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Abstract

Given a graph G and a positive integer k, denote by G[k] the graph obtained from G by
replacing each vertex of G with an independent set of size k. A graph G is called pseudo-k
Hamiltonian-connected if G[k] is Hamiltonian-connected, i.e., every two distinct vertices of G[k]
are connected by a Hamiltonian path. A graph G is called pseudo Hamiltonian-connected if it is
pseudo-k£ Hamiltonian-connected for some positive integer k. This paper proves that a graph G
is pseudo-Hamiltonian-connected if and only if for every non-empty proper subset X of V' (G),
|N(X)| > |X|. The proof of the characterization also provides a polynomial-time algorithm that
decides whether or not a given graph is pseudo-Hamiltonian-connected. The characterization of
pseudo-Hamiltonian-connected graphs also answers a question of Richard Nowakowski, which
motivated this paper. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Graphs in this paper are finite, undirected, loopless and without parallel edges. The
term multigraph is used for that with parallel edges. For standard terminology and
notation, see [2].

The following question was asked by Nowakowski [6]: Given a graph G, with each
vertex assigned an integer. A beetle crawls from vertex to vertex along its edges. As it
arrives at a vertex, it increases the integer assigned to that vertex by 1. A graph G is
called a beetle graph if for any initial position and any initial assignment of integers,
the beetle, by crawling along the edges, can change it to an assignment in which the
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integers assigned to all the vertices are the same. The question is to characterize beetle
graphs.

It turns out that such graphs have other interesting properties, which are also related
to the vertex packing problem [5,7,9]. To describe these properties, we first introduce
the notion of pseudo-Hamiltonian-connected graphs, regular Hamiltonian walks and
pseudo-edges.

Given a graph G and a positive integer k, denote by G[k] the graph obtained from
G by replacing each vertex of G with an independent set of size k. To be precise, G[k]
has vertex set {v;:v € V(G), i=1,2,...,k}, two vertices v; and u; are adjacent if and
only if vu is an edge of G. A graph G is called pseudo-k Hamiltonian-connected if
G[k] is Hamiltonian-connected, i.e., every two distinct vertices of G[k] are connected
by a Hamiltonian path. A graph G is called pseudo-Hamiltonian-connected if it is
pseudo-k Hamiltonian-connected for some positive integer k.

Suppose G is a graph and x and y are vertices of G. An x—y walk W of G is called a
regular Hamiltonian walk if there is a positive integer k& such that each vertex of V(G)
occurs exactly & times in . It is easy to see that if G is pseudo-Hamiltonian-connected,
then for every pair of distinct vertices x and y of G there exists an x—y regular
Hamiltonian walk.

An x—y walk W is called a pseudo-edge if there is an integer k>0 such that each
vertex of V(G) — {x,y} occurs k times in W, and each of x and y occurs (k + 1)
times in W. We are interested in graphs for which every pair of distinct vertices is
connected by a pseudo-edge.

The following result shows that the classes of graphs defined above are indeed
the same classes of graphs, for which there is a simple characterization and their
membership can be determined in polynomial time. For a subset X of V(G), we
denote by Ng(X) (or N(X), if there is no confusion) the set of neighbors of vertices
of X, i.e., No(X)={y:xy € E(G) for some x € X}. For any vertex x, Ng(x) stands
for Ng({x}).

Theorem 1. Given a graph G of at least three vertices, the following statements are
equivalent:

(1) G is pseudo-Hamiltonian-connected.

(2) Every two distinct vertices of G are connected by a regular Hamiltonian walk.
(3) Every two distinct vertices of G are connected by a pseudo-edge.

(4) G is a beetle graph.

(5) G is connected and for every non-empty independent set I of G, IN(I)| > |I|.
(6) For every non-empty proper subset X of V(G), |[N(X)| > |X]|.

This paper proceeds as follows. Section 2 gives a proof of the main theorem and dis-
cusses the recognition problem for this class of graphs. Section 3 discusses the relation
between these graphs and the vertex packing problem. Section 4 investigates pseudo-2
Hamiltonian-connected graphs and raises some open problems. The complexity issue
is discussed in Section 5.
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2. Proof of Theorem 1

(1) = (2): This is trivial, because when x # y, an x—y Hamiltonian path of G[k]
corresponds to an x—y regular Hamiltonian walk of G.

