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Entropy-Constrained Scalar Quantization and
Minimum Entropy with Error Bound by Discrete
Wavelet Transforms in Image Compression

Bing-Fei Wu and Hung-Hseng Hsu

Abstract—The global maximum of an entropy function with  squared error (MMSE) of the quantizer, which diminishes the
different decision levels for a three-level scalar quantizer per- error as much as possible by disregarding CR. Since the entropy
formed after a discrete wavelet transform was derived. Herein, we is considered to be the index of lossless compressibility and the

considered the case of entropy-constrained scalar quantization ca- ted val fthe inf fi tained i ict h
pable of avoiding many compression ratio reductions as the mean éxpected value of the information contained in a picture, the op-

squared error was minimized. We also dealt with the problem of timal choice of quantization error without regard to entropy will
minimum entropy with an error bound, which was referred to as  lead to a poor compression result, in general. Hence, the con-

the rate distortion function. For generalized Gaussian distributed  cept to use the entropy instead of the mean squared error as the
input signals, the Shannon bound would decrease monotonically performance index of optimization is followed. However, the

when the parameter of distribution v was to leave from 2. That L ¢ hen the decision | | of th |
is, the Gaussian distributions would contain the highest Shannon minimum entropy occurs when tne decision level or the scalar

bound among the generalized Gaussian distributions. Addition- guantizer approaches infinity. This means that the three-level
ally, we proposed two numerical approaches of the secant and false scalar quantizer, which has three output levels, will be reduced

position methods implemented in real cases to solve the problemsto a one-level scalar quantize, and the output of the quantizer is
of entropy-constrained scalar quantization and minimum entropy  5\yays near zero. Afterward, the quantization error is maximum
with an error bound. The convergence condition of the secant ; - . .
method was also addressed. a_md gqual to the energy of the input S|gqal, in which the quan-
tizer is shown to be turned off and meaningless.
Two ways may be used to remove these obstacles from the
idea of constrained optimization [11]; one approach is to in-
HE DISCRETE wavelet transform (DWT) is a kind oftroduce MMSE with entropy constrained, and the other is to
pyramid subband decomposition that involves the applninimize the entropy with an error bound, which is the same
cation of a multiresolution representation to image compressias the concept of rate distortion function in information sci-
to increase image resolution [3], [18]. The advantage of usie@ce [21]. Gish and Pierce [8] showed that MMSE with entropy
such a method in image compression could provide high cogbnstrained to the case in which the numbers of decision levels
pression ratios (CR’s) as well as maintain good image fidebpproach infinity, has uniform decision levels regardless of the
ties (see [1] and [23, p. 399]). The value of image compressiprobability density function (pdf) of the source signals. In par-
characterized by the DWT with entropy reduction is further preicular, if the sources are independent and identically Gaussian
sented in [25]. The Daubechies' filters, which are widely used dfistributed, the MMSE with entropy constrained has an entropy
data compression, are shown to be compactly supported andist is only 0.255 bits/pixel greater than the Shannon bound.
thogonal (see [6] and [7, p. 167]). All the subimages functioning/ood [26] proposed the MMSE with entropy constrained nu-
with the DWT, except for the lowest frequency component, argerically by using a descent algorithm. Berger [4] further de-
called the detailed images. We derived that the application @fribed the conditions necessary for the MMSE with entropy
scalar quantization (SQ) extended the detailed images sincedbastrained. Netravali and Saigal [15] presented another algo-
histograms are modelled to be generalized Gaussian distributiggim to solve the problems of MMSE with entropy constrained
(see [1] and [22, p. 370]). based on fixed-point considerations. Noll and Zelinski [16] fol-
Although the quantizer provides high capability that is vital ttowed Berger's method to deal with the sources with common
image compression, it is accompanied by some generated @igf's. The authors, however, encountered a drawback relating
tortion, and this can become a trade-off problem. In our pres the convergence conditions constrained in the algorithms [5],
vious work [24], we considered the case of the minimum meavhich will be overcome in this paper. The novelty of our paper
is therefore to introduce both issues of MMSE with entropy-
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decision levels is a union of two disconnected sets. Two algo- X Scalar Y

rithms, called the secant method and the false position method Quantizer
(also called regula falsi) [9], [20] are proposed to obtain the so-
lutions numerically. We also address the convergence condition
in the section on the secant method. Through the quantization

error bounded by a given value, the concept of minimum en- Y

tropy to be implemented in real situations is initiated. The fea-

sible solution of decision levels constitutes a connected set. Be- 2 peneeey —
cause of the convexity of the error function not being formulated m

yet, we suggest applying the false position method to obtain the 2

two boundary points in the set of the decision levels. The quan- & by -
tization errors corresponding to the set of decision levels sat-
isfy the specified bound. Compared with the entropies evalu-
ated at these two boundary points, we pick up the smaller one as
the desired minimum entropy. It is also shown that for general- _.

