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Entropy-Constrained Scalar Quantization and
Minimum Entropy with Error Bound by Discrete

Wavelet Transforms in Image Compression
Bing-Fei Wu and Hung-Hseng Hsu

Abstract—The global maximum of an entropy function with
different decision levels for a three-level scalar quantizer per-
formed after a discrete wavelet transform was derived. Herein, we
considered the case of entropy-constrained scalar quantization ca-
pable of avoiding many compression ratio reductions as the mean
squared error was minimized. We also dealt with the problem of
minimum entropy with an error bound, which was referred to as
the rate distortion function. For generalized Gaussian distributed
input signals, the Shannon bound would decrease monotonically
when the parameter of distribution was to leave from 2. That
is, the Gaussian distributions would contain the highest Shannon
bound among the generalized Gaussian distributions. Addition-
ally, we proposed two numerical approaches of the secant and false
position methods implemented in real cases to solve the problems
of entropy-constrained scalar quantization and minimum entropy
with an error bound. The convergence condition of the secant
method was also addressed.

I. INTRODUCTION

T HE DISCRETE wavelet transform (DWT) is a kind of
pyramid subband decomposition that involves the appli-

cation of a multiresolution representation to image compression
to increase image resolution [3], [18]. The advantage of using
such a method in image compression could provide high com-
pression ratios (CR’s) as well as maintain good image fideli-
ties (see [1] and [23, p. 399]). The value of image compression
characterized by the DWT with entropy reduction is further pre-
sented in [25]. The Daubechies' filters, which are widely used in
data compression, are shown to be compactly supported and or-
thogonal (see [6] and [7, p. 167]). All the subimages functioning
with the DWT, except for the lowest frequency component, are
called the detailed images. We derived that the application of
scalar quantization (SQ) extended the detailed images since the
histograms are modelled to be generalized Gaussian distributed
(see [1] and [22, p. 370]).

Although the quantizer provides high capability that is vital to
image compression, it is accompanied by some generated dis-
tortion, and this can become a trade-off problem. In our pre-
vious work [24], we considered the case of the minimum mean
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squared error (MMSE) of the quantizer, which diminishes the
error as much as possible by disregarding CR. Since the entropy
is considered to be the index of lossless compressibility and the
expected value of the information contained in a picture, the op-
timal choice of quantization error without regard to entropy will
lead to a poor compression result, in general. Hence, the con-
cept to use the entropy instead of the mean squared error as the
performance index of optimization is followed. However, the
minimum entropy occurs when the decision level of the scalar
quantizer approaches infinity. This means that the three-level
scalar quantizer, which has three output levels, will be reduced
to a one-level scalar quantize, and the output of the quantizer is
always near zero. Afterward, the quantization error is maximum
and equal to the energy of the input signal, in which the quan-
tizer is shown to be turned off and meaningless.

Two ways may be used to remove these obstacles from the
idea of constrained optimization [11]; one approach is to in-
troduce MMSE with entropy constrained, and the other is to
minimize the entropy with an error bound, which is the same
as the concept of rate distortion function in information sci-
ence [21]. Gish and Pierce [8] showed that MMSE with entropy
constrained to the case in which the numbers of decision levels
approach infinity, has uniform decision levels regardless of the
probability density function (pdf) of the source signals. In par-
ticular, if the sources are independent and identically Gaussian
distributed, the MMSE with entropy constrained has an entropy
that is only 0.255 bits/pixel greater than the Shannon bound.
Wood [26] proposed the MMSE with entropy constrained nu-
merically by using a descent algorithm. Berger [4] further de-
scribed the conditions necessary for the MMSE with entropy
constrained. Netravali and Saigal [15] presented another algo-
rithm to solve the problems of MMSE with entropy constrained
based on fixed-point considerations. Noll and Zelinski [16] fol-
lowed Berger's method to deal with the sources with common
pdf's. The authors, however, encountered a drawback relating
to the convergence conditions constrained in the algorithms [5],
which will be overcome in this paper. The novelty of our paper
is therefore to introduce both issues of MMSE with entropy-
constrained and minimum entropy with an error bound in a
three-level scalar quantizer functioning after the DWT from a
geometrical perspective.