(2) = (3): Suppose every two distinct vertices of G are connected by a regular
Hamiltonian walk. For any two distinct vertices x and y, let W be an x—y regular
Hamiltonian walk. Replace each edge uv of W by a u—v regular Hamiltonian walk.
Then it is straightforward to verify that the resulting walk is a pseudo-edge connecting
x and y.

(3) = (4): Suppose every two distinct vertices of G is connected by a pseudo-edge.
If the beetle crawls along a pseudo-edge connecting x and y, the integers assigned to
y is increased by k + 1, while each of the other integers is increased by k. As we are
only interested in the differences between the integers assigned to the vertices, when
the beetle crawls along a pseudo-edge connecting x and y, it has the same effect as
crawling along an edge connecting x and y. Therefore, G is a beetle graph if and only
if K, is a beetle graph, where n=|V(G)|. It is easy to verify that K, is a beetle graph
if and only if n>3. Indeed, starting from an arbitrary vertex, the beetle may crawl
along an edge towards a vertex with minimum integer, and the process is repeated.
The integers assigned to the vertices will eventually become the same.

(4) = (5): Assume that G is a beetle graph. Obviously G is connected. We prove
that for each independent set I, [N(/)| > |I|. Assume to the contrary that for some
independent set I, [N({)|<|I|. Assign 1 to each vertex of N(/) and assign 0 to each
vertex of /. Integers assigned to the other vertices are arbitrary. Suppose the beetle
is initially at a vertex of /. Before arriving at any vertex of /, the beetle must arrive
at a vertex of N(/). Thus, no matter how the beetle crawls along the edges, the total
increase of the integers assigned to N(/) is at least as large as the total increase of the
integers assigned to I. As |[N(I)|<|I|, the average increase of the integers assigned to
N(I) is at least as large as the average of the increase of the integers assigned to /.
Thus, it is impossible that all the integers become the same.

(5) = (6): Suppose X is an arbitrary non-empty proper subset of V' (G). Each
non-isolated vertex of the induced subgraph G[X] belongs to N(X). Let / be the set
of isolated vertices of G[X]. If I # 0, then |[N(I)| > |I|. As N)N (X —1) =10,
it follows that |[N(X)|=|X —I| 4+ |[N(I)| > |X|. If I =0, then X C N(X). Therefore,
either |[X| < |[N(X)| or X =N(X). Since G is connected, X = N(X) would imply that
X =V(G).

(6) = (1): Finally, assume that for every non-empty proper subset X of V(G),
[N(X)| > |X]. To see that there is an integer £ such that G[k] is Hamiltonian-connected,
it suffices to prove that there is an integer £ such that for any two vertices x and y of
G, there is an x—y walk of G in which each vertex of G occurs exactly k& times. Note
that x and y need not be distinct.

We call a multigraph H a spanning sub-multigraph of G if H is obtained from G
by “multiply” some edges, where “multiplying an edge” means replacing the edge by
t parallel edges for some integer ¢>0.
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Suppose W is an x—y regular Hamiltonian walk in which each vertex occurs & times.
Then the edges of W induce a spanning sub-multigraph of G, in which each vertex
of V(G) — {x, y} has degree 2k, and each of x and y has degree 2k — 1. (In case
x =y, the vertex x has degree 2k — 2.) Before proving the existence of such an x—y
Hamiltonian walk for every pair of vertices x and y, we prove the existence of such
sub-multigraphs of G.

Lemma 2. Suppose G is a graph such that for every non-empty proper subset X of
V(G), |NGg(X)| > |X|. Then for any distinct vertices x and y of G, there exists a
sub-multigraph H of G in which each vertex of V(G)—{x, y} has degree 2, and each
of x and y has degree 1, for every vertex x of G, there exists a sub-multigraph H
of G in which each vertex of V(G) — {x} has degree 2, and x has degree 0.