. . .. . Fig. 1. Input/output characteristic of the three-level scalar quantizer.
ized Gaussian distributed inputs, the Shannon bounds decrease

monotonically when the value of, which is referred to as the isé ands, are the decision levelsy; for i — 0.1,2 are the re-

parameter of distributions, is no longer 2. In particular, the ral . ; O
distortion function referred as the minimum entropy functionr construction levels of the quantizer [2], [10], ahd € .5 =

lated to the error bounds is higher than the Shannon bound i 17 = 0,1,2}. The emphasis of this work, which is to mini-

about 0.06 bits/pixel if the input signal is Laplacian distributeI{:]r"n };Zzitthheeqeun??;'Za&?&fg)ﬂ;ﬁgz 2?:;?%5%152232%ar;g;%;?r']n'
with the variance equal t3.2898)2. Two testbed pictures (Lena Py ' y 9

. ; ; suitable decision and reconstruction levels.
and Mandrill) are used to illustrate the theoretical results. . . A
o . . We further consider the special case-af; = 6, = 6 to de-
The organization of this paper is as follows. In the next

section, the problems of MMSE with entropy constrained and® the qumaI soluhoq provided for reducing one-dimensional
omplexity in the domain of. The mean squared error between

the minimum entropy with an error bound are formulate . X o
. . e input and output of the special case of the quantizer is de-
The global maximum of the entropy curve in a three-lev ?

scalar quantizer performed after the DWT is presented in Se'g-ed as
tion 11l and provided for further discussions with respect to its E(8,m1,mo, m2) = E1(6,m1) + Eo(6,mo)
property. We notice that the concavity of the entropy function + E2(6,m2) 1)

holds for a particular region of decision levels. Therefore,
Section IV presents two kinds of numerical approaches call4f€re
the secant and false position methods to resolve the problem By (6,m1) I /
of entropy-constrained SQ. In addition, we consider solving M

) (x—m1) fx(z)dz

—o

the problem of minimum entropy with an error bound together A [0

with the false position method provided to obtain the results Eo(8,m0) = / (x —mo)* fx(x) dx
numerically presented in Section V. We also compare the rate -

distortion function with the Shannon bound. In Section VI, two Ey(8,m2) 2 / (z —ma)?fx(z)dz
testbed pictures (Lena and Mandrill) are adopted to illustrate 6

the experimental results discussed above. A concise conclushmd fx () is the pdf of the input signak (see [17, p. 72]).
is made in the last section. The decision level corresponding to the global minimum error
is therefore achieved [24].

Theorem 2.1 [24]: Consider the three-level scalar quantizer
with the same decision level. Then, the optimal value of the
decision leveb* to minimize the mean squared erris

The histograms of the detailed images processed after the . (mH)2+ (m)? —2(my)?

DWT can be modeled to be generalized Gaussian-distributed o =
[1]. By using the three-level scalar quantizer applied to thes N ) .

subimages, high compression effects are achieved at the co %?remj for g - 0,1,2are the c_entr0|ds of the three levels of
a little distortion. Our previous work [24] indicated that this bet® scalar quantizer and are defined as [12], [19]

Il. PROBLEM FORMULATION

)

2(m3 — m7)

came the worst value of CR as the MMSE was reached. The first . f__:o xfx(z)dx
step to resolve the problem is to sacrifice some mean squared M= Ty
error by varying decision levels with the entropy reduced to f—oo Fx(x) dx
a specified value, as defined below. Moreover, we are able to ffé zfx(x)dz

3

maintain the quantization error in a specified value yet reduce 0= fé Fx(a)d
the entropy to as minimum as possible. 2 X\ ax
Consider the three-level scalar quantizer in Fig. 1, where mt = f5 zfx(z)dx

. ) . = , respectivel
andY are the input and output of the quantizer, respectively, 2 Js fx(x)dx P y
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The histograms of those detailed images of the DWT modellegproaches provided for solving the constrained optimization
to be generalized Gaussian distributed are stated as before. pilmblems. The extreme casgs= 0 andé — oo of the entropy

generalized Gaussian law is given explicitly by function are investigated in Lemma 3.1.
_ —[ba|" Lemma 3.1:Supposefx(x) is an even function; then, i)
fx(@) = aexp ®) Hy (0) = 1, and ii) limé_)oo(H)y(é) — 0. More precisely, the
with three-level scalar quantizer in cases i) and ii) are reduced to two-
5\ and one-level scalar quantizers, respectively.
by r (;) Proof: i)Whené = 0, the term(1—2P) log,(1—2P) will
=L and b= NE disappear because of the vanishmentlof 2P). The value of
(W) al’ (;) —2Plog, Pis equal to 1 sincé” = (1/2). Hence Hy (0) = 1.

if) The value of P approaches zero &— oo, implying that
—2Plog, P — 0. Moreover, the term-(1 — 2P) log,(1 — 2P)
‘ approaches zero & — 2P) — 1. O
I'(-) Gamma function; Lemma 3.2: Supposefy () is an even function; ther?(5)

7 parameter. . . ) is a decreasing function of
The generalized Gaussian law contains two particular cases. i) Proof. Taking the derivative of with respect tas

~ = 1 leads to the Laplacian pdf, and #)= 2 approaches the

where
o standard deviation ok ;