The object of the MMSE with entropy constrained herein is
to calculate the decision levels of a three-level scalar quantizer
such that the quantization error is minimum when the entropy is
bounded by a specified value. Unlike the case of MMSE, CR
is preserved at an acceptable level, and the feasible solution of
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decision levels is a union of two disconnected sets. Two algo-
rithms, called the secant method and the false position method
(also called regula falsi) [9], [20] are proposed to obtain the so-
lutions numerically. We also address the convergence condition
in the section on the secant method. Through the quantization
error bounded by a given value, the concept of minimum en-
tropy to be implemented in real situations is initiated. The fea-
sible solution of decision levels constitutes a connected set. Be-
cause of the convexity of the error function not being formulated
yet, we suggest applying the false position method to obtain the
two boundary points in the set of the decision levels. The quan-
tization errors corresponding to the set of decision levels sat-
isfy the specified bound . Compared with the entropies evalu-
ated at these two boundary points, we pick up the smaller one as
the desired minimum entropy. It is also shown that for general-
ized Gaussian distributed inputs, the Shannon bounds decrease
monotonically when the value of, which is referred to as the
parameter of distributions, is no longer 2. In particular, the rate
distortion function referred as the minimum entropy function re-
lated to the error bounds is higher than the Shannon bound by
about 0.06 bits/pixel if the input signal is Laplacian distributed
with the variance equal to . Two testbed pictures (Lena
and Mandrill) are used to illustrate the theoretical results.

The organization of this paper is as follows. In the next
section, the problems of MMSE with entropy constrained and
the minimum entropy with an error bound are formulated.
The global maximum of the entropy curve in a three-level
scalar quantizer performed after the DWT is presented in Sec-
tion III and provided for further discussions with respect to its
property. We notice that the concavity of the entropy function
holds for a particular region of decision levels. Therefore,
Section IV presents two kinds of numerical approaches called
the secant and false position methods to resolve the problem
of entropy-constrained SQ. In addition, we consider solving
the problem of minimum entropy with an error bound together
with the false position method provided to obtain the results
numerically presented in Section V. We also compare the rate
distortion function with the Shannon bound. In Section VI, two
testbed pictures (Lena and Mandrill) are adopted to illustrate
the experimental results discussed above. A concise conclusion
is made in the last section.

II. PROBLEM FORMULATION

The histograms of the detailed images processed after the
DWT can be modeled to be generalized Gaussian-distributed
[1]. By using the three-level scalar quantizer applied to these
subimages, high compression effects are achieved at the cost of
a little distortion. Our previous work [24] indicated that this be-
came the worst value of CR as the MMSE was reached. The first
step to resolve the problem is to sacrifice some mean squared
error by varying decision levels with the entropy reduced to
a specified value, as defined below. Moreover, we are able to
maintain the quantization error in a specified value yet reduce
the entropy to as minimum as possible.

Consider the three-level scalar quantizer in Fig. 1, where
and are the input and output of the quantizer, respectively,

Fig. 1. Input/output characteristic of the three-level scalar quantizer.

and are the decision levels, for are the re-
construction levels of the quantizer [2], [10], and

. The emphasis of this work, which is to mini-
mize the quantization error with entropy constrained and to min-
imize the entropy with bounded error, will be made by choosing
suitable decision and reconstruction levels.

We further consider the special case of to de-
rive the optimal solution provided for reducing one-dimensional
complexity in the domain of. The mean squared error between
the input and output of the special case of the quantizer is de-
fined as

(1)

where

and is the pdf of the input signal (see [17, p. 72]).
The decision level corresponding to the global minimum error
is therefore achieved [24].

Theorem 2.1 [24]: Consider the three-level scalar quantizer
with the same decision level. Then, the optimal value of the
decision level to minimize the mean squared erroris

(2)

where for are the centroids of the three levels of
the scalar quantizer and are defined as [12], [19]

respectively
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The histograms of those detailed images of the DWT modelled
to be generalized Gaussian distributed are stated as before. The
generalized Gaussian law is given explicitly by

(3)

with

and

where
standard deviation of ;
Gamma function;
parameter.

The generalized Gaussian law contains two particular cases. i)
leads to the Laplacian pdf, and ii) approaches the

Gaussian pdf. Obviously, the pdf of the input signal
is an even function (symmetric to the origin) with the results of

and derived. Equation (2) can be
reduced to

where (4)

We also proved that is the unique global minimum error
of the three-level scalar quantizer.

Theorem 2.2 [24]: Consider the three-level scalar quantizer
with the same decision level. The mean squared errordefined
as (1) has a unique global minimum if satisfies the gen-
eralized Gaussian law.

