generation rely on the controller. Con-

CHANG et al.: A SIMPLE PROCESSOR CORE DESIGN FOR DCT/IDCT 443

Fig. 6. Datapath of the proposed architecture. The broken line means control signals generated from the controller.

Fig. 7. Two versions of shifter position design illustrated with an example.

trollers based on finite-state machines are commonly used in
most of the controller designs. However, since no control sig-
nals in the proposed design depend on their earlier states, we
use a simplified finite-state machine, i.e., a counter-based con-
troller, as shown in Fig. 8. Such design is much simpler and more
easily adaptive to other transform applications by only changing
the combinational circuit part.

The RAM access conflict, which will result in efficiency loss
of the design, is eliminated with developed operation scheduling
strategies. With all four scheduling techniques, we can complete
one 1-D 8-point DCT in 121 cycles that only pays 23 extra cy-
cles overhead, as compared with original estimated 98 cycles.

The first strategy is togroup operations that have the same
operand and keep one data used continuously. By using this
strategy, we can keep one operand in register RA or RB and
read only one register from the RAM. The reloading of the same

Fig. 8. Counter-based controller.

operand is minimized as few as possible. The following is an
actual code subsequence in the firmware of this IDCT:

This scheduling example keeps one operand or un-
changed, where the boldface is read from RAM. To compute

and , the data stays in “RA,” and just
read and to “RB” from RAM. For and
computation, the and stay in “RA” and “RB”, which
can save memory read operations to obtain.

The second strategy is torearrange the operations such that
the output data of current operation is the input of next opera-
tions. It will reduce one read cycle of the RAM access. Not all

444 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 3, APRIL 2000

operations can be arranged by this strategy. Fortunately, the op-
erations to compute output can always apply this strategy.
The following list shows a code example to calculate.

This example reads one operand from the output bus, where the
boldface and denote the data without RAM access. The
output data and are fed as input of the next operation to
reduce RAM access. When calculating output, the processor
uses just one memory read access, and it writes data to RAM at
last operation.

The third strategy is toeliminate the memory write access of
the output that will not be used later. If the output will not be
used in later operations, it does not need to be stored in RAM.
Rearrange the operations could reduce these memory write op-
erations. The following list shows a code example of this case:

This example shows how to reduce the memory write access,
where is the output data that does not have to be written to
RAM. is used immediately in and calculation, and it
will not be used in later operations. Thus, we can avoid writing

into RAM.
Another special case is toswap data in “RA” and “RB” to

solve the constraint of ALU design. If both data are reloaded
from RAM, it will cost two memory read cycles. The following
list is a code example that just needs one extra RAM-read cycle
to overcome this problem. Original code is

Now use these codes instead

This example swaps the operands data,and . The output
data and need both input data and but on dif-
ferent operands. We can resolve this by rewriting them into the
right one, such that just one memory read cycle instead of two
memory read cycles is required.

Fig. 9. Evaluation of different design techniques.

TABLE II
HARDWARE COST AND DELAY OF DCT AND IDCT DESIGNS

IV. HARDWARE COST AND PERFORMANCE

The number of cycles to compute 1-D 8-point DCT’s is 121,
while the number of cycles to compute 1-D 8-point IDCT’s
is 119. With the fast direct 2-D DCT algorithm, eight 1-D
DCT computations are required, with four butterfly stages. The
number of the additions in butterfly stages is 643 192
for the first three stages, and 48 for the last stage. So, total
cycle count for the 2-D DCT is .
Similarly, for the 2-D 8 8 IDCT, the number of cycles
required is .

Fig. 9 shows the savings on the number of the additions when
we apply different design techniques to compute 2-D 88
DCT. This evaluation shows the effectiveness of each technique
in the design. The 1-D DCT used in the row–column decom-
position is based on the fast algorithm [13] that only requires
11 multiplications and 29 additions for an 8-point DCT with
16-bit precision. We adopt this approach as the relative refer-
ence, i.e., the 3104 additions, as 100%. The first significant im-
provement comes from the fast direct 2-D DCT algorithm that
acounts for 42% reduction. The remaining improvement is from
the adder-based DA formulation and subexpression sharing. The
RAM-conflict problem in this design adds an extra 6% addition
cycles, which can be avoided with larger memory bandwidth
support. In the 1208 addition cycles, eight 1-D DCT computa-
tions use 968 cycles and the butterfly stage additions use 240
cycles.