Gaussian pdf. Obviously, the pd () of the input signalx dpP(6) _ dfs fx(x)de — e (6) <0 O
is an even function (symmetric to the origin) with the results of dé dé '
m(’; = 0 and _m"{ — m; é m* derived. Equation (2) can be NeXt, tak|ng the deriVatiVe Of the entropy fUnCtion W|th re-
reduced to spect tos, we obtain
* e d dH "o
5§ = m—, wherem™* = m; = —fb OO-TfX(-T) -T' (4) Y = 2fX(6) 1Og2/ fX(‘T) dx
2 Js fx(z)dx dé s
We also proved that'(6*) is the unique global minimum error + 2/ fx () dx ofox(é)
of the three-level scalar quantizer. § In2 [~ fx(z)dz
Theorem 2.2 [24]: Consider the three-level scalar quantizer _ ) _ oo
with the same decision level. The mean squared éroefined 2fx(8) log, <1 2/& fx(@) dx)
as (1) has a unique global minimumji% (z) satisfies the gen- 0 2fx(6)
eralized Gaussian law. O - <1_2/5 fX(x)dx) 2 (1=2 [ fx(x) da)
Moreover, the entropy of the output of the quantizer is defined 00 6
as — 2 (8) logy o XL
2 (1-2f" fx(z)dz)
Hy(8) = =) Pjlog, P; (®) = 2fx(8)log, P (6)
j=0 1-2P

whereP,, P1, andP, are the probabilities of the outputs of theIn Lemma 3.3, we are going to illustrate the characteristics of

. . s the derivative of entropy whefi= 0 andé — oc.
three-level scalar quantizer and are definedfas fx () dz, Lemma 3.3:Suppose fx(x) is generalized Gaussian

5 0 .

[ fx(z)dz, and [~ fx(z) dz, respectively. These proba-gistributed; then, i) (dHy (8)/d6)|s—o = oo, and ii)
bilities are functions of the decision leweand are mdependenthmé_)oo(dHY((g)/dé) Y

of the reconstruction levels,; for j = 0,1 and2. Equation (5) Proof: iy If § = 0, then P = (1/2). It im-
is equivalent to-2Plog, P — (1 — 2P)log,(1 — 2P), where plies that (dHy (6)/d8)|s—0 = oo since (dHy /d§) =

P2 P, = Py. ltimplies thatP < (1/2). Hence, the criterion 2fy(6)log,(P/1 — 2P) in (6). ii) Based on the non-nega-

of minimization with entropy constrained is tiveness oflog,(1/(1 — 2P)), the following inequalities are
min E(5),  subject toHy (5) < C obtained: , 1
whereC is a specified value. [x(6)log, P < fx(6)log, T35 <0 for P < 5 )

In addition, we consider the other problem of minimum ens, o qqition. the limiting value offx (6)

. L log, P asé — o is
tropy with an error bound. The criterion is of the form

checked as
min Hy(6), subjecttoE(6) <D Ohm Fx(8)log, P
whereD is a given value. fx(&)InP
= 61im T
lll. GLOBAL MAXIMUM OF THE ENTROPY FUNCTION o —fr;l((é)
The entropy, which is the expected value of the informa- = 611_{20 ) 21};{ Ok where Y is the derivative offy
tion contained in the signal of interest, is an index of compres- R A0
sion effect in image coding. We will exactly depict the entropy 1 lim 2fx(6)f5(6)

trajectory of a three-level scalar quantizer prior to numerical ~ 2 500 —~(y — 1)b2(b6)Y=2P + 4b(b8)7—1 fx (6)
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_ 1 —2f3(6) — 48 x(8)fk (6) P
2 500 (v — 1) fx (8) + fx(6) + 6 f5(5) Yisl
_ 1 li —2fx(6)(1 — 2¢(b6)") 1.4}
= — lum
2 500 (1 — (b6)7) Entropy |
— 0. .
Because the decay of the exponential tgtafé) is faster than C b}
that of the polynomial ternib6), the last equality approaches 1y
zero. By (7), the result of ii) is obtained. O 1}

In addition, let the value of the decision level be defined ¢
&% such thatP(63,) = (1/3). Explicitly, by Lemma 3.2, the 5
derivative of the entropy in (6) is greater than zerofot &%, 08}
equal to zero fov = 6%, and negative otherwise. As a result :
Lemma 3.4 is apparently obtained.

Lemma 3.4:Suppose thaifx(z) is generalized Gaussian T B Ty e e AT
distributed. The derivative of entrogyHy /dé) is greater than 561 5* Py §C2
zero foré < 6%, equal to zero fob = 6%, and less than zero H H ' H
for & > O3y . . Fig. 2. Global maximum offy .

