
 
 

 

  

Abstract— This paper proposes a calibration method as well 
as a computational algorithm to integrate the data of multiple 
optical flow sensors for 2-dimensional trajectory measurement. 
Optical flow sensors offer a different kind of odometer as 
compared with the wheel encoder. Using multiple sensors, it is 
possible to reduce the effect of measurement uncertainties. 
Since all sensors are mounted on a rigid body, their 
measurement data must obey a certain relation. This relation is 
utilized in this paper and mathematical formulations are 
developed to realize the computation. It is shown that the 
calibration procedure can be cast as an optimization problem 
given measurement data. Further, the rigid-body relation is 
formulated as a null-space constraint using the calibrated 
parameters. During operation, unreliable sensor 
measurements can be removed by accessing the error distance 
to the null space. Experimental results are presented to 
support the proposed methods. 

I. INTRODUCTION 
OCALIZING a mobile robot in an indoor environment is 
an important issue in the field of robotics. The position 

estimation methods can be classified into two basic categories: 
absolute and relative positioning [1]. Common absolute 
positioning technologies include GSP, navigation beacons, 
map-matching and landmarks and for relative positioning, 
odometers or inertial sensors are usually used. Localization 
integrating various sensors is a clever way to complement the 
drawbacks of individual sensor. However, improving the 
accuracy of one kind of sensor is fundamental to enhance the 
accuracy of localization. 
 Odometer based on wheel encoder is most commonly used 
in practice because of its simplicity and availability. Recently, 
the method of localization using optical flow sensors (or 
optical mouse sensor) was proposed [3]–[10]. Combining the 
measurement with landmarks to perform self-localization was 
also reported [6][11]. Comparing to optical encoder, the 
optical flow sensor measurement is not affected by 
wheel-slippage because of direct sensing of the movement 
between the sensor and sensing surface. Further, the cost of 
the sensor is very low due to its massive applications of 
computer mice. It is now easy to obtain off-the-shelf optical 
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flow sensor whose resolution reaches 2000 counts per inch.  
The principle of optical mouse is using a miniaturized 

CMOS camera to capture consecutive images reflected from 
the surface through the LED illumination. The camera, LED 
and associated optical mechanism are specially arranged to 
ensure a robust measurement [9]. Because the surface has 
texture variation, it is then likely to detect the motion of the 
sensor by matching the patterns between consecutive images 
(e.g., autocorrelation [12]). Although it is possible to obtain 
both translational and rotational measurement, off-the-shelf 
sensors only give translation information because rotation is 
not needed in computer mouse applications. Therefore, at 
least two optical flow sensors have to be used to detect the 
complete motion information [4]–[5] [7]–[8]. 

There are many factors that might affect the accuracy of the 
optical flow measurement. The work in [9] provides a 
detailed analysis of the possible errors of the optical flow 
sensor itself and it is possible to reduce the error by taking 
average over an array of sensors. However, taking the 
average does not consider the differences among the sensors 
as they might encounter different conditions. For example, 
the optical flow sensor passing by a hole (i.e., a sudden 
change of height of the surface) gives an incorrect reading 
due to out-of-focus. Further, to use multiple sensors, there are 
more issues to be considered. Borenstein and Feng [2] 
categorized the errors into: 1) Systematic errors and 2) 
Non-systematic errors. For our case, the reasons leading to 
the systematic error include imperfect measurements of 
position and orientation of optical flow sensors and variation 
of resolutions. The reasons of the non-systematic error come 
from the sensor itself such as inability to detect the change of 
a homogeneous surface or the distance between sensor and 
sensing surface is too large [7].  

The technical issues mentioned above have never been 
studied in detail when constructing a sensor module using 
multiple optical flow sensors. This work proposes a 
calibration method to deal with the systematic errors as well 
as a consistency check strategy to reduce the inaccuracy 
affected by non-systematic errors. The underlying principle is 
similar to sensor fusion where the readings of all sensors must 
reflect the fact that they are mounted under a rigid body. 
Rigorous mathematical formulations and derivations are 
given to facilitate the design in real practice. The following 
section describes the methods of integrating multiple optical 
flow sensors. In section III, the rigid-body constraints and the 
geometric relations of optical flow sensors are introduced. 
Section IV presents the calibration method which optimizes 
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the parameters of sensors using the formulation in section III. 
In Section V, the consistency check strategy is developed to 
choose the reliable sensor measurements during operation. 
Several simulation results are given in Section VI to 
demonstrate the proposed method and a conclusion is given 
in Section VII. 