Moreover, the entropy of the output of the quantizer is defined
as

(5)

where and are the probabilities of the outputs of the
three-level scalar quantizer and are defined as

and respectively. These proba-
bilities are functions of the decision leveland are independent
of the reconstruction levels for and . Equation (5)
is equivalent to , where

. It implies that . Hence, the criterion
of minimization with entropy constrained is

subject to

where is a specified value.
In addition, we consider the other problem of minimum en-

tropy with an error bound. The criterion is of the form

subject to

where is a given value.

III. GLOBAL MAXIMUM OF THE ENTROPY FUNCTION

The entropy, which is the expected value of the informa-
tion contained in the signal of interest, is an index of compres-
sion effect in image coding. We will exactly depict the entropy
trajectory of a three-level scalar quantizer prior to numerical

approaches provided for solving the constrained optimization
problems. The extreme cases and of the entropy
function are investigated in Lemma 3.1.

Lemma 3.1:Suppose is an even function; then, i)
, and ii) . More precisely, the

three-level scalar quantizer in cases i) and ii) are reduced to two-
and one-level scalar quantizers, respectively.

Proof: i) When , the term will
disappear because of the vanishment of . The value of

is equal to 1 since . Hence, .
ii) The value of approaches zero as , implying that

. Moreover, the term
approaches zero as .

Lemma 3.2:Suppose is an even function; then,
is a decreasing function of.

Proof: Taking the derivative of with respect to

Next, taking the derivative of the entropy function with re-
spect to , we obtain

(6)

In Lemma 3.3, we are going to illustrate the characteristics of
the derivative of entropy when and .

Lemma 3.3:Suppose is generalized Gaussian
distributed; then, i) , and ii)

.
Proof: i) If , then . It im-

plies that since
in (6). ii) Based on the non-nega-

tiveness of , the following inequalities are
obtained:

for (7)

In addition, the limiting value of as is
checked as

where is the derivative of
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Because the decay of the exponential term is faster than
that of the polynomial term , the last equality approaches
zero. By (7), the result of ii) is obtained.

In addition, let the value of the decision level be defined as
such that . Explicitly, by Lemma 3.2, the

derivative of the entropy in (6) is greater than zero for ,
equal to zero for , and negative otherwise. As a result,
Lemma 3.4 is apparently obtained.

Lemma 3.4:Suppose that is generalized Gaussian
distributed. The derivative of entropy is greater than
zero for , equal to zero for , and less than zero
for .

By the lemmas mentioned above, the global maximum of the
entropy function will be shown in the following theorem.

Theorem 3.1:Suppose is generalized Gaussian dis-
tributed. The entropy of the output signals in Fig. 1 has a global
maximum .

Proof of Theorem 3.1:To demonstrate the property of the
global maximum of the entropy function, the curve of entropy
is traced from . By Lemma 3.1, we have
When departs from 0, increases from 1 based on the
positive value of derived in Lemmas 3.3 and 3.4. The
increment of will be stopped if the optimal value of the
decision value occurs, i.e., . Sequentially, be-
comes a strictly decreasing function for if the value of

in Lemma 3.4 is negative. While the entropy func-
tion decays slowly and approaches zero as , we can
precisely observe the global maximum property of entropy in
Fig. 2. Hence, the entropy function has a global maximum. The
value of maximum entropy is

.

IV. M INIMUM QUANTIZATION ERROR WITH ENTROPY

CONSTRAINED

We have shown the global minimum of quantization error and
the global maximum of entropy in scalar quantization. In this
section, the complete procedures will be presented with the ob-
servation of the geometrical point to obtain the minimum quanti-
zation error with entropy constrained. We suppose that the value
of entropy bound is less than the maximum entropy .
There are two intersection points generated in the entropy func-
tion when the horizontal line, which represents the value of en-
tropy equal to , is introduced. The values of at these two
points are denoted as and , respectively, and lie in the
two sides of . All values of satisfied to the entropy con-
straint are subject to the set or

. Furthermore, the assumption made under
is reasonable. Specially, if , there exists

only one intersection point . Hence, will be reduced to
and defined as . We will

investigate and by using the secant method and the false
position method, respectively.

Fig. 2. Global maximum ofH .

A. Solving by the Secant Method

In this subsection, we propose an algorithm to achieve the
value of by the secant method. The convergence condition
of this algorithm is also discussed. Although the secant method
will converge almost quadratically (see [12, p. 68]), it may be di-
verged if the curve of entropy has inflection points. To preserve
the convergence global, the curve needs to be either concave or
convex.

Theorem 4.1:Supposing that is generalized Gaussian
distributed, the entropy of the output signals in Fig. 1 is shown
to be concave for .