By the lemmas mentioned above, the global maximum of the

entropy function will be shown in the following theorem. A. Solvings$* by the Secant Method
Theorem 3.1:Supposefx (x) is generalized Gaussian dis- H

tributed. The entropy of the output signals in Fig. 1 has a global!n this gubsection, we propose an algorithm to achieve the
maximumH;: = log, 3. value ofé;;* by the secant method. The convergence condition

Proof of Theorem 3.1:.To demonstrate the property of theOf this algorithm is also discussed. Although the secant method

global maximum of the entropy function, the curve of entrop}/ill converge almost quadratically (see [12, p. 68]), it may be di-
is traced fromé = 0. By Lemma 3.1, we havély (0) = 1. verged if the curve of entropy has inflection pomt_s. To preserve
When§ departs from 0Hy (§) increases from 1 based on thdhe convergence global, the curve needs to be either concave or
positive value of dHy /dé) derived in Lemmas 3.3 and 3.4. The®ONVex. _ , , _
increment ofHy-(6) will be stopped if the optimal value of the T he€orem 4.1:Supposing thafx (x) is generalized Gaussian
decision value occurs, i.e, = 6%. Sequentially,Hy-(6) be- distributed, the entropy of the output signals in Fig. 1 is shown
comes a strictly decreasing function #r> 6% if the value of 0 be concave foé < & _ o

(dHy /d6) in Lemma 3.4 is negative. While the entropy func- Proof of Theorem 4.1:Taking the second derivative of
tion decays slowly and approaches zerofass oo, we can Hy (8)

precisely observe the global maximum property of entropy in d?Hy (6)

Fig. 2. Hence, the entropy function has a global maximum. The {52

value of maximum entropyds is —3 x (1/3)log,(1/3) = _ P
PYHy- (1/3)log,(1/3) - = —2+b(b8) " fx (6) log, —

log, 3 & 1.5850. 2P
9 (8 1-2P —fx(6)(1-2P)-2fx(6)P
IV. MINIMUM QUANTIZATION ERROR WITH ENTROPY +2fx(8) P . (In2)(1 — 2P)?
CONSTRAINED 5 o (5517 lox
We have shown the global minimum of quantization error and = /x() { b(b0) 821 9p
the global maximum of entropy in scalar quantization. In this 1
section, the complete procedures will be presented with the ob- - ZfX(‘s)m} :

servation of the geometrical point to obtain the minimum quantj § < &% e, P> (1/3), then(d2Hy (6)/ds2) < 0. Hence
zation error with entropy constrained. We suppose that the valye c_onga;vity ,OfH:/(é) for’ § < &% is sustained. The proof ,is
of entropy bound” is less than the maximum entropyg, 3. completed. = H O
There are two intersection points generated in the entropy f“nC'Remark: By Lemmas 3.3, 3.4, and Theorem 4.1 , the
tion when the horizontal line, which represents the value of ez & 26 of the entrop;(dHy’/dé)’ (see Fig. 3) strictly de-
tropy equal toc, is introducedc. The valu_es @ at the_se_ WO reases to zero fromo for § < &3 Whené > 63, the sign
points are de?oted g, andéy’, rc_espectwely, and lie in the ¢ (d?Hy(8)/ds?) is not definite, and this implies that there
two sides of;. All values of § satisfied to the entropy con- exists at least one inflection point in the entropy function.

ztrilnggy ?: Chare subjecr;[ to the sétc_ — {6!16 < by or By the concavity ofHy (6), we can develop the following
> é;7}. Furthermore, the assumption made unélgtr < algorithm to reach the value 6ﬁ‘.

&% < 857 is reasonable. Specially, & < 1, there exists

only one intersection poirs?. Hence,S¢ will be reduced to 8k =% + 1 [C — Hy (6%)] 8
Sc, ={6]6 > 652} andSc, defined ag(s | 6 < 6 }. We will p

investigatesy;' andsy;” by using the secant method and the false g-+1 —5h + 8 — 8
B

- H k
position method, respectively. Hy (8%) — Hy (857) (€= Hy ()] @



WU AND HSU: ENTROPY-CONSTRAINED SCALAR QUANTIZATION AND MINIMUM ENTROPY 1137

Fig. 4. Three cases of minimum error with entropy constraineds &) <
6" < 852 (D)6t < 652 < 67, (C) 6" < Bt < 852,

bustly preserved, although the convergence rate is linear only.

%+ 2 s 4 s & 7 8 s 10 Theprocedure to find$ is developed as follows.
Py 1) Findé, such tha®, > &5 andHy (6,) > C. If C < 1,
621 will vanish with 6, set to be zero for convenience.
Fig. 3. Derivative of the entropy function. 2) &, is formed with a positive value added &g under the

condition of Hy-(6,) < C.
wheresY;, which is less tha$, is the first initial conditon  3)

of the secant m_e_thod and is alwa)_/s_ set to _b_e a _smaII positive 8 [Hy (6,) — O — 8,[Hy (8,) — C]
number for stability. The second initial conditiéty is consti- bn = Hy (82) — Hy (85)
tuted by (8). The value of is selected to beHy-(6%) — 1/6%) _ Y ATes T HAT _
to ensure thaf?; lies in the interval of 6%, 65']. See the fol-  4) da Will be replaced bys,, if the sign of Hy (6,) — C'is
lowing discussions for more details. identical to that oty (6,) — C; otherwise g, is substi-
Convergence Condition of the Secant Method tuted byé,,.
1) Defined’, = 6+ — &% . Then 5) Continue the procedure until the valug Hfy (6,,) — C| is
. o H " o smaller than the specified small value aHg (6,,) < C.
by _ B =8 O Hy (8) .y . oy
8 65 —6Y, 3 (621 B 62,) C. Finding the Minimum Quantization Error froii-

SinceSc is clearly identified wher$! and§$ are located,
SinceHy (6) is a concave function, faf < 65 < ¢}  we are going to determine the minimum quantization error
C— Hy(8%) dHy(6%)  Hy(s%) -1 found in S. There are three conditions to be considered as

0< follows, and these are shown in Fig. 4.