II. POSITION AND ORIENTATION ESTIMATION USING 
MULTIPLE SENSORS 

The analysis in this section makes an extension of the work 
in [7] to multiple sensors. Consider there are N optical flow 
sensors, labeled as i = 1 to N, mounted on a plane. Each 
sensor is able to measure a 2-dimensional translation in its 
own coordinate. In general, sensor coordinates (coordinate 
defined on the motion detection axes of the optical flow 
sensor) are not necessary aligned to each other. Suppose two 
sensors labeled i and j (Fig. 1) are at a distance D ij to each 
other. The coordinate of sensor i is rotated at the angle σij 
relative to the line connecting both sensors (line O Oi j

 in Fig. 

1) while the angle for sensor j is σji. The sign of σij and σji is 
positive if the rotation is counterclockwise (CCW) and 
negative otherwise. 

 
Fig. 1. Geometric relation of two sensors  

  
Considering that the sensor move along an arc during the 

sampling interval, the length of the arc is, 
 2 2

i i il x y= +                                                                     (1) 

where ix  and iy  are the measurements of sensor i at each 
sample instant on the coordinate of sensor i. The motion 
direction (tangent to the arc) of sensor i is at the angle αi 
relative to the sensor coordinate, i.e.  
 li cos(αi) = ix  and li sin(αi) = iy .                        (2) 

From Fig. 1, the angle γij can be calculated as γij = |αi 

+σij-αj-σji |. Denoting the rotational angle as Δθij, the radius of 
rotation for sensor i is,  

 i
i

ij

lr
θ

=
Δ

                                                                (3) 

and from the law of cosine, Δθij can be calculated as,  

2 2 2cos( )
( sin( ) sin( ))

γ
θ α σ α σ

+ −
Δ = + − +i j ij i j

ij j j ij i i ij
ij

l l l l
sign l l

D
 (4) 

Define a coordinate ( ′x , ′y ) aligned with the line O Oi j
 and 

the origin located at its mid-point (Fig. 2). The new sensor 
locations can be calculated as, 

(sin( ) sin( )) ( ) / 2θ α σ α σ θ′ = Δ + + − + Δ +i i ij i ij i ij ij ijx r sign D     (5a) 

(cos( ) cos( )) ( )i i i ij ij i ij ijy r signα σ θ α σ θ′ = + − Δ + + Δ           (5b) 

  (sin( ) sin( )) ( ) / 2θ α σ α σ θ′ = Δ + + − + Δ −j j ij j ji j ji ij ijx r sign D       (5c) 

  (cos( ) cos( )) ( )j j j ji ij j ji ijy r signα σ θ α σ θ′ = + − Δ + + Δ            (5d) 

 
Fig. 2. The movement within a sampling interval of two sensors 

  
Denoting the center of the line O Oi j

 as oij and its movement 

as Δoij (see Fig. 2), we have, 
 Δoij = T

ij ijx y′ ′⎡ ⎤Δ Δ⎣ ⎦
                                                            (6) 

where 
( )

2
i j

ij

x x
x

′ ′+
′Δ =  and ( )

2
i j

ij

y y
y

′ ′+
′Δ = . 

Suppose that the center of the robot relative to the oij on the 
coordinate of Fig. 2 is ij′c , the movement of the center, 

denoted as ij′Δc , is 

 ( ( ) )ij ij ij ijθ′ ′Δ = Δ − + Δc T I c o                                        (7) 

where I is the identity matrix and T(Δθij) is the transformation 
matrix as, 

 cos( ) sin( )
( )

sin( ) cos( )
θ θ

θ
θ θ

Δ − Δ⎡ ⎤
Δ = ⎢ ⎥Δ Δ⎣ ⎦

T ij ij
ij

ij ij

                                   (8) 

Suppose the orientation of the vector O Oi j
 to the robot 

coordinate is βij, the movement represented by the robot 
coordinate (denoted as Δcij) is 
 ( )ij ij ijβ ′Δ = Δc T c                                                           (9) 

Therefore, the robot position and orientation relative to the 
global coordinate computed from the sensor pair i and j at 
time k+1 are, 
 ( 1) ( ) ijk kθ θ θ+ = + Δ                                                    (10) 
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 ( 1) ( ) ( ( )) ijk k kθ+ = + Δc c T c                                          (11) 