Proof of Theorem 4.1:Taking the second derivative of

If , i.e., , then . Hence,
the concavity of for is sustained. The proof is
completed.

Remark: By Lemmas 3.3, 3.4, and Theorem 4.1 , the
derivative of the entropy (see Fig. 3) strictly de-
creases to zero from for . When , the sign
of is not definite, and this implies that there
exists at least one inflection point in the entropy function.

By the concavity of , we can develop the following
algorithm to reach the value of .

(8)

(9)
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Fig. 3. Derivative of the entropy function.

where , which is less than , is the first initial condition
of the secant method and is always set to be a small positive
number for stability. The second initial condition is consti-
tuted by (8). The value of is selected to be
to ensure that lies in the interval of . See the fol-
lowing discussions for more details.

Convergence Condition of the Secant Method
1) Define . Then

Since is a concave function, for

for

Hence, we obtain , which implies that
lies in the interval of .

2) The convergence condition for can be addressed as

Hence, we obtain , which implies
that lies in the interval of .

Based on the result, the value in the algorithm from (9) will
certainly converge to .

B. Solving by the False Position Method

We introduce the false position method instead of the secant
method provided to obtain since there exists at least one
inflection point for . With the false position method ap-
plied on the entropy function, the convergence stability is ro-

Fig. 4. Three cases of minimum error with entropy constrained. (a)� <

� < � . (b) � < � < � . (c) � < � < � .

bustly preserved, although the convergence rate is linear only.
The procedure to find is developed as follows.

1) Find such that and . If
will vanish with set to be zero for convenience.

2) is formed with a positive value added to under the
condition of .

3)

4) will be replaced by if the sign of is
identical to that of ; otherwise, is substi-
tuted by .

5) Continue the procedure until the value of is
smaller than the specified small value and .

C. Finding the Minimum Quantization Error from

Since is clearly identified when and are located,
we are going to determine the minimum quantization error
found in . There are three conditions to be considered as
follows, and these are shown in Fig. 4.

1) :
Comparing the quantization error of with that of ,
the smaller one is of interest.

2) :
is selected since .

3) :
is selected since .

Remark: For the particular case of , the problem is
reduced to the cases of and . As a result,
is chosen if does not belong to the set ; otherwise,

is preferred.

V. MINIMUM ENTROPY WITH AN ERRORBOUND

The problem of minimum entropy with an error bound in a
three-level scalar quantizer will be explored similarly from the
geometrical perspective. This means that the entropy is obtained
as minimum as possible under the condition that the quantiza-
tion error does not exceed the specified value. We suppose that
the bounded value of the quantization error is set atand that
there is absolutely no solution if , where
is the minimum quantization error. In general, only two points
are generated in the error curve when the error is exactly ap-
proximate to . The values of the decision levels are defined
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Fig. 5. Minimum entropy with an error bound.

to be and , where , which implies that
. In the same manner, is defined to be

and is a connected set. Unlike the con-
cavity of the entropy function for , the convexity of the
error function is not sustained. Hence, the false position method
is adopted to achieve both values of and independently.
After obtaining the two values of for , there is
only one condition remaining to be considered, and this is more
simple than that of the minimum problem with entropy con-
strained restricted to three conditions. The value of interest to
this research is the one whose entropy is the smallest.
See Fig. 5 for more details.

Remark: The fact that the error of the energy is equal to
the difference between the input energy and output energy is
demonstrated in [24]. It is formulated as

where is the energy of

the input signal,

, and is defined
as the output of the three-level scalar quantizer while the optimal
reconstruction levels are selected. The error function evaluated
at is equal to
with value smaller than that of . Hence, there
exists only one intersection point in the problem of minimum
entropy with an error bound if is larger than the value of

. The set is represented as , which
reveals that the minimum entropy herein will be obtained by
comparing the value of with 1, which is the value of

. The smaller one is of interest.

A. The Rate Distortion Function

For a given error bound, the minimum entropy is obtained
with the three-level SQ performed on the DWT. Based on the
result, we attempt to plot the curve of entropy with respect to the
error bounds, which is also called the rate distortion function.