§¢ _ g0 dé 69
Hon H 1) 65 < 6* < 6
=p, foréy <by'. Comparing the quantization error &* with that of 5?2,
Hence, we obtaif < (6%,/6%) < 1, which implies that the smaller one is of interest.
TINE : 0 6T 2) 65 < 657 < 6™
6y lies in the interval of 6%, 67']. H <% .
2) The convergence condition fbr> 1 can be addressed as ¢* is selected sincé” € S¢, C Sc.

3) &* < 85 < 857
0" is selected sincé* € S, C Sc.

ShA1 Cr _ gl
Oon _ o — by

&% 5 — & Remark: For the particular case @ < 1, the problem is
C—Hy (%) reduced to the casesdf? < §* andsy? > &*. As aresults?
—1_ (55 —5%) is chosen if* does not belong to the s6¢, = S¢; otherwise,
Hy (8%)—Hy (834 &* is preferred.
(84 —85H)
< 1.

V. MINIMUM ENTROPY WITH AN ERRORBOUND

Henc’ilw-e obtair < (‘5?1/6%) <L which implies  he problem of minimum entropy with an error bound in a

thaté;™ lies in the interval of67;, 65" three-level scalar quantizer will be explored similarly from the
Based on the result, the value in the algorithm from (9) wileometrical perspective. This means that the entropy is obtained
certainly converge t6;' . as minimum as possible under the condition that the quantiza-
e - tion error does not exceed the specified value. We suppose that
B. Solvingéy” by the False Position Method the bounded value of the quantization error is séband that

We introduce the false position method instead of the secénére is absolutely no solution ® < FE(&*), where E(6*)

method provided to obtaiﬁ% since there exists at least onds the minimum quantization error. In general, only two points
inflection point foré > 63;. With the false position method ap-are generated in the error curve when the error is exactly ap-
plied on the entropy function, the convergence stability is rgroximate toD. The values of the decision levels are defined
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Fig. 5.  Minimum entropy with an error bound.

to be 631 and %’32, whereég1 < 622, which implies that Suppose the input signal is generalized Gaussian distributed,;
621 < 6% < 6g%. In the same mannefp is defined to be then, from (3), the pdf o\ is

{6]60+ < 6 < 622} and is a connected set. Unlike the con- Fe(z) = ae
cavity of the entropy function fof < 67;, the convexity of the X\¥) = aexp
error function is not sustained. Hence, the false position methidgnce, the entropy ok is

_|bm|"(

is adopted to achieve both values andégz independently. oo

After obtaining the two values of;’ for ¢ = 1,2, there is Hx = —/ fx (z)log, fx(z)dx,

only one condition remaining to be considered, and this is more -

simple than that of the minimum problem with entropy con- = log, e (10)
strained restricted to three conditions. The value of interest to a

this research is the one whose entrdby(égf) is the smallest. Shannon's bound of the rate distortion function is defined as [21]

See Fig. 5 for more details. RE) — Lo Vo 11
Remark: The fact that the error of the energy is equal to (E) = 9 %2 (11)

the difference between the input energy and output energyufiereV; is the entropy variance correspondingHg, that is,
demonstrated in [24]. It is formulated as the variance of a Gaussian distribution having the same entropy
H~. We therefore have

E(§) = Rx(0) — Ry (0) .
Hx = 5 log,(2neVy). (12)
A oo .
where fix(0) = Jo «Hfx(w)dr IS the enery of grom (10) and (12), we get
the input signal, X, Ry (0) = (m})? ff‘oo Ix(z)dz + ) 9523 (1) 2

0o - . =z a =ler

(m§)? 5512 fx(x)dz + (m3)? [ fx(x)dx, andY is defined Vo= < = 2
as the output of the three-level scalar quantizer while the optimal 2mea wey2D (é)
reconstruction levels are selected. The error function evaluated K ) ) ]
ats = 0, E(0) is equal toRx (0) — (1/2)(m?)? — (1/2)(m3)? Equation (13) shows that the entropy variance is a function of
with vall.le smaller than that df(cc) = Rx (0). Hence, there 7- The discussion about the trajectory of the entropy variance is
exists only one intersection point in the problem of minimur@PServed in the. following theorem. _ _
entropy with an error bound iD is larger than the value of _ Theorem 5.1:Suppose the signdl is generalized Gaussian
E(0). The setSp, is represented a5 [0 < § < 652}, which distributed,; then, the entropy variankg corresponding to the
reveals that the minimum entropy herein will be obtained HJPUt SignalX’ has a global maximum whepn = 2, wherey