For N sensors, there will be 2
NC =N(N-1)/2 solutions for the 

robot position and orientation update. A straightforward way 
of update is to compute the mean as, 
 

1

1 1

2( 1) ( )
( 1)

N N

ij
i j i

k k
N N

θ θ θ
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= = +

+ = + Δ
− ∑ ∑                           (12) 
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2( 1) ( ) ( ( ))
( 1)
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ij
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k k k
N N

θ
−

= = +

+ = + Δ
− ∑ ∑c c T c               (13) 

III. THE RIGID-BODY CONSTRAINTS AND GEOMETRIC 
RELATIONS AMONG SENSORS 

Since all sensors are fixed relative to each other, the 
measurements must obey the rigid body constraint. This 
constraint can be used to perform calibration as well as access 
the correctness of measurement. For rigid body motion, the 
constraint between any two sensors according to Fig. 1 is 

li cos(αi +σij) = lj cos(αj +σji)                                 (14) 
or 
 li cos(αi) cos(σij)− li sin(αi) sin(σij)  

= lj cos(αj) cos(σji)− lj sin(αj) sin(σji).         (15) 
This means that the projections of the sensor measurements 
onto the joining line in Fig. 1 should be the same. For N 
sensors, there will be N(N-1)/2 constraint equations. Since li 
cos(αi) = ix  and li sin(αi) = iy , where ix  and iy  are the 
sensor measurements during each sampling interval on the 
sensor coordinate. The equation becomes 

ix cos(σij) − iy sin(σij) = jx cos(σji) − jy sin(σji)          (16) 

and the equation error is defined as 
εij = ix cos(σij) − iy sin(σij) − jx cos(σji) + jy sin(σji)  (17) 

The pattern εij of can be used to access if the nominal 
parameters is correct or if the sensor reading is reliable. 
Define the error vector ε as the collection of N(N-1)/2 errors 
εij,  

12 13 ( 1)ε ε ε −⎡ ⎤= = ⋅⎣ ⎦ B
T

N N Xε                               (18) 

where B is a matrix of dimension N(N-1)/2×2N shown in (19) 
at the bottom of this page. X is defined as sensor 
measurements vector as 

1 1 2 2[ ]= T
N NX x y x y x y  

whose dimension is 2N×1. Moreover, denoting the 
orientation of the sensor i to the robot coordinate is φi  and for 
sensor j is φj, the angle σij can be obtained from σij = φi −βij 
and similarly, σji = φj −βij. 

Equation (18) can be used to compute the parameters in B 
by minimizing ε. B contains the angular parameters of 
sensors, i.e. all φi’s and βij’s. The number of φi is N and the 

number of βij is N(N-1)/2 (since βji = βij + π and there are no 
βii’s). However, all φi’s are independent to each other but βij’s 
are not. In other words, there are relations among βij’s which 
should be satisfied when performing the minimization to find 
the parameters. To begin with, define the coordinate of sensor 
1 as the robot coordinate and the center of sensor 1 as the 
robot center, i.e. φ1 = 0 and the position of sensor 1 is (0,0). 
Fig. 3 shows the relations among sensor number 1, i, i+1, j 
and j-1. There are two cases when computing βij. 

 
        (a)             (b) 

Fig. 3.  The geometric relations of angles: (a) acute angle case. (b) obtuse 
angle case 

  
In Fig.3, suppose that P Oij i

is perpendicular to O Oi j
 and 

the point Pij is a point on line O Oi j
. In the first case (Fig.3(a)), 

∠PijOiOj is an acute angle and it is easy to see that the angle βij 

= β1i + (π−∠PijOiOj). Let , ,ψ a b c be the notation of angle 

∠OaObOc. and Dij the length of O Oi j
. We can see that the 

length of P Oij j
 is equal to D1jsin( ,1,ψ i j ) and the length of 

P Oij i
 is equal to D1i− D1jcos( ,1,ψ i j ). As a result, the angle 

∠PijOiOj is  
1 ,1,

1 1 ,1,

sin( )
P O O arctan( )

cos( )
ψ

ψ
∠ =

−
j i j

ij i j
i j i j

D
D D

              (20) 

and according to law of cosine, 

          1, 1, 1, 2, 1 1, , 1
1 1

1, , 1 1, 1, 2 1, 1,

sin( )sin( ) sin( )
sin( )sin( ) sin( )

ψ ψ ψ
ψ ψ ψ

+ + + −

+ + + −

= i i i i j j
i j

i i i i j j

D D       (21) 