Suppose the input signal is generalized Gaussian distributed;
then, from (3), the pdf of is

Hence, the entropy of is

(10)

Shannon's bound of the rate distortion function is defined as [21]

(11)

where is the entropy variance corresponding to , that is,
the variance of a Gaussian distribution having the same entropy

. We therefore have

(12)

From (10) and (12), we get

(13)

Equation (13) shows that the entropy variance is a function of
. The discussion about the trajectory of the entropy variance is

observed in the following theorem.
Theorem 5.1:Suppose the signal is generalized Gaussian

distributed,; then, the entropy variancecorresponding to the
input signal has a global maximum when , where
is the parameter of the generalized Gaussian distributions and
is greater than zero. It also shows that the entropy variance in-
creases monotonically from 0 to for and decreases
monotonically for .

Proof of Theorem 5.1:See the Appendix for more details.
The function of entropy variance is shown in Fig. 6 with the
values of varying from 0.001 to 5.

Remark: By definition of the Shannon bound in (11), we no-
tice that the Shannon bound is proportional to the entropy vari-



WU AND HSU: ENTROPY-CONSTRAINED SCALAR QUANTIZATION AND MINIMUM ENTROPY 1139

Fig. 6. Maximum of the entropy variance occurs when = 2.

ance. Hence, it is concluded that the Shannon bound decreases
monotonically when the values ofis no longer 2.

In particular, we consider the case of Laplacian distribution
with pdf of the form

Therefore, the entropy of is

To compare the rate distortion function of Laplacian distri-
butions with that of in Lena, we select the variance to
be , which is identical to the variance of . The
comparison of the entropy function with the Shannon bound is
shown in Fig. 7. It points out that the rate distortion function is
greater than the Shannon bound by about 0.06 bits/pixel for an
entropy of below 0.4 bits/pixel.

VI. EXPERIMENTAL RESULTS

Examples of two two-dimensional images (Lena and Man-
drill) are presented to illustrate the theoretical results mentioned
before. The size of the testbed images is 512512 pixels
with 8-bit gray levels. The Daubechies' filter with length 20 is
adopted in the DWT decomposition since it is orthogonal and
compactly supported (see [6] and [7, p. 167]). This structure
follows Mallat's algorithm [13], which deals with the two-di-
mensional image problem and belongs to some kind of pyramid
subband codings. represents the lowest frequency subimage
of the first layer [resolution ] DWT decomposition.

and are the horizontal, vertical, and diagonal
oriented subimages with resolution , respectively, which
are referred to as detailed images. Given such a structure, we
are then able to derive the three-layer DWT decomposition.

A. Minimum Error with Entropy Constrained

The detailed images in Lena and Mandrill are illustrated
to determine the minimum quantization error with the entropy

Fig. 7. Minimum entropy function with different error bounds is greater than
the Shannon bound by about 0.06 bits/pixel if the source is Laplacian distributed
with � = 3:2898.

constrained. The functions of entropy and quantization error are
depicted in Figs. 8 and 9, where the properties of the global
maximum and minimum of the entropy and quantization error
are shown, respectively.

By the concavity of the entropy function for , we use
the available secant method to find the value of. In Table I,
the value at 0.3415 is found to determine the set for the
testbed picture of Lena. Next, we check whether the decision
value corresponding to the global minimum error is con-
tained in the set or not. By adding a tiny value to 0.3415
(e.g., 0.0001), the value of the quantization error is shown to
have decreased. We know thatis not in , and the value of
the minimum error in this set is 6.7011 when the entropy bound

is reached.
The results of another case for is derived in Table II

by using the false position method. The value of is found
to be 1.0658 to determine the set . The set is the union
of two separable sets and . Similarly, the location of

has had to be fixed such that the smaller value of the quan-
tization error is generated if is substituted by a larger value
1.0657. This implies that does lie in the set ,
and the minimum error in this set is 4.2120, which is consistent
with Condition 2 in Section IV-C. As a result, the minimum
quantization error with entropy constrained is 4.2120, which is
simply the minimum quantization error with no constraint [24].
The experimental results, which are functioned in the testbed
picture of Mandrill, are also listed in Tables I and II, and they
are consistent with Condition 2 after taking the same test per-
formed as above. The minimum quantization error with entropy
bounded below or equal to 1.5 is 15.2646 with . In
the case of changing the entropy constraint to 1.05, the optimal
decision value in set is no longer . It should have been
with , as illustrated in Fig. 9. The comparison reveals
that the image compression condensed in the case of Mandrill
is harder than that of Lena.
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Fig. 8. Entropy and quantization error functions ofD in Lena after the DWT.

Fig. 9. Entropy and quantization error functions ofD in Mandrill after the DWT.