comparing the value OHy(éDz) with 1. which is the value of 1S the parameter of the generalized Gaussian distributions and
Hy(0). The smaller one is g‘} interest. is greater than zero. It also shows that the entropy variance in-

creases monotonically from 0 t& for v < 2 and decreases
monotonically fory > 2.
Proof of Theorem 5.1:See the Appendix for more details.
For a given error bound, the minimum entropy is obtainethe function of entropy variance is shown in Fig. 6 with the
with the three-level SQ performed on the DWT. Based on thalues ofy varying from 0.001 to 5. O
result, we attempt to plot the curve of entropy with respect to theRemark: By definition of the Shannon bound in (11), we no-
error bounds, which is also called the rate distortion functiotice that the Shannon bound is proportional to the entropy vari-

(13)

A. The Rate Distortion Function
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Fig. 6. Maximum of the entropy variance occurs whee= 2.
Entropy

Fig. 7. Minimum entropy function with different error bounds is greater than
o the Shannon bound by about 0.06 bits/pixel if the source is Laplacian distributed
ance. Hence, it is concluded that the Shannon bound decreagis = 3.2898.

monotonically when the values gfis no longer 2.
In particular, we consider the case of Laplacian distribution

with pdf of the form
constrained. The functions of entropy and quantization error are

Ifx(x) = 1 eXp—gll‘l, depicted in Figs. 8 and 9, where the properties of the global
V20 maximum and minimum of the entropy and quantization error
Therefore, the entropy of is are shown, respectively.
By the concavity of the entropy function fér< 673, we use
Hy = % log, 20262, the available secant method to find the valuéﬁlf. In Table I,

the value at 0.3415 is found to determine the Set for the
To compare the rate distortion function of Laplacian distriestbed picture of Lena. Next, we check whether the decision
butions with that ofD;,; in Lena, we select the variance tovalue corresponding to the global minimum eréris con-
be (3.2898)2, which is identical to the variance dp;;. The tained in the sebc, or not. By adding a tiny value to 0.3415
comparison of the entropy function with the Shannon bound(e.g., 0.0001), the value of the quantization error is shown to
shown in Fig. 7. It points out that the rate distortion function iBave decreased. We know tléétis not inS¢, , and the value of
greater than the Shannon bound by about 0.06 bits/pixel for #@ minimum error in this set is 6.7011 when the entropy bound

entropy of below 0.4 bits/pixel. C = 1.5is reached.
The results of another case #r> ¢7; is derived in Table Il
VI]. EXPERIMENTAL RESULTS by using the false position method. The valueéﬁ? is found

) ) ) to be 1.0658 to determine the s&t,. The setS¢ is the union
Examples of two two-dimensional images (Lena and Magg g separable setSc, andSc,. Similarly, the location of
drill) are presented to illustrate the theoretical results mentiongd o< had to be fixed such that the smaller value of the quan-

before. The size of the testbed images is 54512 pixels i, 41i0n error is generated & is substituted by a larger value
with 8-bit gray levels. The Daubechies’ filter with length 20 i§ 5557 This implies that* = 3.912 does lie in the sef:
. . . »

adopted in the DWT decomposition since it is orthogonal ang, 4 the minimum error in this set is 4.2120, which is consistent
compactly supported (see [6] and [7, p. 167]). This structuf condition 2 in Section IV-C. As a result, the minimum
follows Mallat's algorithm [13], which deals with the two-di-q,,4niization error with entropy constrained is 4.2120, which is
mensional image problem and belongs to some kind of pyramigl, o the minimum quantization error with no constraint [24].
subband codingsi, represents the lowest frequency subimagfhe experimental results, which are functioned in the testbed
of the first layer [resolution(1/2)] DWT decomposition. nieqre of Mandrill, are also listed in Tables | and II, and they
D1, Dv1 and Dy, are the horizontal, vertical, and dlag_onagre consistent with Condition 2 after taking the same test per-
oriented subimages with resolutig/2), respectively, which ¢,meq as above. The minimum quantization error with entropy
are referred to as detailed images. Given such a structure, We - 4o 4 below or equal to 1.5 is 15.2646 with= 5.611. In
are then able to derive the three-layer DWT decomposition. yhe case of changing the entropy constraint to 1.05, the optimal
. ) ) decision value in séi¢ is no longe™. It should have beeﬁﬁz
A. Minimum Error with Entropy Constrained with € = 1.05, asillustrated in Fig. 9. The comparison reveals
The detailed imageB);,; in Lena and Mandrill are illustrated that the image compression condensed in the case of Mandrill
to determine the minimum quantization error with the entrogg harder than that of Lena.
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Fig. 8. Entropy and quantization error functionsiof, in Lena after the DWT.
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Fig. 9. Entropy and quantization error functionsiof; in Mandrill after the DWT.