Proof. Let x and y be (not necessarily distinct) vertices of G. Construct a bipartite
graph O., = (4 U B,E) as follows: 4 = {uy:u € V(G) and u # x}, B= {vg:iv €
V(G) and v # y} and E = {(uy,v):(u,v) € E(G)}. Then for every subset X
of 4, |Ng, (X)|=|Ng(X)| — 1>|X|. It follows from Hall’s theorem that Q. , has
a perfect matching, say M. Let H be the sub-multigraph of G with edge multiset
{(u,v): (uy,vp) € M}. 1t is straightforward to verify that A satisfies the requirement of
Lemma 2. This completes the proof of Lemma 2. Note that the proof is similar to a
proof of a Petersen theorem on 2-factorization of a 2k-regular graph. [

For each pair of distinct vertices x and y, let H(x, y) be a spanning sub-multigraph
of G such that dy(x,)(x) = du)(y) =1 and dy.,)(u) =2 for all other vertices u.
Since x and y are the only two vertices of H of odd degree, these two vertices are in
the same connected component of H(x, y). Let H(x,x) be a sub-multigraph of G such
that dpex(x) =0 and dp.y)(u) =2 for all other vertices u.

Let x1,x5,...,x, be an arbitrary ordering of the vertices of G. Let H be the union
of H(x1,x2),H(x2,x3),...,H(xp—1,%,), H(x,,x1). (Here the union means add the edges
together, thus V(H) = V(G), and the multiplicity of an edge e in H is the sum of
the multiplicities of e in the multigraphs H(x;,x;).) Now H is a connected spanning
sub-multigraph of G in which each vertex has the same degree 2n — 2. For any two
vertices x and y, let F(x, y) be the union of H and H(x, y). If x and y are distinct, then
F =F(x,y) is a connected spanning sub-multigraph of G with dp(x)=dp(y)=2n—1
and dp(u) = 2n for every other vertex u. If x = y, then F = F(x,x) is a connected
spanning sub-multigraph of G with dp(x) =2n — 2 and dp(u) = 2n for every other
vertex u. Thus F has an Eulerian trail P connecting x and y. Now P considered as a
walk of G is a regular Hamiltonian walk in which each vertex of G occurs n times.
(Note that when x = y, we count the initial occurrence and the terminal occurrence of
x as different occurrences.) This completes the proof of Theorem 1. [

The proof of Theorem 1 also gives a polynomial-time algorithm that determines
whether a connected graph G is pseudo-Hamiltonian-connected. To determine whether
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or not G is pseudo-Hamiltonian-connected, it amounts to determining whether or not
for every non-empty proper subset X of V(G), |N(X)| > |X|. By Hall’s theorem, this
is equivalent to determine whether or not for each pair of (not necessarily distinct)
vertices x and y, the bipartite graph O, as defined in the proof of Lemma 2 has a
perfect matching, which can be determined in polynomial time.

3. Other characterizations

This section discusses other interesting properties of pseudo-Hamiltonian-connected
graphs. The class of pseudo-Hamiltonian-connected graphs turns out to be related to
the weighted vertex packing problem, i.e., finding a maximum weight independent
set. Assign to each vertex v of G a weight ¢(v)>0. The weighted vertex pack-
ing problem is to find an independent set / such that c¢(/) = X,c;c(v) is maximum.
This can be formulated as an integer linear programming problem (which is referred
as (VP)):

(VP) maximize cx,
subject to  Ax<1,, x binary,

where m = |E(G)|,n = |V(G)|,1, =(1,1,...,1) is an m-vector of ones, and A4 is the
m X n edge—vertex incidence matrix of G (a;; =1 if v; is an end vertex of edge e;, and
a;;=0 otherwise). Relaxing the binary constraints to x >0 gives the linear programming
relaxation (VLP) of (VP).

How an optimum solution to (VLP) (which is polynomial) can be helpful in finding
an optimum solution to (VP) (which is NP-complete) was discussed in [5,7,9]. Many
interesting results concerning this problem were obtained. It was proved by Nemhauser
and Trotter [5] that for an optimum solution x to (VLP), the integral components
of x can be extended to an optimum solution to (VP). Thus, we are interested in
finding an optimum solution x to (VLP) which has as many integral components as
possible. The results obtained in [5,7,9] concerning such an approach are negative.
The following result proved by Nemhauser and Trotter [5] relates this problem to
pseudo-Hamiltonian-connected graphs:

Theorem 3 (Nemhauser and Trotter [5]). The solution x given by x; = % for all v; €
V is the unique optimum solution to (VLP) if and only if c(I) < c(N(1)) for all
independent sets 1.

In particular, if ¢(v;) =1 for all v; and G is connected, then the solution given
by x; = % for all i is a unique solution to (VLP) if and only if |I| < |[N(I)| for all
independent sets /, i.e., G is pseudo-Hamiltonian-connected.