This processor core design for DCT/IDCT with 16-bit word
length is synthesized with 0.6-m SPDM CMOS cell library
[29]. Table II shows the hardware cost and delay for DCT/IDCT
designs. The total gate count of DCT is 1493, which is smaller
than one 16 16 multiplier which will consume 2122 gate count
for the multiplier with carry–save adder array or 2536 gate count
for the multiplier with Wallace tree array. The delay, 18.21 ns,

CHANG et al.: A SIMPLE PROCESSOR CORE DESIGN FOR DCT/IDCT 445

TABLE III
HARDWARE UTILIZATION FOR DCT

TABLE IV
PRECISIONREQUIREMENT AND SIMULATION RESULTS OF THEIDCT

is satisfied conservatively with the assumed 33-MHz clock fre-
quency.

Table III shows the hardware utilization of each function unit
in the 1-D DCT design. The controller is always used in the de-
sign and is not listed in the table. The idle cycles in each function
unit are due to the available memory bandwidth and the datapath
limitation. The overall utilization is quite high for the DCT de-
sign. Similar statistics can also be found in the IDCT design.
The precision of the IDCT unit meets the accuracy specifica-
tions [30] which are shown in Table IV. Due to DA formulation
and proper sharing terms selection, we can use short wordlength
to satisfy the precision requirement.

V. APPLICATIONS AND COMPARISONS

A. Applications to Various Video Standards

Table V shows the design applications to various video
standards. For digital still camera (DSC) that requires low cost
while tolerating longer delay, this design can compute all DCT
operations within 0.176 s. This delay leaves enough time for
other functions such as quantization. Another application is
the DCT/IDCT unit in an H.263 codec system. For QCIF size,
the proposed design can meet real-time encoding requirements
with only one datapath unit.

For larger picture size and higher frame rate, this design
can be simply scaled with adding more datapath units or with
higher processing clock frequency. Since the datapath part
is quite small, even eight datapath units just need 5104 gate
counts or 2.07 mm. Fig. 10 shows the scalable design with
two datapath units. The bottleneck to the scalable designs is the
available memory bandwidth. Larger bus width and multiple
port memory can eliminate this problem. Scalable designs also
offer the possibility for low-power design. With more datapath

TABLE V
APPLICATIONS TOVARIOUS VIDEO STANDARDS, WHERE PROCESSINGTIME IS

ONE 8� 8 BLOCK COMPUTATION TIME

Fig. 10. Scalable designs with two datapath units.

TABLE VI
COMPUTATION TIME COMPARISONS OFONE 8� 8 DCT ON PROCESSOR

ARCHITECTURES, WHERE MAC DENOTESMULTIPLIER-ACCUMULATE, AND

R.-C. DENOTESROW-COLUMN DECOMPOSITION

units, we can trade the processing power of the parallel units
with the lower supply voltages for low power consumption. The
datapath numbers of MPEG-2 applications in Table V can be
halved at double the clocked rate. The 40.5-MHz clock rate in
Table V does not introduce extra cost since the processor delay
is 18.21 ns. Higher working frequency can easily be attained
by using pipelining or high-speed adders. The tradeoff depends
on the target application environment.

B. Comparisons With Other Relevant Approaches

Since the proposed design combines the dedicated ALU data-
path and the software-oriented controller, comparisons with pro-
cessor-based implementations can show the effectiveness of the
proposed design. Table VI lists the computation time compar-
isons of one 8 8 DCT executed on our design with that ex-
ecuted on DSP processors [17]–[19] or RISC processor with
multimedia enhancement [20]. The instruction cycle count in

446 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 3, APRIL 2000

TABLE VII
COMPARISONSWITH DEDICATED HARDWARE DESIGNS

the table are directly taken from the reference reports or pa-
pers. Note that in this paper, we only consider the core com-
putation cycles in our design and do not include other system
overheads. All the other implementations used fast algorithms
in which the direct 2-D fast algorithm requires fewest cycles.
Compared with C30 processors [17] that include multipliers, the
performance of our proposed design, 1208 cycles, is superior at
the similar clock rate. Other design likes that in [18]–[20] use
multiple processing units to accelerate the DCT execution. Our
proposed design can also attain the same performance by using
multiple ALU’s whose cost as shown in Table V is still less than
that in [18]–[20]. The proposed design achieves higher perfor-
mance by using dedicated datapath unit to accelerate subexpres-
sion sharing operation but sacrifices with design flexibility and
applicability. In some video applications, incorporating our de-
sign as accompany core with conventional DSP processors can
provide the advantages of flexible DSP software approach and
efficient dedicated hardware accelerator. These advantages are
present especially for various inner product computation with
either constant coefficients or variable coefficients.