B. Minimum Entropy with an Error Bound ance are about 3.2804 a(12898)?, respectively. Next, we cal-

The false position method is provided to solve the values Gflate the entropy variande by
Spr andégz since the convgxity of the error function doe_s not Hp,, =3.2804 = 110g2(27reV0).
hold, in general. Comparatively, the convergence condition of ' 2
this numerical approach is simple [9]. The initializationsdpf As a result,Vy ~ 5.5274. The Shannon boun&(E) obtained
andé, are located properly such that the corresponding quamem (11) is compared with the entropy functidfy (), as
tization error must be located on the opposite side®ofor shown in Fig. 10. It reveals that the three-level scalar quantizer
the cases aD;,; in Lena and Mandrill, the experimental resultgperforms well after the DWT since the rate distortion function is
with tolerance equal to 0.001 are shown in Tables Il and IV. Thanly 0.2 bits/pixel greater than the Shannon bound. From Figs. 7
error bounds are set to be 5.6 and 18 in Lena and Mandrill, @nad 10, we observe that the rate distortion func#bn( £) and
spectively. In the case of Lena, the entropy of interest is 0.20@Be Shannon bound with Laplacian-distributed inputs are higher
which is smaller than 1.5093. On the other hand, the entropytiign those of the case i;,;. The observations are reasonable
0.7145, which is smaller than 1.5196 in Mandrill. since the histogram ab;,; in Lena is modeled to be general-
Moreover, the rate distortion function d@b;,; in Lena pro- ized Gaussian distributed with = 0.7 [1]. For such distribu-
cessed with the three-level scalar quantizer is addressed astfohs, the smaller the values of the sharper the pdf's. This
lows. By experimental results, the values of entropy and vaituitively implies that the entropies with the same variance are



WU AND HSU: ENTROPY-CONSTRAINED SCALAR QUANTIZATION AND MINIMUM ENTROPY 1141

0.3}
Error 5.5134 | 5.6026 | 5.6017 | 5.6007 | 5.5997 Tt

TABLE | TABLE IV
FINDING 621 WITH ENTROPY FINDING 632 WITH ERRORBOUNDS = 5.6 AND 18 IN LENA AND MANDRILL,
BOUND = 1.5 BY THE SECANT METHOD RESPECTIVELY, BY THE FALSE POSITION METHOD
Lena 1 2 3 4 5 6 Lena 1 2 3 4 5
ba 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 bq 0.5000 | 0.7405 | 1.0039 | 1.0039 | 1.0039
6 4.0000 | 1.7971 | 1.1766 | 1.0605 | 1.0407 | 1.0377 63 4.0000 | 4.0000 | 4.0000 | 1.0698 | 1.0658
8n 1.7971 | 1.1766 | 1.0605 | 1.0407 | 1.0377 ‘ 0n 0.7405 | 1.0039 | 1.0698 | 1.0658
Entropy || 1.1912 | 1.4589 | 1.5015 | 1.5083 | 1.5093 Entropy || 1.5801 | 1.5205 | 1.4987 | 1.5000
Error 4.8510 | 5.4308 | 5.5701 | 5.5954 | 5.5993 Error 6.0214 | 5.6435 | 5.5599 | 5.5645
Mandrill 1 2 9 10 11 12 Mandriil 1 2 9 10 11 12
ba 1.0000 | 1.0000 | 1.0000 | 1.0000 | 2.8359 | 2.8359 ba 1.0000 | 1.1603 | 3.0099 | 3.0100 | 3.0101 | 3.0101
) 6.0000 | 4.4141 | 2.8367 | 2.8363 | 2.8363 | 2.8360 & 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 3.0102
on 4.4141 | 3.4463 | 2.8363 | 2.8359 | 2.8360 bn 1.1603 | 1.5802 | 3.0100 | 3.0101 | 3.0102
Entropy || 1.3046 | 1.4450 | 1.5196 | 1.5196 | 1.5196 Entropy || 1.5427 | 1.5802 | 1.5000 | 1.5000 | 1.5000
Error 15.7052 | 16.8517 | 17.9989 { 18.0003 | 18.0000 Error 23.1597 | 21.6122 | 17.6352 | 17.6352 | 17.6350
) TABLE I _ Rate distortion function of Dy; in Lena
FINDING é7* WITH ENTROPY BOUND = 1.5 BY THE FALSE POSITION METHOD a7 T " - . . .
Entropy
Lena 1 3 5 7 8 9 08 1
8q 10.000 | 9.3169 | 9.2983 | 9.2937 | 9.2933 | 9.2933
) 4.0000 | 9.0811 | 9.2919 | 9.2919 | 9.2919 | 9.2930 2T .- 1
bn 9.0811 | 9.2983 | 9.2950 | 9.2933 | 9.2930 04r IR . .
Entropy | 0.2004 | 0.2006 | 0.2007 | 0.2008 | 0.2009 el Hy (E)

Mandrill 1 2 3 4 5 6 02 T
s 10.0000 | 10.0000 | 10.0000 | 10.0000 | 9.3708 | 9.3708 Shannon'’s bound
5 6.0000 | 9.0588 | 9.3330 | 9.3633 | 9.3633 | 9.3707 B |
5 9.0588 | 9.3330 | 9.3633 | 9.3708 | 9.3707 .
Entropy || 0.7399 | 0.7173 | 0.7151 | 0.7144 | 0.7145 Error

Error 17.6591 | 17.9606 | 17.9901 | 18.0002 | 17.9994

Fig. 10. Minimum entropy function with different error bounds is greater than
the Shannon bound by about 0.2 bits/pixel in the cas® of of Lena.