Hence,  

,1,

1, 1, 1, 2, 1 1, , 1
,1,

1, , 1 1, 1, 2 1, 1,

sin( )
arctan sin( )sin( ) sin( )

cos( )
sin( )sin( ) sin( )

ψ
ψ ψ ψ

ψ
ψ ψ ψ

+ + + −

+ + + −

⎛ ⎞
⎜ ⎟
⎜ ⎟∠ =
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

i j
ij i j

i i i i j j
i j

i i i i j j

P O O
(22) 

In the second case (Fig.3(b)), the angle ∠PijOiOj is an obtuse 
angle and βij = β1i + ∠PijOiOj. Similarly, we can arrive at the 
following equation. 

12 12 21 21

13 13 31 31

( 1) ( 1) ( 1) ( 1)

0cos( ) sin( ) cos( ) sin( ) 0 0
0cos( ) sin( ) 0 0 cos( ) sin( )

cos( ) sin( ) cos( ) sin( )0 0 0 0 0 0

B

σ σ σ σ
σ σ σ σ

σ σ σ σ− − − −

⎤− −⎡
⎥⎢ − − ⎥⎢=
⎥⎢
⎥⎢ − − ⎥⎣ ⎦N N N N N N N N

 (19)
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,1,

1, 1, 1, 2, 1 1, , 1
,1,

1, , 1 1, 1, 2 1, 1,

sin( )
arctan sin( )sin( ) sin( )

cos( )
sin( )sin( ) sin( )

ψ
ψ ψ ψ

ψ
ψ ψ ψ

+ + + −

+ + + −

⎛ ⎞
⎜ ⎟
⎜ ⎟∠ =
⎜ ⎟
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⎝ ⎠

i j
ij i j

i i i i j j
i j

i i i i j j

P O O
(23) 

Further, it is straightforward to show that that ,1,ψ i j  

=β1j−β1i, 1, , 1ψ +i i  = π−(βii+1−β1i), 1, 1,ψ +i i =βii+1−β1i+1, 

1, 1, 2ψ + +i i = βi+1i+2−β1i+1, 1, 2, 1ψ + +i i =π−(βi+1 i+2−β1 i+2) , and so 

on. Therefore, the angle βij can be rewritten as, 
1 1

1
1 1

1 1
1

1 1

sin( )
arctan( ), case (a)

cos( )

sin( )
arctan( ) ,      case (b)

cos( )

β β
β π

β β
β

β β
β

β β

−⎧
+ −⎪ − −⎪= ⎨ −⎪ +⎪ − −⎩

j i
i

ij j i
ij

j i
i

j i ij

S

S

        (24) 

where  
 1 1 1 +1 2 1 2 1 1 

 1 1 +1 2 1 1 1 1 1

sin( )sin( ) sin( )
sin( )sin( ) sin( )

β β β β β β
β β β β β β

+ + + + −

+ + + − −

− − −
=

− − −
i i i i i i j j j

ij
i i i i i i j j j

S  

Equation (24) shows the relationship among βij’s and it is 
easy to see that the free parameters are β1j’s, j = 2 to N and 
βi(i+1)’s, i=2 to N-1. All other βij’s can be computed from them 
using (24). 

Given the angle βij’s, there are also geometry relations 
among Dij’s. In fact, there is only one degree of freedom left 
for Dij’s. To see this, consider the geometric relations shown 
in Fig. 4 and according to law of cosine, 

1,2,
1 12

1, ,2

sin( )
sin( )

ψ
ψ

= j
j

j

D D   .                                                  (25) 

Then, 
,1, ,1, 1,2,

1, , 1, , 1, ,2

sin( ) sin( )sin( )
sin( ) sin( )sin( )

ψ ψ ψ
ψ ψ ψ

= =i j i j j
ij 1j 12

i j i j j

D D D             (26) 

Equivalently, we can have 
12= ⋅ij ijD G D                        (27) 

where 
2 12

2 1

1 1 2 12

1 2 1
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                     , when  = 1
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⎪ −⎪= ⎨ − −⎪
⎪ − −⎩
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j i j

ij i j j

i

G
  

  

 
Fig. 4. Geometric relations of Dij 

  
As the result, the position of each sensor relative to sensor 1 
can derive from D12 and βij. These geographic relations are 

fundamental to the calibration as well as consistency check 
algorithm described in the following context. 