Berge [1] has given another characterization of those graphs G for which (VLP) has
a unique solution. Define a graph G as being regularizable if it is possible to replace
each edge e with n.>1 multiple edges so that the resulting multigraph is regular.
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Theorem 4 (Berge [1]). The solution x given by x; = % for all v; € V is the unique
optimum solution to (VLP) (with c(v;)=1 for all v;) if and only if G is regularizable
and that each component of G is non-bipartite.

Combining Theorem 1 with Theorems 3 and 4, we have the following characteriza-
tion of pseudo-Hamiltonian-connected graphs:

Corollary 5. A graph G is pseudo-Hamiltonian-connected if and only if G is connected,
regularizable and non-bipartite.

A 2-matching of a graph G is sub-multigraph of G in which each vertex has degree
2. A graph G is called 2-bicritical [9] if G — v has a 2-matching for every vertex v of
G. The following result was proved by Pulleyblank:

Theorem 6 (Pulleyblank [9]). A graph G is 2-bicritical if and only if for every inde-
pendent set I, we have |N(I)| > |I].

Thus, a connected graph G is 2-bicritical if and only if it is pseudo-Hamiltonian-
connected.

Pulleyblank also proved in [9] that almost all graphs are 2-bicritical. Hence almost
all connected graphs are pseudo-Hamiltonian-connected.

4. Pseudo-2 Hamiltonian-connected graphs

Given a pseudo-Hamiltonian-connected graph G, we denote by p(G) the minimum
number k for which G[k] is Hamiltonian connected. It follows from the proof of The-
orem 1 that if a graph G of order n is pseudo-Hamiltonian-connected, then p(G)<n.
This is not a sharp bound.

In fact, a slight modification, as follows, of the last paragraph of the proof of The-
orem 1 gives that p(G)<[n/2]. For any two (not necessarily distinct) vertices x and
v, the graph H(x,y) has at most one isolated vertex and so has r<[n/2] compo-
nents. As G is connected (otherwise, the vertex set X of a connected component is a
non-empty proper subset such that N(X)=X), there exist r—1 edges x;y; (1<i<r—1)
connecting these components into a connected graph. Then the union of H(x, y) and
H(x;, yi) +x;y; for 1<i<r — 1 plays the same role as F(x, y) in the proof. And the
degree of any vertex in V(G) — {x, y} is 2r <2[n/2]. Therefore, p(G)<[n/2].

By definition, p(G)<1 if and only if G is Hamiltonian-connected. It is difficult to
determine whether a given graph is Hamiltonian-connected. In this section, we prove
that any pseudo-Hamiltonian-connected graph with a Hamiltonian cycle is pseudo-2
Hamiltonian-connected.

Theorem 7. Suppose G is pseudo-Hamiltonian-connected. If G has a Hamiltonian
cycle then p(G)<2.
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Proof. Suppose G is pseudo-Hamiltonian-connected and has a Hamiltonian cycle. By
Theorem 1, for every proper subset X of V(G), |Ng(X)| > |X|. For any (not neces-
sarily distinct) vertices x and y of G, let H(x, y) be the sub-multigraph of G defined
as in the proof of Lemma 2. Namely, when x # y, each of x and y has degree 1
and every other vertex has degree 2 in H(x,y); when x = y, then x has degree 0
and every other vertex has degree 2 in H(x,x). Let C be a Hamiltonian cycle of G.
Then H=CUH(x, y) is a connected sub-multigraph of G such that when x # y then
dy(x)=dy(y) =3 and dy(u) =4 for u # x, y; and when x = y then dy(x) =2 and
dy(u) =4 for u # x. Thus, H has a Eulerian trail connecting x and y, which is then
an x—y regular Hamiltonian walk of G which traverses each vertex of G exactly twice.

[

The toughness #(G) of a graph G is defined as
#(G) =min{|S|/k(G — S):S is a vertex cut set of G},

where k(G —S) is the number of components of G — S. It was conjectured by Chvatal
[3] that there is a real number ry such that any graph G with #(G)>r( is Hamiltonian.
Chvatal also conjectured that letting 7o=2 would be enough. Note that non-Hamiltonian
graphs exist with toughness at least ¢ for each ¢ < 2, see [4]. While the first conjecture
remaining open, the second one is recently disproved by Bauer, Broersma and Veldman.

Theorem 8. If t(G) > 1, then G is pseudo-Hamiltonian-connected.