Comparison with dedicated hardware designs is more diffi-
cult because of the different approaches used. The proposed de-
sign combines software-oriented controller with hardware units,
while dedicated hardware designs are pure hardware-oriented
approaches. However, Table VII lists the comparisons with ded-
icated hardware designs. The data of previous designs are di-
rectly taken from the reference papers. All these designs can
meet the decoding speed and accuracy of MPEG2 MP@ML
(640 480, 30 fps, 4:2:0, 13.82 Mpixels/s). The IDCT core
in [7] used digit-serial construction to reduce the overall size.
Low-power IDCT in [9], [11] used MAC for computation. The
design in [10] was a DCT/IDCT accelerator in a DSP processor
based on ROM-based DA. The DCT/IDCT unit in [8] shares the
same hardwired multipliers for computations. All five designs
are based on row–column decomposition. Compared with these
listed designs, the proposed design is very competitive in area
cost at the processing rate up to MPEG2 MP@ML decoding.
However, for higher throughput rate such as HDTV require-
ments, memory bandwidth limits the applicability of the pro-
posed design. In such cases, high-speed dedicated hardware de-
signs [2]–[6] can provide a more efficient solution.

VI. CONCLUSION

In this paper, we propose a cost-effective processor core de-
sign for 2-D DCT/IDCT that can be used in digital still camera
and real-time H.263 encoding. We use the fast algorithm to
reduce the computation, the DA formulation for higher preci-
sion, and the subexpression sharing for lower hardware cost and
fewer computation cycles. The resulting architecture is quite
simple, regular, and easily scalable to higher throughput appli-
cations such as MPEG2 MP@ML decoding. Extensions to other
inner product computations like filters and transforms are easily
achieved by applying the design techniques to rewrite the con-
troller program. Low-power applications to portable multimedia
terminals are possible due to the simple architecture design and
low computation cycles.

REFERENCES

[1] K. R. Rao and J. J. Hwang,Techniques and Standards for Image, Video
and Audio Coding. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[2] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for video
compression—A survey,”Proc. IEEE, vol. 83, pp. 220–246, Feb. 1995.

[3] M. Kovac and N. Ranganathan, “JAGUAR: A VLSI architecture for
JPEG image compression standard,”Proc. IEEE, vol. 83, pp. 247–258,
Feb. 1995.

[4] M. T. Sun, T. C. Chen, and A. M. Gottlieh, “VLSI implementation of a
16� 16 discrete cosine transform,”IEEE Trans. Circuits Syst., vol. 36,
pp. 610–617, Apr. 1989.

[5] A. Madisetti and A. N. Wilson Jr., “A 100 Mhz 2-D8� 8 DCT/IDCT
processor for HDTV applications,”IEEE Trans.Circuits Syst. Video
Technol., vol. 5, pp. 158–164, Apr. 1995.

[6] C. Chen, T. Chang, and C. Jen, “The IDCT processor on the adder-based
distributed arithmetic,” inProc. Symp. VLSI Circuits, 1996, pp. 36–37.

[7] C.-Y. Hung and P. Landman, “Compact inverse discrete cosine transform
circuit for MPEG video decoding,” inProc. IEEE Workshop Signal Pro-
cessing Systems, 1997, pp. 364–373.

[8] Y. Katayama, T. Kitsuki, and Y. Ooi, “A block processing unit in a
single-chip MPEG-2 video encoder LSI,” inProc. IEEE Workshop
Signal Processing Systems, 1997, pp. 459–468.

[9] R. Rambaldi, A. Ugazzoni, and R. Guerrieri, “A 35µW 1.1 V gate array
8 � 8 IDCT processor for video-telephony,”Proc. IEEE ICASSP, vol.
5, pp. 2993–2996, 1998.

[10] K. Okamotoet al., “A DSP for DCT-based and wavelet-based video
codecs for consumer applications,”IEEE J. Solid-State Circuits, vol. 32,
pp. 460–467, Mar. 1997.

[11] T. Xanthopoulos and A. Chandrakasan, “A low-power IDCT macrocell
for MPEG2 MP@ML exploiting data distribution properties for minimal
activity,” in Proc. Symp. VLSI Circuits, 1998, pp. 38–39.

[12] H. S. Hou, “A fast recursive algorithm for computing the discrete co-
sine transform,”IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, pp. 1455–1461, Oct. 1987.

[13] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,”Proc. IEEE ICASSP, vol. 2, pp.
988–991, 1989.

[14] N. I. Cho and S. U. Lee, “Fast algorithm and implementations of 2-D
DCT,” IEEE Trans. Circuits Syst., vol. 38, pp. 297–305, Mar. 1991.