IV. THE CALIBRATION METHOD  
The objective of calibration is to reduce the systematic 

errors by correcting parameters of the sensor configuration. 
Using (18) and (24), one can determine the angular 
parameters (φi’s and βij’s) and subsequently, the distance 
among sensors can be computed from (27) given one distance 
measurement between a pair of sensors. In other words, if that 
distance measurement and all sensor readings are accurate, it 
is able to perform self-calibration without using external 
reference measurements. Suppose measurements obtained by 
moving the sensor module in a homogeneous path (e.g. an arc 
or a line) for a while are accumulated and the accumulated 
data set is denoted as the following vector, 

[ ]1 1 2 2= T
N NX x y x y x y                 (28) 

Instead of using one sample data, using accumulated data 
could prevent quantization error. The trajectory of sensor 
motion shall be designed such that the vector X spans the 
remaining subspace (a condition similar to persistence 
excitation). 

As described in Section III, the independent angular 
parameters are φi’s, i=2 to N, β1j’s, j=2 to N and βk(k+1)’s, k=2 
to N-1. The total number is (N−1)+(N−1)+(N−2)=3N−4. Let Z 
be the vector Z = [z1 z2 … z3N-4]T = [φ2 … φΝ β12 β13 … β1N 
 β23 β34 … β(N-1)N]T. The problem of solving Z can be cast as 
the following optimization problem, 

              ( )( ) ( )T T

Z
Min X Z Z XB B                                        (29) 

This unconstraint optimization problem can be solved by 
mathematical software tool and then the angular parameters 
can be obtained. 

After that, the distance among sensors can be computed 
from (27) if D12 is known as mentioned in previous section. It 
is also likely to calibrate D12 if an external angular 
measurement is available. To see this, substituting (27) into 
(4), we have, 

2 2

12

2cos( )
( sin( ) sin( ))i j ij i j

ij j j ij i i ij
ij

l l l l
sign l l

D G
γ

θ α σ α σ
+ −

Δ = + − +  

All li and lj above can be determined from the same data set X. 
Define a new variable u as,  

)

2 21

1 1

2cos( )2      
( 1)

                                       ( sin( ) sin( ))

γ

α σ α σ

−

= = +

⎛ + −
⎜=
⎜−
⎝

⋅ + − +

∑ ∑
N N

i j ij i j

i j i ij

j j ij i i ij

l l l l
u

N N G

sign l l

  (30) 

As the result, the product of u and inverse of D12 is equal to 
average of the orientation estimation of each sensor pair. 
More precisely, 

1
1

12
1 1

2
( 1)

θ θ
−

−

= = +

⋅ = Δ = Δ
− ∑ ∑

N N

ij real
i j i

u D
N N

               (31) 

where ,θΔ real k  denotes the real rotation angle at each sample. 

Finally, the distance D12 can be directly obtained as 
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12

1
θ= ⋅ real

D u
                                       (32) 

V. CONSISTENCY CHECK STRATEGY 
The performance of optical flow sensor depends on the 

condition of sensing surface. Highly reflective surface or a 
sudden change of height might disturb the sensor 
measurements seriously. Each pair of sensors can get a 
estimation of position and orientation according to (1) to (11), 
For N sensors, there will be N(N-1)/2 estimates. In order to 
reduce the uncertainty caused by the non-systematic error, the 
unreliable sensor measurements shall be removed from the 
update. The remaining measurements can used to update the 
position and orientation of the robot as described previously 
in (12) and (13).  

From (18), if there is no error in the sensor measurements, 
ε should be zero. This means that the correct measurement 
vector X should lie in the null space of the matrix B (denoted 
as N(B)). Therefore, for any vector X not in N(B), the 
orthogonal projection of X onto N(B) can be interpreted as the 
optimal correction of X. Alternatively, the distance of X to 
N(B) (or the error vector after projection) represents degree 
of incorrectness of the measurements. It is then possible to 
use this distance to access the reliability of each sensor 
measurement. Accordingly, there could be different kinds of 
strategies to access the reliability. For example, if one of the 
sensors gives an incorrect reading, we can find it out by 
removing it from X and the remaining sub-vector should be in 
the null space. Suppose the total number of unreliable sensors 
moved every time is Q. The measurement vector at time t is 
denoted as Xt. The procedure of finding out these Q sensors at 
each time that data coming is defined as following steps:  
1) At beginning, the total number of sensors of Xt is N. 
2) Ignore the measurements of one of these sensors and 

redefine a measurement vector, Xr,t, of remained sensors. 
3) Find the constraint matrix, Br, of remained sensors and 

the null space of Br, N(Br) 
4) Find the orthogonal projection vector 

r,tX̂  of Xr,t onto 

N(Br). 
5) Calculate the distance from Xr,t to 

r,tX̂  

6) Repeat step 2 to step 5 until each sensor have been 
ignored once. Then compare all of distances that are 
collected in step 5 and find the minimum one. 