B. Minimum Entropy with an Error Bound

The false position method is provided to solve the values of
and since the convexity of the error function does not

hold, in general. Comparatively, the convergence condition of
this numerical approach is simple [9]. The initializations of
and are located properly such that the corresponding quan-
tization error must be located on the opposite sides of. For
the cases of in Lena and Mandrill, the experimental results
with tolerance equal to 0.001 are shown in Tables III and IV. The
error bounds are set to be 5.6 and 18 in Lena and Mandrill, re-
spectively. In the case of Lena, the entropy of interest is 0.2009,
which is smaller than 1.5093. On the other hand, the entropy is
0.7145, which is smaller than 1.5196 in Mandrill.

Moreover, the rate distortion function of in Lena pro-
cessed with the three-level scalar quantizer is addressed as fol-
lows. By experimental results, the values of entropy and vari-

ance are about 3.2804 and , respectively. Next, we cal-
culate the entropy variance by

As a result, . The Shannon bound obtained
from (11) is compared with the entropy function , as
shown in Fig. 10. It reveals that the three-level scalar quantizer
performs well after the DWT since the rate distortion function is
only 0.2 bits/pixel greater than the Shannon bound. From Figs. 7
and 10, we observe that the rate distortion function and
the Shannon bound with Laplacian-distributed inputs are higher
than those of the case in . The observations are reasonable
since the histogram of in Lena is modeled to be general-
ized Gaussian distributed with [1]. For such distribu-
tions, the smaller the values of, the sharper the pdf's. This
intuitively implies that the entropies with the same variance are
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TABLE I
FINDING � WITH ENTROPY

BOUND = 1:5 BY THE SECANT METHOD

TABLE II
FINDING � WITH ENTROPYBOUND = 1:5 BY THE FALSE POSITION METHOD

TABLE III
FINDING � WITH ERRORBOUNDS= 5:6 AND 18 IN LENA AND MANDRILL ,

RESPECTIVELY, BY THE FALSE POSITION METHOD

reduced when the values ofdecrease. When the values of
decrease from 1 to 0.7, the reduction of the entropy variance fol-
lows from (13) and is shown in Fig. 6. Explicitly, the Shannon
bound is lower. We also observe that the rate distortion function
in Fig. 7 is closer to the Shannon bound than that in Fig. 10.
This is reasonable since Laplacian distribution is more
similar to the Gaussian distribution than the histogram

TABLE IV
FINDING � WITH ERRORBOUNDS= 5:6 AND 18 IN LENA AND MANDRILL ,

RESPECTIVELY, BY THE FALSE POSITION METHOD

Fig. 10. Minimum entropy function with different error bounds is greater than
the Shannon bound by about 0.2 bits/pixel in the case ofD of Lena.

of . This reveals that a better performance in
the sense of rate distortion functions will be attained for smaller
values of . The results are consistent with those obtained from
the energy concentration viewpoint. As a result, we are able to
acquire a good compression ratio for smaller values of. This
result also demonstrates the potential contribution of DWT and
indicates that DWT is a popular and adaptive transform in the
fields of data compression.

VII. CONCLUSION

Through a three-level scalar quantizer performed after the
DWT, a global maximum entropy can be observed. From this
point, we are able to discuss minimum quantization error with
entropy constrained and minimum entropy with an error bound,
which are useful in real implementations. The numerical ap-
proaches of the secant and false position methods are provided
to obtain the solutions to these problems from a geometrical
point of view, and two testbed images (Lena and Mandrill) are
implemented to verify the results. The rate distortion function of
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a three-level scalar quantizer is also addressed. Because of the
inherency of the minimum quantization error in vector quanti-
zation, it is noteworthy to find the minimum entropy when the
mean squared error of the quantization has been specified.

APPENDIX

PROOF OFTHEOREM 5.1

From (13) and changing variable by , we have

Sequentially, we define . Taking
the derivative of with respect to , we get (14), shown at
the bottom of the page. Since

, where is the so-called Euler's constant
and is equal to

, (14) can be rewritten as

For convenience, we define
, and the result of is obtained directly.

Moreover, we are going to show that is a strictly de-
creasing function of . For , then

since the two terms in braces are negative.

Hence, is a monotonically decreasing function. By the
fact that , we notice that is positive for

and negative for . As a result, we obtain that i)
is a strictly increasing function of for , and

ii) is a strictly decreasing function of for . In
other words, the entropy variance possesses the property
of monotonic increment when . Conversely, it has the
property of monotonic decrement when . Consequently,
the global maximum of the entropy variance occurs as the value
of reaches 2, and this is the case of Gaussian distribution.
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