[15] Y.-P. Lee, T.-H. Chen, L. G. Chen, M. J. Chen, and C. W. Ku, “A cost-
effective architecture for8�8 two-dimensional DCT/IDCT using direct
method,”IEEE Trans. Video Technol., vol. 7, pp. 459–467, June 1997.

[16] J. Golston, “Single-chip H.324 videoconferencing,”IEEE Micro., vol.
16, pp. 21–33, Aug. 1996.

[17] W. Houl, “An 8 � 8 Discrete Cosine Transform Implementation on
the TMS320C25 or TMS320C30,” Texas Instruments, Application Rep.
SPRA115, 1997.

[18] TMS320C62x Assembly Benchmarks (1997). [Online]. Available:
http://www.ti.com/sc/docs/dsps/products/c6000/62xbench.htm

[19] M. Yoshida, H. Ohtomo, and I. Kuroda, “A new generation 16-bit gen-
eral purpose programmable DSP and its video rate application,” inIEEE
Workshop on VLSI Signal Processing, 1993, pp. 93–101.

[20] I. Kuroda, “Processor architecture driven algorithm optimization for fast
2-D-DCT,” in IEEE Workshop on VLSI Signal Processing VIII, 1995, pp.
481–490.

CHANG et al.: A SIMPLE PROCESSOR CORE DESIGN FOR DCT/IDCT 447

[21] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”IEE
Proc. Circuits Devices Syst., vol. 138, no. 3, pp. 401–412, June 1991.

[22] A. G. Dempster and M. D. Macleod, “Constant integer multiplication
using minimum adders,”Proc. IEE Circuits Devices Syst., vol. 141, no.
5, Oct. 1991.

[23] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,”IEEE Trans. Circuits Syst. II, vol. 42, pp.
569–577, Sept. 1995.

[24] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677–688, Oct.
1996.

[25] M. Potkonjak, M. Srivastava, and A. P. Chandrakasan, “Multiple con-
stant multiplications: Efficient and versatile framework and algorithms
for exploring common subexpression elimination,”IEEE Trans. Com-
puter-Aided Design, vol. 15, pp. 151–165, Feb. 1996.

[26] A. Peled and B. Liu, “A new hardware realization of digital filters,”IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 456–462,
Dec. 1974.

[27] S. A. White, “Applications of distributed arithmetic to digital sequence
processing: A tutorial review,”IEEE ASSP Mag., vol. 6, pp. 5–19, July
1989.

[28] K. Hwang, Computer Arithmetic: Principles, Architecture, and De-
sign. New York: Wiley, 1979.

[29] “Compass 0.6 Micron 5-Volt High Performance Standard Cell Library”
(document), Compass, PASSPORT Library, Compass design Automa-
tion, San Jose, CA, 1996.

[30] IEEE Standard Specifications for the Implementations of8� 8 Inverse
Discrete Cosine Transform, IEEE Std. 1180-1190.

Tian-Sheuan Chang (S'93) received the B.S.
and M.S. degrees in electronics engineering from
National Chiao-Tung University, Hsinchu, Taiwan,
in 1993 and 1995, where he is currently working
toward the Ph.D. degree

His research interest includes VLSI design, digital
signal processing, and computer architecture.

Chin-Sheng Kungreceived the B.S. degree from Na-
tional Tsing-Hua University, Taiwan, in 1995, and the
M.S. degree from National Chiao-Tung University,
Hsinchu, Taiwan, in 1997.

He is currently with Realtek Corporation, Hsinchu,
Taiwan. His research interests include VLSI designs,
multimedia processing, and digital signal processing.

Chein-Wei Jen (S’78–M’87) received the B.S.
degree from National Chiao Tung University,
Hsinchu, Taiwan, R.O.C., in 1970, the M.S. degree
from Stanford University, Stanford, CA, in 1977,
and the Ph.D. degree from National Chiao Tung
University, Hsinchu, Taiwan, in 1983.

He is currently a Professor with the Department
of Electronics Engineering and the Institute of
Electronics, National Chiao Tung University. During
1985–1986, he was a Visiting Researcher with the
University of Southern California at Los Angeles.

His current research interests include VLSI design, digital signal processing,
processor architecture, and design automation. He has held four patents and
published over 30 journal papers and 70 conference papers in these areas.

Dr. Jen received the 1990 Best Paper Award from the Engineering Society
and the 1994 and 1995 Best Paper Awards from the HD-Media Conference. He
was a Program Committee member of ICCD'94 and ICCE 1995–1997, and is a
member of Phi Tau Phi.