Proof. If G is not pseudo-Hamiltonian-connected, then there is a non-empty inde-
pendent set I such that |[N(I)|<|I|. Now k(G — N(I))=|I|. Hence #(G)<|I|/k(G
-NU)<1l. O

Note that even cycles are not pseudo-Hamiltonian-connected and they are 1 tough.

If Chvatal’s conjectures are true, then #(G)>ry>2 implies that G has a Hamiltonian
cycle. Since #(G) > 1 implies that G is pseudo-Hamiltonian-connected by Theorem 8§,
it would follow from Theorem 7 that G is pseudo-2 Hamiltonian-connected. Therefore,
the following conjecture is implied by Chvatal’s conjecture:

Conjecture 1. There is a real number ry > 2 such that for any graph G, if t(G)=r
then G is pseudo-2 Hamiltonian-connected.

An even weaker conjecture is the following:

Conjecture 2. There is a real number ry and an integer k such that for any graph
G, if (G)=ry then G is pseudo-k Hamiltonian-connected.

On the other hand, Conjecture 1 is strictly weaker than Chvatal’s conjecture, in
the sense that there are graphs G which do not contain a Hamiltonian cycle, and yet
p(G)=2. Petersen graph is such an example. The required x—y walks are as illustrated
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Fig. 1. Walks for Petersen graph.

in Fig. 1. Note that by symmetry, it suffices to consider three cases: x=y, x is adjacent
to y, x is not adjacent to y.

Another conjecture, stronger than Conjecture 2, which seems to be not related to
Chvatal’s conjecture, is the following:

Conjecture 3. For any real number r > 1, there is an integer k. such that for any
graph G, if t(G)=r then G is pseudo-k, Hamiltonian-connected.

We note that for any integer k, there are pseudo-Hamiltonian-connected graphs G
such that p(G) > k. Indeed, take k disjoint copies of K,, and then add a universal
vertex u (i.e., add u and connect u to each of the 2k vertices of the £ copies of K, by
an edge). The resulting graph G is pseudo-Hamiltonian-connected and p(G)=+k+1 if
k>=2. We omit the verification which is quite straightforward.

5. Efficient beetle

Suppose G is pseudo-Hamiltonian-connected. Then for any initial assignment of in-
tegers to the vertices of G, the proof of Theorem 1 actually produces a route for the
beetle so that by crawling along the route, all the integers will become the same. How-
ever, the route produced by the proof of Theorem 1 is usually not the shortest route
to achieve the goal of changing all the integers to the same.

Given a graph G, an initial assignment f of integers to the vertices of G, and a
vertex s of G which is the initial position of the beetle. We are interested in finding
a shortest route for the beetle to crawl so that after finishing this route the integers
assigned to the vertices will be changed to all being the same. Or equivalently, we need
to find the minimum integer &, such that there is a walk W of G, starting from s, which
arrives at each vertex v k — f(v) times. Unfortunately, this problem is NP-complete,
as one might have expected.

We now define the efficient beetle problem as the following minimization problem
(G, f,s): Given a graph G, an assignment of each vertex v an integer f(v), and a
initial vertex s, the efficient beetle problem (G, f,s) is to find a minimum integer k
such that there is a walk W of G, starting from s which arrives at each vertex v exactly
k — f(v) times.
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Theorem 9. The efficient beetle problem (G, f,s) is NP-hard even in the special
case if G is a bipartite cubic planar graph, f(s) =1, and f(v) =0 for the other
vertices v.

Proof. The Hamiltonian path problem is NP-hard for such graphs, see [8]. Therefore
the problem to find a Hamoltonian path with prescribed start vertex in such a graph is
also NP-hard (because each vertex can be considered as a start vertex, one at a time).

[

There are methods that produce better solutions to the beetle problem (i.e., find
shorter route) than that given by the proof of Theorem 1. For example, one may first
find a sub-multigraph O of G such that there is an integer £ and for every vertex
v, do(v) = 2(k — f(v)). If O is connected, then of course, the Eulerian cycle gives
the required walk. If Q is not connected, then we may add the sub-multigraph H as
constructed in the proof of Theorem 1 to O to obtain a connected sub-multigraph, which
then produces the required walk. The sub-multigraph O can be constructed similarly as
in the proof of Lemma 2. There are other modification to the method of constructing
the walk W, however, the ideas are similar, and the solutions seem to be far from
being optimal.
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