FINDING égl WITH ERRORBOUN-rI:,)A\SB:Li.EliII,AND 18 IN LENA AND MANDRILL, of Dy (7 — ()_7)_ This reveals that a better performance in
RESPECTIVELY, BY THE FALSE POSITION METHOD the sense of rate distortion functions will be attained for smaller
values ofy. The results are consistent with those obtained from
the energy concentration viewpoint. As a result, we are able to
acquire a good compression ratio for smaller values.dfhis
result also demonstrates the potential contribution of DWT and
indicates that DWT is a popular and adaptive transform in the

Lena 1 2 3 4 5 6 7
[ 0.2000 | 0.2608 | 0.3229 | 0.3389 | 0.3413 | 0.3415 | 0.3415
Entropy || 1.3834 | 1.4411 | 1.4879 | 1.4984 | 1.4999 | 1.5000 | 1.5000
Error 6.9569 | 6.8475 | 6.7353 | 6.7057 | 6.7014 | 6.7010 | 6.7011

Mandrill | 1 2 3 4 5 6 7 fields of data compression.
é 0.2000 | 0.4899 | 0.7429 | 0.8701 0.9199 | 0.9267 | 0.9274
Entropy | 1.2041 | 1.3621 | 1.4539 | 1.4870 | 1.4984 | 1.4999 | 1.4999 VIl. CONCLUSION

Error 27.1937 | 25.9317 | 24.8407 | 24.3260 | 24.1259 | 24.0999 | 24.0982

Through a three-level scalar quantizer performed after the
DWT, a global maximum entropy can be observed. From this
reduced when the values gfdecrease. When the valuesof point, we are able to discuss minimum quantization error with
decrease from 1 to 0.7, the reduction of the entropy variance fehtropy constrained and minimum entropy with an error bound,
lows from (13) and is shown in Fig. 6. Explicitly, the Shannomhich are useful in real implementations. The numerical ap-
bound is lower. We also observe that the rate distortion functipnoaches of the secant and false position methods are provided
in Fig. 7 is closer to the Shannon bound than that in Fig. 1th obtain the solutions to these problems from a geometrical
This is reasonable since Laplacian distributign= 1) is more point of view, and two testbed images (Lena and Mandrill) are
similar to the Gaussian distributidgry = 2) than the histogram implemented to verify the results. The rate distortion function of
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oo

a three-level scalar quantizer is also addressed. Because of the 3x3
inherency of the minimum quantization error in vector quanti- =3(P1 ~ fB2) Z (361 4 3m)(352 + 3m)
zation, it is noteworthy to find the minimum entropy when the m=1
mean squared error of the quantization has been specified.

3
(38, + 31)(3B2 + 31)

3
(3B, + 3 — 1)(38; + 31— 1)

NE

o~

1
APPENDIX
PROOF OFTHEOREM5.1

M

N
Il
=

From (13) and changing variab{é/~) by 3, we have

Mg

3
202F3([3)62’B[32 (3/31 + 3l — )(3/32 + 30— 2)]

mel'(38) ( ) { [i 3
—3(8— B
Sequentially, we defin& (3) = (I'®(3)e2° 32 /T'(343)). Taking o st 381+ 3m)(3f2 + 3m)

the derivative ofV; (3) with respect tg3, we get (14), shown at
the bottom of the page. Sind&(3) = [-n+ > o, ((1/n) —

N
Il
—

Vo(B) =

NE

3
(38, + 31— 1)(38; + 31 — 1)]

(1/8 4+ n — 1))]T(B), wheren is the so-called Euler's constant =1 )
and is equal tdimy_, (1 + (1/2) + --- + (1/k) — Ink) = N i 3
0.57721 ..., (14) can be rewritten as et (38, + 3m)(38; + 3m)
dvi(B) = 3
dg B ; (381 + 31 — 2)(382 + 31 — 2)
/3P2 (8)e2? { lgr 8) + 38 < i 1 < 0, since the two terms in braces are negative.
3/3 =1 Hence,V2(/3) is a monotonically decreasing function. By the
fact thatV>(1/2) = 0, we notice tha¥’;(/3) is positive forj <
/3+ L(3)+260(8)| ['(38) 0.5 and negative fo3 > 0.5. As a result, we obtain that i)
Vi(p) is a strictly increasing function of for # < 0.5, and
i) V1(3) is a strictly decreasing function ¢f for 3 > 0.5. In
—36L(B) <_”+Z 3/3+ ) F(3/3)} other words, the entropy varian&g(y) possesses the property

of monotonic increment when < 2. Conversely, it has the

_ prp)e? 95 +2— 3/32 1 property of monotonic decrement when> 2. Consequently,
I'2(33) /34—71 1 3p+n-1 the global maximum of the entropy variance occurs as the value

B BL2(8)e2? o Z 1 1 of v reaches 2, and this is the case of Gaussian distribution.
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