7) Remove the sensor that was ignored corresponding to 
minimum distance in step 6. If the total number of 
removed sensors is equal to Q, then stop. Else, go to step 
2. 

After these steps, we can obtain the (N −Q) reliable sensors at 
time t. And 

r,tX̂  can be used as the data set to compute the 

movement according to (1) − (11) and estimate the overall 
position and orientation by computing the mean of these 
movements as (12) and (13). 

VI. EXPERIMENTAL RESULTS 
A module with eight optical flow sensors was developed as 

Fig.5. The optical flow sensor used is the ADNS-6010 type 
manufactured by Avago Technologies. This laser type sensor 
is better than the common optical ones since it is more 
accurate, less sensitive to height, and capable of measurement 
of higher speed motion. These 8 sensors are located at the 
corners of an octagon. The diagonal distance of the octagon is 
4.8cm, and the relative orientation between two adjoining 
sensors is 45 degrees. The position and orientation of each 
sensor are held as precise as possible. The module contains a 
microprocessor which can access data of all sensors at the 
same time and send the data to PC through RS-232 in each 
sample time.  

 
(a) Overall view 

 
(b) Bottom view 

Fig. 5.The module with eight optical flow sensors  
 

In order to interpret clearly the effectiveness of the 
calibration method, random errors with a variance of 0.01 are 
added to the angles and the position of each sensor to 
represent the uncertainty of hardware installation. Firstly, we 
fixed a marginal point of the module and move the module 
spherically centered on that point. The sensing data are 
accumulated through a complete circle (radius 140 mm). 

 Then the accumulated data is used to formulate the 
optimization problem as (29). We use a built-in function 
named fminunc in MATLAB to solve this unconstraint 
optimization problem. Once angular parameters are obtained, 
the same accumulated data with actual 2π orientation is used 
to calculate the distance D12. After that, experiment made by 
traveling the sensor module along the same circle again is 
performed comparing the estimation with nominal arguments 
and the estimation with calibrated arguments as in Fig. 6. 
Table I shows the detail of errors of the comparison.  
 Once again, let the robot move on the same path. But this 
time we put a piece of rectangular transparency at the midway 
to validate the consistency check strategy. The number of 
unreliable sensors moved every time is set to be 3. As shown 
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in Fig. 7, the trajectory which doesn’t implement the 
consistency check strategy has a sudden change when passing 
the transparency and results in a large error. In contrast, the 
one using the strategy as described in Section V successfully 
eliminates the faulty sensors and gives more accurate 
estimations. The detail of errors of returning to the end point 
is show in Table II. 

 

 
Fig. 6. The comparison of localization result with and without using 
calibrated arguments 
 

 
 

 
Fig. 7. The comparison of localization result with and without using 
consistency check strategy 

 

 

VII. CONCLUSION 
In this work, an odometer using multiple optical flow 

sensors is introduced. Since the relative positions of the 
sensors are unchanged, their measurements should obey the 
rigid body constraint, i.e., the projections of velocity 
measurements of a pair of sensors onto the line connecting 
them should be the same. This relation is used first to 
calibrate the parameters of sensor configuration. It is shown 
that all parameters can be computed from the sensor 
measurements and the rotation angle of the module. To filter 
out incorrect sensor data during operation, the rigid body 
constraint is again used to construct the null space where 
sensor data vector should belong to. The reliability of the 
sensor data is determined based on the distance to the null 
space. Experiments are conducted to support the proposed 
methods and the results show the effectiveness of the 
methods in achieving a better accuracy. 
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TABLE I 
ERRORS OF THE RESULT WITH AND WITHOUT CALIBRATION 

 Position error Orientation error 
    mm % degree % 

Without 
calibration 46.21 5.27 18.93 5.26 

With 
calibration 8.60 0.98 2.72 0.75 

TABLE II 
ERRORS OF THE RESULT WITH AND WITHOUT CONSISTENCY CHECK 

 Position error Orientation error 
    mm % degree % 

Without 
consistency check 84.68 9.66 -24.95 6.93 

With 
consistency check 6.28 0.72 -1.83 0.51 
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